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We present a screened exact-exchange (SXX) method for the efficient and accurate calculation of
the optical properties of solids, where the screening is achieved through the zero-wavevector limit of
the inverse dielectric function. The SXX approach can be viewed as a simplification of the Bethe-
Salpeter equation (BSE) or, in the context of time-dependent density-functional theory, as a first
step towards a new class of hybrid functionals for the optical properties of solids. SXX performs
well for bound excitons and continuum spectra in both small-gap semiconductors and large-gap
insulators, with a computational cost much lower than that of the BSE.

PACS numbers: 31.15.ee, 71.15.Qe, 71.35.Cc, 78.20.Bh

I. INTRODUCTION

The Bethe-Salpeter equation (BSE)1–3 is considered
the gold standard for calculating the optical properties
of periodic solids and many other materials. The nonem-
pirical nature of the BSE guarantees its wide applicabil-
ity and high degree of accuracy, but its computational
cost becomes prohibitive beyond the simplest systems.
Time-dependent density-functional theory (TDDFT)4–7

is computationally much less expensive, and is therefore
a popular alternative for the calculation of optical prop-
erties. TDDFT calculations can be orders of magnitude
faster than the BSE, but none of the existing empiri-
cal or nonempirical exchange-correlation (xc) kernels for
solids8–12 can achieve the same level of accuracy for both
small-gap and wide-gap solids. The exception is the so-
called “nanoquanta” xc kernel,2,13–16 which is as accurate
as the BSE, but equally expensive.
Recent TDDFT studies for solids have identified

the crucial importance of the long-range part of the
xc kernel.17–19 Exact-exchange TDDFT20,21 successfully
produces excitonic properties, but the Coulomb singular-
ity needs to be cut off, which is equivalent to screening
the Coulomb interaction.22 Hybrid xc functionals are de-
fined as a mixture of semilocal (gradient-corrected) xc
functionals with a fraction of nonlocal exact exchange.
The B3LYP hybrid functional23 has been used to calcu-
late optical spectra in semiconductors,24,25 with a gener-
ally good description of optical gaps, despite the fact that
the 0.2 mixing parameter of B3LYP is optimized for finite
systems. The HSE functional26,27 uses exact exchange
for short-range interactions only; this produces very good
quasiparticle gaps,28–30 but cannot yield bound excitons,
although it may still give decent continuum spectra.31

On the other hand, the so-called optimally tuned range-
separated hybrids seem to be quite promising.32

In this paper we propose a simple, nonempirical
and material-dependent way of screening the long-range
Coulomb exchange, which can be viewed as a simpli-
fied BSE approach. We show that this screened exact-

exchange (SXX) approach outperforms all TDDFT ap-
proaches currently on the market, retaining most of the
accuracy of the BSE over a wide range of materials, but
at a much lower computational cost. This builds a bridge
between TDDFT and many-body theories, and opens up
new directions towards the development of hybrid func-
tionals for the optical properties of insulating solids.
The paper is organized as follows. In Section II we

discuss the theoretical background, Section III presents
results for a variety of insulators and semiconductors, and
Section IV contains a summary. Atomic units [e = ~ =
me = 1/4πǫ0 = 1] are used throughout.

II. THEORETICAL BACKGROUND

Although TDDFT and BSE are very different theories,
the excitation spectra in solids are in both cases obtained
through an eigenvalue equation:2,19

∑
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where i andm denote occupied bands, j and n denote un-
occupied bands, the ǫ’s are single-particle energies (either
quasiparticle or Kohn-Sham), and ω is the excitation fre-
quency. The main difference lies in the coupling matrix
FHxc = FH + Fxc. For optical properties, only vertical
excitations are considered, so that ki = kj and km = kn

in Eq. (1). The Hartree part of the coupling matrix is in
both methods given by
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The long-range part (G = 0) of the Coulomb interaction
is omitted so that the eigenvalues of Eq. (1) correspond
to poles in the macroscopic dielectric function.2,19
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For the BSE, as well as for our SXX method, the xc
part of the coupling matrix can be written as

F (ijk)(mnk′)
xc =

1

Vcrys
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Here, gGG′(q) = −4πγδGG′/|q + G|2 for SXX (γ is a
screening parameter, to be further specified below), and
gGG′(q) = −4πǫ−1

GG′(q, ω = 0)/|q + G′|2 for the BSE.
ǫ−1 is the inverse dielectric function, obtained within the
random phase approximation (RPA) as

ǫ−1
GG′(q, ω) = δGG′ +

4π

|q+G|2
χRPA
GG′(q, ω), (4)

with the RPA response function defined as χRPA = χ0 +
χ0vχ

RPA (χ0 is the quasiparticle response function6).
In TDDFT, the xc part of the coupling matrix is
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where fxc(r, r
′) = δvxc(r)/δn(r

′) is the adiabatic xc ker-
nel. The structure of Eq. (5) is similar to Eq. (2), but
different from Eq. (3): only the q = 0 part of fxc enters
in the expression, so the head (G = G′ = 0) at q = 0
of the xc kernel plays a much more important role in
TDDFT than g00(0) in the BSE.
To illustrate the difficulty in developing a universally

applicable nonempirical xc kernel, we consider the long-
range corrected (LRC) kernel9,17,33

fLRC
xc,GG′(q) = −

α

|q+G|2
δGG′ , (6)

which represents the long-range part of the exact xc ker-
nel in insulators. The empirical parameter α acts as a
rough approximation to the dielectric screening effects
within the BSE, but has no clear justification in the
TDDFT framework, besides giving the correct asymp-
totic behavior. In Ref. 9, the relation α = 4.615 ǫ−1

∞ −
0.213 was proposed, which works quite well for the opti-
cal spectra of semiconductors, but fails for insulators.
In Ref. 34, α was fitted against experimental exciton

binding energies for various materials. It was found that
the value of α spans a wide numerical range, from 0.595
(GaAs) to 96.5 (solid Ne). For small-gap materials, the
relative change in the exciton binding energy caused by
a change in α is substantial; for large-gap materials, the
exciton binding energies are not as sensitive. This shows
how difficult it is to develop a widely applicable nonem-
pirical xc kernel within the TDDFT framework.35

The situation is different in SXX. Unscreened time-
dependent Hartree-Fock (TDHF) always overbinds exci-
tons, so γ has to be in the [0, 1] range for the correction
to be in the right direction. Therefore, it is a much easier

task to develop nonempirical approximations for γ than
for the TDDFT parameter α.
To derive the SXX screening parameter γ, we start

from the self-energy Σ:

Σ(r, r′, ω) =
i

2π
G(r, r′, ω)W (r, r′, 0)

=
i

2π
G(r, r′, ω)

∫

d3r′′ ǫ−1(r, r′′, 0)v(r′′ − r′), (7)

where G is the quasiparticle Green’s function. ǫ−1 in Eq.
(7) is the full dielectric screening, and we want to find a
way to average its effect and motivate replacing it with
a constant.36 A first guess would be to replace ǫ−1(r, r′)
with a uniform screening ǫ−1

uni(r− r′):

Σ(r, r′, ω) =
i

2π
G̃(r, r′, ω)

∫

d3r′′ ǫ−1
uni(r− r′′)v(r′′ − r′),

(8)

which defines the function G̃. Combining Eqs. (7) and
(8) in reciprocal space leads to

∑

G2

ǫ−1
G2G1

(q′, 0)GG−G2,G−G1
(q− q′, ω)

= ǫ−1
uni,G1

(q′)G̃G−G1,G′−G1
(q− q′, ω). (9)

Eq. (9) holds for any q,G,G′. Setting these to zero and

assuming the functions G and G̃ to be real, we have

ǫ−1
uni,G(q, ω) =

∑

G′ GGG′(q, ω)ǫ−1
G′G(q, 0)

G̃GG(q, ω)
. (10)

For q → 0, GGG′ and head and body of ǫ−1
G′G remain

finite, but its left and right wings vanish and diverge, re-
spectively. The dominating term of Eq. (10) is therefore

lim
q→0

ǫ−1
uni,G(q) =

GG0(q, ω)ǫ
−1
0G(q, 0)

G̃GG(q, ω)
. (11)

For G 6= 0 this diverges as 1/q, so it is impossible to
replace ǫ−1

GG′(q) by ǫ−1
uni,G(q)δGG′ . But limq→0 ǫ

−1
00 (q, 0)

remains finite, and assuming G̃00(0) = G00(0), we obtain
ǫ−1
uni,0(q → 0) = ǫ−1

00 (0, 0). The averaging procedure thus
only works for the head, which suggests the approxima-
tion of simply discarding the body of ǫ−1

uni,GδGG′ and set-

ting q = 0 (since long-range interactions are dominant).
The screening parameter γ thus becomes

γ = ǫ−1
00 (0, 0), (12)

which is also the inverse of the infinite-frequency di-
electric constant, ǫ−1

∞ , since phonon effects are not
included.37 A similar simplified screening was proposed
in Refs. 38 and 39 for the nonlocal exchange part of hy-
brid xc functionals to obtain good band structures; by
contrast, the purpose of our SXX is to yield good optical
properties. Here, we calculate ǫ−1

00 (0, 0) within the RPA.
Since ǫ = 1− vχ, and the static χ at zero wave vector is
negative, γ of Eq. (12) is bounded in the [0, 1] range.
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FIG. 1. (Color online) Comparison of calculated and ex-
perimental exciton binding energies Eb (see Table I for de-
tails) in various semiconductors (GaAs, α-GaN, β-GaN, CdS,
CdSe, AlN, ZnO, MgO) and insulators (LiF, Ar, Ne). “Boot”
and JGM represent bootstrap kernel10 and jellium-with-gap
model.11 The solid line indicates where the calculated and
experimental values of Eb coincide.

Let us now compare the SXX approach with the BSE.
The main difference is that in BSE the exchange is
screened by the full inverse dielectric function ǫ−1, which
makes it much more costly than SXX, where the screen-
ing parameter γ is just a constant. In practice, a BSE
calculation is a four-step procedure: (i) ground-state cal-
culation with a diagonalization over the selected k-point
grid (often shifted40 for optical properties); (ii) quasi-
particle correction, typically in GW approximation41 or,
alternatively, with a simple scissor correction; (iii) gen-
eration of static screening ǫ−1

GG′(q, ω = 0) within the
RPA; (iv) construction and diagonalization of the exci-
tonic Hamiltonian [i.e., Eq. (1)] containing the ingredi-
ents listed above.

Regarding computational workload, even though step
(iv) has the worst scaling, step (iii) is often the most
cumbersome one, especially when one is interested in the
small energy region of the spectrum: the number of q-
vectors in the screening is proportional to the number of
k-points (since q = k − k′) even for optical properties.
This can become very demanding when many k-points
have to be used together with many G-vectors, as is the
case for lower-dimensional systems.42 In addition, the nu-
merical evaluation of ǫ−1

GG′(q, 0) has a much worse con-
vergence with the empty bands than the evaluation of the
spectrum (for instance, the screening for LiF requires 20
empty bands, while the first exciton peak requires only
one empty band). Our SXX approach bypasses this step
and thus avoids a severe computational bottleneck in the
description of optical properties at BSE-level for com-
plex materials. The resulting computational speedup is
typically by a factor of 2-10, depending on the material.
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FIG. 2. (Color online) SXX screening parameter γ [Eq. (12)]
and experimental value of ǫ−1

∞
versus the fitted γ reproducing

the first exciton, for various materials. B3LYP corresponds
to a constant value of γ = 0.2.

III. RESULTS

We have calculated the exciton binding energies Eb

of various semiconductors (GaAs, α-GaN, β-GaN, CdS,
CdSe, AlN, ZnO, MgO) and insulators (LiF, Ar, Ne) with
SXX and other methods. The numerical results are listed
in Table I and illustrated in Fig. 1. Except for GaAs,
SXX produces a much better overall agreement with ex-
periment than all TDDFT methods, and yields an accu-
racy that is comparable to BSE across the board.
The Eb were calculated as described in Ref. 34. For

simplicity and since our focus is on excitonic effects,
we approximate the quasiparticle energies and wavefunc-
tions, to be used as input to all our exciton calculations,
by scissor-corrected LDA band structures (obtained with
ABINIT43). Three valence bands and one conduction
band are included in Eq. (1), which is sufficient for
bound excitons. We carefully checked the convergence
of Eb with k-points, using an 18 × 18 × 18 Monkhorst-
Pack grid44 for GaAs and β-GaN, a 15 × 15 × 15 grid
for MgO, a 10× 10× 10 grid for Ar, Ne, and LiF, and a
20× 20× 20 grid for other materials. To save computer
time, we only use the head of the xc kernel when calcu-
lating the coupling matrices, i.e., we neglect local-field
effects by not taking the G,G′ sums in Eqs. (3) and
(5); this affects Eb only marginally (. 10%). To calcu-
late ǫ−1

00 (0, 0) we include 60 bands for GaAs, β-GaN and
MgO, and 30 bands for all other materials. 59 G-vectors
are used for ǫ−1, which converges ǫ−1

00 (0, 0) to within 1%.
Figure 2 compares γ from Eq. (12) with values of γ

fitted to reproduce the lowest experimental exciton bind-
ing energies. Aside from a few outliers (such as GaAs),
the calculated and fitted γ are very close, which explains
the good performance for Eb. Figure 2 also shows that
ǫ−1
00 (0, 0) at the RPA level is already a good approxima-
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GaAs β-GaN α-GaN CdS CdSe Ar Ne LiF AlN ZnO MgO

Exp. 3.27 26.0 20.4 28.0 15.0 1.90 × 103 4.08 × 103 1.6 × 103 75 60 80

BSE — — 172 66.0 16.2 2.07 × 103 3.32 × 103 2.51 × 103 552 208 546

TDHF 497 1.99 × 103 2.00 × 103 1.28 × 103 879 3.27 × 103 4.26 × 103 4.68 × 103 2.37 × 103 1.84 × 103 3.04 × 103

B3LYPa 0.792 7.71 57.4 48.1 25.8 100 197 180 89.4 55.8 31.9

SXX 0.151 4.08 16.4 26.0 11.9 1.33 × 103 3.08 × 103 1.46 × 103 39.9 30.8 165

LRCb 0.858 0.514 0 0.513 1.40 0.304 0.127 1.14 0 0.810 0.076

Bootc 0.332 0.199 0 0.461 0.895 1.70d 852d 32.2d 0 1.09 0.051

JGMe 0.833 0.382 0 0.741 1.42 41.0 0.593 993 0 4.45 1.79

TABLE I. Exciton binding energies Eb calculated with Eq. (1), compared with experimental values (all numbers in meV). All
calculations are head-only; see text for other technical details. The BSE results for GaAs and β-GaN were not calculated. The
estimated error due to the head-only approximation is < 10% for all many-body calculations, and < 5% for TDDFT.

a Head-only calculation, equivalent to SXX with γ = 0.2 independent of the material.
b With the empirical formula of Ref. 9.
c The bootstrap kernel of Ref. 10.
d The convergence of the bootstrap kernel strongly depends on the number of bands included in the iterative calculation of the kernel.

These results are obtained by evaluating the bootstrap kernel with 30 bands. The results reported in Ref. 34 were not fully converged.
e The jellium-with-gap model of Ref. 11.

 0

 4

 8

 12

 10  12  14  16

ε M

ω (eV)

Experiment
SXX
RPA

FIG. 3. (Color online) Absorption spectrum of LiF calculated
with SXX and RPA, compared with experiment45.

tion to the experimental ǫ−1
∞ . Notice that the B3LYP

hybrid kernel23 (only the long-range part, which corre-
sponds to γ = 0.2, since the calculation only uses the
head of the xc kernel) performs well for semiconductors,
giving roughly the average of the semiconductor screen-
ing parameters. The B3LYP functional was designed
with small molecules in mind, so its good performance
for bound excitons in semiconductors seems fortuitous.
To demonstrate that our method yields good results

not only for exciton binding energies, we present the op-
tical spectra of LiF, AlN, and Si (Figs. 3, 4, 5), calcu-
lated in a standard manner via the imaginary part of the
macroscopic dielectric function.2 We use 20 bands and
256 k-points for LiF, 10 bands and 256 k-points for AlN
and Si. All calculations include local field effects. We ob-
tain a very good agreement of the position and strength
of the strong bound-exciton peak in LiF compared to ex-
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FIG. 4. (Color online) Absorption spectrum of AlN calculated
with SXX, RPA, and BSE, compared with experiment46. The
BSE spectrum of Benedict et al.47 is also shown.
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FIG. 5. (Color online) Absorption spectrum of Si calculated
with SXX, RPA, and BSE, compared with experiment.48
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periment, which is also evident from the good agreement
between the calculated and fitted screening parameters
shown in Fig. 2. For the smaller-gap materials AlN and
Si, the excitonic enhancement of the band-edge spectrum
is somewhat underestimated (the bound excitons are not
shown in Figs. 4 and 5 since Eb is smaller than the
frequency resolution). This could suggest that the q-
dependence of the screening might be important here,
but this will require further study beyond the scope of
this paper. Compared to RPA, the SXX spectra in Figs.
4 and 5 give a much better description of the excitonic
enhancement effects. We also mention that the Si spec-
trum is of similar quality as that obtained with the re-
vised bootstrap kernel of Ref. 12.

IV. CONCLUSIONS

In conclusion, we propose a very simple nonempirical
screening factor for nonlocal exchange, derived as a sim-
plification of BSE. We show that it is easier to derive a
good approximation in the many-body framework than
developing a better long-ranged xc kernel for TDDFT.
Our SXX approach yields exciton binding energies of
a wide range of semiconductors and insulators in good

agreement with experiment; the performance is consis-
tently better than currently available TDDFT methods.
The SXX method works well for the optical spectra of
wide-gap materials, and captures continuum excitonic
effects in small-gap materials to some extent, although
there is still some room for improvement.
The SXX approach constitutes a first step towards a

hybrid xc kernel specifically designed for optical proper-
ties in periodic insulators and semiconductors. In this
paper we have focused on the long-range behavior of the
xc kernel; the next step will be to match the SXX ap-
proach with suitable xc functionals for the short range to
capture local-field effects. This should have minor effects
on strongly bound excitons, but is likely to lead to an im-
provement of the continuum part of the optical spectrum.
Work along these lines is in progress.
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