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Modern extensions of density functional theory such as the density functional theory plus U and
the density functional theory plus dynamical mean-field theory require choices, including selection
of variable (charge vs spin density) for the density functional and specification of the correlated
subspace. This paper examines these issues in the context of the “plus U” extensions of density
functional theory, in which additional correlations on specified correlated orbitals are treated using
a Hartree-Fock approximation. Differences between using charge-only or spin-density-dependent
exchange-correlation functionals and between Wannier and projector-based definitions of the corre-
lated orbitals are considered on the formal level and in the context of the structural energetics of the
rare earth nickelates. It is demonstrated that theories based on spin-dependent exchange-correlation
functionals can lead to large and in some cases unphysical effective on-site exchange couplings. Wan-
nier and projector-based definitions of the correlated orbitals lead to similar behavior near ambient
pressure, but substantial differences are observed at large pressures. Implications for other beyond
density functional methods such as the combination of density functional and dynamical mean field
theory are discussed.

I. INTRODUCTION

Modern theories of electronic structure can be formally
constructed in terms of functionals of observables of in-
terest whose stationary points deliver the values of the
observables1. Practical use of this formal construction
requires a choice of variables and of approximations to
the functional. Perhaps the most common choice is den-
sity functional theory2,3 (DFT), which can be formulated
as an effective action that is a functional only of the elec-
tron density4 (ie. not spin resolved). While DFT is in
principle exact, existing approximations have had diffi-
culty capturing phenomena related to the formation of
local magnetic moments. For example, neither the local
density approximation3 (LDA) nor the generalized gra-
dient approximation (GGA)5 provide correct accounts of
the structural energetics of layered and spinel manganites
that exhibit cooperative Jahn-Teller distortions associ-
ated with the high spin state of Mn3+,6 because at ambi-
ent pressure both LDA and GGA incorrectly predict that
the Mn ion is in a nominal |t42ge

0
g〉 low-spin configuration

instead of the proper high-spin |t32ge
1
g〉 state. Indeed it

seems intuitively clear that it would be prohibitively dif-
ficult to construct a functional based only on the density
that could capture this sort of effect, while a functional
of the spin-density might have a robust approximation
which can capture this physics. Additionally, a func-
tional of the spin-density will clearly allow predictions
to be made about magnetism, and this avenue has been
pursued since the inception of DFT3,7.
Functionals of both the charge and spin density such

as the the local spin-density approximation (LSDA)7–9

and the spin-dependent generalized gradient approxima-
tion (SGGA)10,11 have been constructed. Such theories
are often refered to as density functional theories, but in

this paper we strictly distinguish terms, using the term
density functional theory (DFT) to refer to theories such
as the LDA and GGA that are based on a functional of
the density only, and referring to theories such as the
local spin density approximation (LSDA) or the spin-
dependent GGA (SGGA) as spin-density functional the-
ories (SDFT).

SDFT theories perform far better than DFT theo-
ries in describing the energetics of magnetic insulators,
resolving, for example, the problems with manganites
noted above.6 SDFT theories additionally make predic-
tions about spin magnitudes and the nature of ordered
states. However, the known implementations of SDFT
fail to correctly describe many aspects of the physics and
structure of strongly correlated electron systems, for ex-
ample providing qualitatively incorrect structures for the
rare-earth nickelates12,13 (see, e.g. Ref. 1 for additional
examples).

These difficulties motivated the construction of new ef-
fective action theories that depend not only on the den-
sity or the spin-density, but also on additional proper-
ties of a subspace of orbitals for which correlations are
believed to be relevant1,14. Subspaces which have been
treated in this way include the transition metal d orbitals
in transition metal oxides and the lanthanide/actinide
f levels in heavy fermion compounds. Various differ-
ent variables can be defined from the subspace of corre-
lated orbitals. In this paper we focus on the historically
important and currently widely used choice of the site-
local spin and orbitally resolved density matrix associ-
ated with the correlated subspace15; however, we expect
that our findings are relevant to other variable choices;
in particular to the case of dynamical mean field the-
ory where the additional variables are the components of
the local Green’s function. A straightforward functional
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to use with the local spin-resolved density matrix is the
Hartree-Fock energy functional, defined using site-local
matrix elements of the Coulomb interaction. The func-
tional resulting from this combination of a local Hartree-
Fock functional of a correlated subspace and a standard
functional of the density or spin-density is commonly re-
ferred to as a “+U” extension of density functional the-
ory.

The paper that introduced the “+U” approach14 em-
ployed a functional of the electron density only, so is
referred to here as a DFT+U approach. However, the
vast majority of subsequent papers15 employ SDFT func-
tionals and are referred to here as SDFT+U approaches.
Despite the many successes of the +U methodology, ba-
sic points including the rationale for choosing SDFT+U
in preference to DFT+U and the factors influencing the
construction of the correlated subspace have not been
clearly discussed. While the general formalism may be
applied with any choice of orbital, it is important in prac-
tice to choose orbitals that are optimal in the context of
the other approximations used in constructing the theory.
While there is no clear prescription for doing this, the lo-
cal nature of the approximations which will ultimately
be used suggests that it is sensible to choose the corre-
lated subspace to consist of well localized ‘atomic-like’
orbitals. These orbitals may be constructed from by pro-
jecting onto a set of localized orbitals defined to lie within
atomic spheres. This choice is natural, given that many
basis sets for electronic structure already utilize projec-
tors. Projectors are used in various beyond-DFT meth-
ods including (S)DFT+U16 as well as DFT+DMFT17–23.
Alternatively, Wannier functions may be used to con-
struct the correlated orbital sets for beyond DFT cal-
culations. Various forms of the Wannier function have
been used for DFT+U24 and DFT+DMFT25–32 includ-
ing the projected Wannier function, Nth-order muffin-tin
orbitals24, and the maximally localized Wannier function
(MLWF)33–35.

In this paper we describe the physical differences be-
tween DFT+U and SDFT+U and provide guidelines to
enable researchers to choose between them. We further
compare the effect of different correlated orbitals sets
(Projector vs Wannier) on energy calculations within the
(S)DFT+U method. We also present a comprehensive
discussion of the issues arising when the +U methodolo-
gies are combined with the Projector Augmented Plane
Wave (PAW) formalism widely used to perform efficient
(S)DFT calculations. In addition to the formalism we
provide a quantitative application in the context of the
relation between crystal structure and energetics of the
rare-earth nickelates. This family of materials provides
a useful benchmark because its members exhibit a struc-
tural phase transition which is not correctly captured
either by DFT or by SDFT calculations. We com-
pare DFT+U and SDFT+U, using both projectors and
Wannier functions to construct the correlated subspace.
These results can also be directly compared to our recent
DFT+DMFT total energy calculations for the same class

of materials13.
We note in passing that an additional important issue

in DFT+U and SDFT+U theories is the so-called double
counting correction, introduced to account for the fact
that the local interactions denoted by U and J are to
some degree present already in the (S)DFT. The double
counting issue has been addressed in great detail in previ-
ous work13 and is not critical to the issues examined here.
Therefore in this paper we use the conventional definition
of the “fully localized-limit” double-counting36,37.
The rest of this paper is organized as follows. Section

II presents the basic formalism. Section III provides
a careful discussion of the issues involved in combining
the +U formalism with the projector augmented plane
wave method. Section IV presents expressions for forces,
needed in optimizing structures. Section V compares
the DFT+U and SDFT+U (with projector and Wan-
nier definitions of the correlated subspace) predictions for
the structural properties of the rare earth nickelates as a
function of unit cell volume, while section VIII provides
a comparison of predictions for the rare earth nickelate
phase diagram and the equilibrium volume. Section IX
contains a summary and conclusions. Relevant compu-
tational details are given in Appendix A.

II. FORMALISM

In this section we present explicit formulae for the en-
ergy functional, using a variant of presentation of the
DFT+DMFT functional given in Ref. 13. We derive the
total energy functional for SDFT+U, and then obtain
the DFT+U functional as a special case.
The SDFT+U total energy functional is defined by

E[ρσ, nτσ] = Tr[〈Ĥσ
U 〉]−Tr[V̂ σ

Hxc · ρ
σ]

−Tr[V̂ σ
int · n

τσ] + EHxc[ρσ] + Eint[nτσ] (1)

where ρσ denotes the charge density of electrons with spin
σ (we neglect spin-orbit coupling here for simplicity) and
nτσ is a density matrix within the correlated subspace of
an atom τ . Here the bracket 〈〉means that the eigenstates

of Ĥσ
U are summed over for the eigenvalues less than the

Fermi energy.
The functional EHxc is the familiar Hartree and

exchange-correlation energy functional of the DFT the-
ory to be used and V̂ σ

Hxc = δEHxc/δρσ is the correspond-
ing Hartree-exchange-correlation potential.
Eint is the combination of a Hartree-Fock potential

energy Epot defined within the correlated subspace and
a double counting correction EDC introduced to remove
from this potential the parts already included in the un-
derlying DFT:

Eint = Epot − EDC . (2)

In the applications presented here we follow the com-
mon practice in the literature by choosing the correlated
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subspace to be particular orbitals m of spin σ on partic-
ular atoms τ in the solid; for example the 3d orbitals in
a first row transition metal ion or the 4f orbitals in a
lanthanide ion, so that

Epot =
∑

τ,m1m2
m3m4σ1σ2

(Uσ1σ2σ1σ2

m1m3m2m4
−Uσ1σ2σ2σ1

m1m3m4m2
·δσ1σ2

)nτσ1

m1m2
nτσ2

m3m4

(3)
where the Uσ1σ2σ1σ2

m1m3m2m4
are the site-local matrix elements

of the Coulomb interaction within the correlated sub-
space, appropriately renormalized by the solid-state en-
vironment. This paper will present an application of the
formalism to the case of transition metal d-orbitals where
(if spin orbit coupling is neglected), the Uσ1σ2σ1σ2

m1m3m2m4
may

be parametrized by the Slater integrals F 0, F 2, and
F 4. We typically further assume that the d-wave func-
tions are sufficiently similar to their free-space forms that
F 4 = 0.625F 2. It is then conventional to define on-site
interaction U and the Hund’s coupling J via F 0 = U ,
F 2 = (14/1.625)J .36

The double counting energy EDC is the subject of con-
tinuing discussion in the literature but these subtleties
are not relevant here. We adopt the ‘fully localized limit’
form given by

EDC [Nσ
τ ] =

U

2
Nτ (Nτ − 1)−

J

2

∑

σ

Nσ
τ (N

σ
τ − 1), (4)

whereNσ
τ is the total number of electrons of spin σ on site

τ and Nτ =
∑

σ N
σ
τ is the total on-site charge density in

the correlated subspace. Note that use of SDFT (in other
words the dependence of EHxc[ρσ] on the spin density)
means that that the double counting potential Eσ

DC in
Eq. 4 also depends on spin indices.
The corresponding interaction potential V̂ σ

int is ob-
tained as V σ

int = ∂Eint/∂nτσ:

V̂ σ
int =

∑

m,m′

|τ,m, σ〉(V τσ
pot,mm′ − V τσ

DC)〈τ,m
′, σ|, (5)

where

V τσ
pot,mm′ =

∑

m1m2σ1

(Um1mm2m′ −Um1mm′m2
· δσ1σ)n

τσ1

m1m2

(6)
and

V τσ
DC = U(Nd −

1

2
)− J(Nσ

d −
1

2
). (7)

Finally, the effective Hamiltonian Ĥσ
U is

Ĥσ
U = Ĥσ

KS + V̂ σ
int, (8)

where the Kohn-Sham Hamiltonian Ĥσ
KS is

Ĥσ
KS [ρ

σ,R] = −
1

2
∇̂2 + V̂ext[R] + V̂ σ

Hxc[ρ
σ]. (9)

Ĥσ
U is the analogue of the Kohn-Sham Hamiltonian Ĥσ

KS

of SDFT. V̂ext is an external potential arising from atomic

nuclei at the position R (the interaction between nuclei is
not explicitly denoted but is included in the formalism).
The physical state of the system at zero temperature is

obtained by extremizing Eq. 1 with respect to variations
in ρσ and nτσ. To perform the extremization, we solve
the eigenvalue problem of Ĥσ

U and find the eigenstates
|Ψσ

ik〉 (i is a band index and k is a momentum in the
first Brillouin zone). We then determine the local charge

density ρσ(r) =
∑

ik f
σ
ik |Ψ

σ
ik(r)|

2
(f is the Fermi function

and it is evaluated at zero temperature (T=0)). The on-
site density matrix is also determined from |Ψ〉 using for
example the method described in Section III B or Section
III C. Finally, we require consistency between the ρσ and
nτσ and the Kohn-Sham and Vint potentials they imply.
Once self-consistent solutions of ρσ and nτσ are ob-

tained, the total ground-state energy E can be obtained
from the value of Eq.1 at the stationary point of both ρσ

and nτσ. It is also useful to cast the total energy func-
tional in Eq.1 is a slightly different form, both for analysis
and for technical reasons specially when using Wannier
functions. The SDFT+U total energy functional can be
decomposed into the SDFT energy (ESDFT ), the KS en-
ergy correction (E∆KS), and the interaction energy cor-
rection (Eint) (defined only within the correlated sub-
space) as follows:

E = ESDFT + E∆KS + Eint, (10)

where

ESDFT = Tr[〈Ĥσ
KS〉]−Tr[V̂ σ

Hxc · ρ
σ] + EHxc[ρσ] (11)

and

E∆KS = Tr[〈Ĥσ
U 〉]−Tr[V̂ σ

int · n
τσ]−Tr[〈Ĥσ

KS〉]. (12)

DFT+U is a special case of the SDFT+U in which the
exchange-correlation energy depends only on the total
density ρ, i.e., ΦKS(ρ

σ) → ΦKS(ρ). However, spin de-
pendence is retained in the correlated subspace, so n

τσ

is still considered to be spin dependent. Thus the total
energy functional in Eq. 1 becomes

E[ρ, nτσ] = Tr[〈Ĥσ
U 〉]−Tr[V̂Hxc · ρ]

−Tr[V̂ σ
int · n

τσ] + EHxc[ρ] + Eint[nτσ], (13)

where

Ĥσ
U = ĤKS + V̂ σ

int. (14)

The rest of the formalism carries through as before, ex-
cept that the exchange-correlation potential now depends
only on ρ and therefore the double counting correction is
taken to be spin-independent:

EDC [Nτ ] =
U

2
Nτ (Nτ − 1)−

J

4
Nτ (Nτ − 2), (15)

implying

VDC [Nτ ] = U(Nτ −
1

2
)−

J

2
(Nτ − 1). (16)

Thus in DFT+U theories spin dependence arises only
from the properties of the correlated subspace (which af-
fect the rest of the system via hybridization).
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III. CORRELATED ORBITALS AND THE
IMPLEMENTION OF (S)DFT+U USING THE
PROJECTOR-AUGMENTED PLANE WAVE

METHOD

A. Overview

In this paper, the DFT portion of the functional
(Eq. 11) is implemented using the projector augmented
wave (PAW) method38. The main idea of PAW is to cir-
cumvent treating the computationally inconvenient core
states by use of a linear transformation which relates an
all-electron wavefunction |ψ〉 to a pseudo wavefunction

|ψ̃〉. The transformation requires the addition of augmen-
tation terms which can be expanded using a projector
function |p̃〉 and the resulting KS Hamiltonian contains
additional terms arising from the augmentations, but
because the resulting pseudo-wavefunction is smoothly
varying computations are much more efficient.
In the PAW method, the SDFT energy functional can

be split into three terms:

ESDFT = Ẽ[ñ, n̂, ñZc] + E1[n1, nZc]− Ẽ1[ñ1, n̂, ñZc]
(17)

where Ẽ is the pseudo-energy term, E1 is the on-site all-
electron energy term, and Ẽ1 is the on-site pseudo-energy
term. ñ is the pseudo charge density, n1 is the on-site all-
electron charge density, ñ1 is the on-site pseudo charge
density, n̂ is the compensation charge between n1 and ñ1

such that ñ1 + n̂ has the exact same moment as n1, ñZc

is the pseudized core density, and nZc is the all-electron
core density.
The effective Ĥσ

KS for generating the pseudo wavefunc-

tion |ψ̃〉 is now given by extremizing ESDFT in Eq. 17
with respect to the pseudized charge ρ̃σ:

Ĥσ
KS = −

1

2
∇̂2+ṽeff+

∑

i,j

|p̃i〉(D̃ij+D
1
ij−D̃

1
ij)〈p̃j | (18)

where ṽeff is the effective pseudo one-particle potential

obtained using ṽeff = ∂ESDFT

∂ρ̃σ . D̃ij , D
1
ij , and D̃

1
ij are po-

tentials conjugate to the density matrix of the augmenta-

tion part ρij , ie, D̃ij =
∂Ẽ
∂ρij

, D1
ij =

∂E1

∂ρij
, and D̃1

ij =
∂Ẽ1

∂ρij
.

Eq. 17 can be cast into a similar form as Eq. 11:

ESDFT [ρσ] =
∑

ik

fik〈ψ̃ik|Ĥ
σ
KS |ψ̃ik〉+E

PAW
dc [ñ, n̂, n1, ñ1].

(19)
The PAW double counting correction EPAW

dc also con-
tains a pseudo part and an augmentation part:

EPAW
dc [ñ, n̂, n1, ñ1] = Ẽdc[ñ, n̂] + E1

dc[n
1]− Ẽ1

dc[ñ
1, n̂].
(20)

The PAW double counting correction EPAW
dc should not

be confused with the double-counting correction EDC re-
quired in the interaction functional. The derivation of
the above equations and the explanation of each term
are given in Ref. 39.

The treatment of the +U interactions in the PAW for-
malism depends on the prescription used to construct the
correlated subspace. Accordingly, the remainder of this
section is divided into two parts, one dealing with the
projector formalism (subsection III B) and one with the
Wannier formalism (subsection III C).

B. Projectors: ortho-normalization

We begin with the projector method, in which the com-
ponents nτσ

mn of the correlated orbital density matrix n
appearing in Eq. 1 are obtained by projecting the Kohn-
Sham wavefunction ψ onto the spherical harmonics Ylm
inside an atomic sphere centered on atom τ with the ra-
dius rτc , i.e.,

nτσ
mn =

∑

ik

fik〈ψ
σ
ik|P̂

τ
mn|ψ

σ
ik〉. (21)

Here i is a band index and k is a wavevector in the first
Brillouin zone. fik is the Fermi function evaluated at
T=0 throughout our paper and P̂ τ

mn is the projector func-
tion on atom τ defined by

〈r′|P̂ τ
mn|r〉 = Y ∗

ln(r̂
′
τ )Ylm(r̂τ )δ(rτ − r′τ )Θ (rτ < rτc ) (22)

where rτ = r − Rτ is the position vector defined with
respect to the atomic center Rτ and Θ(x) is the step
function such that Θ(x) = 1 if x < 0 and Θ(x) = 0 if
x > 0.40 Note that if the fermi function is removed from
Eq. 21 and the sum is taken over all bands i and momenta
k then standard completeness relations imply that

Oτσ
mn ≡

∑

ik

〈ψσ
ik|P̂

τ
mn|ψ

σ
ik〉 ∼ Onδmn (23)

is a diagonal matrix, whose normalization depends on the
choice rτc of sphere cutoff.
Within the PAW formalism, nτσ

mn is computed from the

pseudo-wavefunctions |ψ̃〉 and a pseudo-projector P̃ τσ as

nτσ
mn =

∑

ik

fik〈ψ̃
σ
ik|P̃

τ
mn|ψ̃

σ
ik〉. (24)

The pseudo-projector is defined in terms of an appropri-
ate set |φa〉 of solutions to the Schroedinger equation for
a reference atom in free space as

P̃ τ
mn =

∑

ab

|p̃a〉〈φa|P̂
τ
mn|φb〉〈p̃b| (25)

where the |p̃〉 are the PAW projector functions conjugate
to the φa. In practice, we use the implementation in the
VASP code.
The wave functions defined by the PAW projector pro-

cess do not constitute an orthonormal set because the
sum is only over a subset of states and a choice of sphere
radius is made. Thus the overlap matrix

Oτσ
mn =

∑

ik

〈ψ̃σ
ik|P̃

τ
mn|ψ̃

σ
ik〉 (26)
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is neither diagonal nor possessing correctly normalized
eigenvalue. To obtain a properly ortho-normalized den-
sity matrix n̄ within the correlated subspace we define

nτσ
mn =

∑

m′n′

(Oτσ)
−1/2
mm′ · n

τσ
m′n′ · (Oτσ)

−1/2
n′n . (27)

This procedure of the ortho-normalization of the projec-
tor function is used in some DFT+DMFT implementa-
tions22.
Within the PAW formalism, the effective Hamilto-

nian Ĥσ
U can be obtained by varying the energy func-

tional Eq. 1 with respect to the pseudized charge ρ̃σ =
∑

ik fik|ψ̃
σ
ik〉〈ψ̃

σ
ik|:

Ĥσ
U = Ĥσ

KS +
dEint

dρ̃σ
= Ĥσ

KS + V σ
int[n̄

τσ] ·
dn̄τσ

dρ̃σ
(28)

The dn̄τσ

dρ̃ term in Eq. 28 is difficult to evaluate because

the overlap matrix O in Eq. 27 also varies implicitly due
to the change of |ψ̃ik〉. For simplicity, we assume that
the ortho-normalization effect is fully incorporated in the
electronic V σ

int[n̄
τσ] term while the change of the density

matrix via ρ̃ is computed from the un-normalized nτσ:

V σ
int[n̄

τσ] ·
dn̄τσ

dρ̃
≃ V σ

int[n̄
τσ] ·

dnτσ

dρ̃
(29)

=
∑

ij

|p̃i〉 · (V
σ
int[n̄

τσ] · 〈φi|P̂
τ |φj〉) · 〈p̃j |.

This interaction potential part is expanded with the basis
of the projector |p〉 and it can be added to the augmenta-

tion part of Ĥσ
KS in Eq. 30. Therefore, the Hamiltonian

Ĥσ
U is given by

Ĥσ
U = −

1

2
∇̂2 + ṽeff +

∑

i,j

|p̃i〉(D̃ij +D1
ij − D̃1

ij +V ij)〈p̃j |

(30)
where

V ij = V σ
int[n̄

τσ] · 〈φi|P̂
τ |φj〉. (31)

The total energy functional within PAW can be ob-
tained as follows:

E[ρσ, nτσ] =
∑

ik

fik〈Ψ̃ik|Ĥ
σ
U |Ψ̃ik〉+ EPAW

dc [ñ, n̂, n1, ñ1]

−Tr(V σ
int[n̄

τσ] · nτσ) + Eint[n̄τσ]. (32)

The interaction energy correction Eint (Epot (Eq. 3) -
EDC (Eq. 4)) term and the interaction potential correc-
tion V σ

int term are computed using the orthonormalized
density matrix nτσ

mn. In practice, the band energy correc-
tion term Tr(V σ

int[n̄
τσ] · nτσ) is computed only updating

the V σ
int term while the density nτσ is obtained from un-

normalized projector functions. In this way properly or-
thonormalized correlated orbitals can be used with only
a slight modification of the PAW formalism.

C. MLWF orbitals

Here, we derive the +U formalism in the case where
the correlated subspace nτσ

mn is defined by Wannier func-
tions. We follow the approach used in our previous anal-
ysis of the DFT+DMFT formalism13. In this subsection
we present the formalism purely for DFT+U, as all of
the comparisons between projectors and Wannier in this
study will take place in the context of DFT+U. The gen-
eralization to SDFT+U is however straightforward.
Wannier functions are discussed at length in the

literature33–35. Here we make only a few remarks. First,
the construction of a Wannier functions requires the spec-
ification of a hybridization window W , a range of ener-
gies from which the states used in the construction of the
Wannier functions are defined. This energy range should
encompass both the correlated orbitals and the orbitals
which directly hybridize with the correlated ones. For ex-
ample, in the case of the rare-earth nickelates, Wannier
functions are constructed from an energy window (≈ 11
eV wide) including the full Ni-3d and O-2p manifolds.
By construction the Wannier functions provide a com-
plete orthonormal basis for states within the energy win-
dow so it is not necessary to introduce an overlap matrix.
A continuous infinity of choices of Wannier basis exists;
here we choose a “maximally localized” (MLWF33) basis
set that minimizes the sum of Wannier function spreads
(〈r2〉-〈r〉2) and also perform an additional orbital rota-
tion as described below Eq. 33 We denote the resulting
states as

∣

∣WRτ
n

〉

where τ labels an atom within a unit
cell, R denotes a lattice vector, and n is an orbital index.
The projection of the DFT Hamiltonian onto the

MLWF basis set is

H
0,R′

τ′Rτ

mn = 〈W
R

′

τ′

n |ĤKS |W
Rτ
m 〉. (33)

As discussed e.g. in Ref. 13, for the Wannier functions
pertaining to the correlated states we perform a rotation
in the orbital indices to minimize the off-diagonal terms

of the on-site correlated-state Ĥ
0,Rcorr,τ ,Rcorr,τ
mn in themn

subspace.
The DFT+U calculation solves the eigenvalue prob-

lem of the ĤKS + V̂ σ
int matrix within the hybridization

window W . One should note that the V̂ σ
int term is spin-

dependent while ĤKS has no explicit spin dependence
and has parameters determined by the total density.
The density matrix η within the hybridization win-

dow, which includes the correlated subspace as a subset,
is obtained from the eigenvalues and eigenfunctions of
ĤKS + V̂ σ

int as

ητσmn =
∑

l∈W,k

f(ǫσlk)〈ψlk|W
Rτ
m 〉〈WRτ

n |ψlk〉. (34)

The density matrix nτσ
mn in the correlated subspace is

a sub-block of ητσmn. Our basis choice in the nm space
means that the off-diagonal terms are negligible; nτσ

mn ≈
δnm.
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The band energy correction E∆KS is then given by

E∆KS = Tr(ĤKS · η)−Tr(ĤKS · η0), (35)

where the η0,τmn is computed via Eq. 34 but using

the eigenfunctions and eigenvalues of ĤKS rather than
HKS + V σ

int.
The interaction energy can be defined using Eq.3 with

the calculated density matrix (Eq.34). In our application
to the nickelates we construct this term using the Slater-
Kanamori Hamiltonian as defined in our previous paper13

and for ease of reference present the results in the same
notation. In Ref. 13 the on-site intra-orbital interaction
is given as u, the Hund’s coupling is j the inter-orbital
interaction is u− 2j and the exchange and pair-hopping
terms do not contribute in the Hartree-Fock approxima-
tion used here. The parameters are related to the U and
J defined elsewhere in the paper by u = U + (8/7)J and
j = (5/7)J . For the specific application to the nicke-
lates we took u=6.14eV and j=0.71eV (corresponding to
U=5eV and J=1eV).
The interaction potential energy is then

Epot = u
∑

m,τ

nτ↑
m nτ↓

m + (u− 2j)
∑

m 6=m′,τ

nτ↑
m nτ↓

m′

+(u− 3j)
∑

m>m′,τσ

nτσ
m nτσ

m′ (36)

while the double counting energy is

EDC =
u

2
Nd(Nd − 1)−

5j

4
Nd(Nd − 2), (37)

where here Nd is the total occupancy of the d levels on a
Ni ion.

IV. THE FORCE FUNCTIONAL

The force functional is defined in terms of the deriva-
tives of the energy functional with respect to atomic po-
sitions. Here we present the force functional correspond-
ing to the DFT+U version of the energy functional in
Eq. 13; the SDFT+U forces can be derived similarly.
The specifics depend on the formalism. As before, the
PAW formalism as implemented in VASP is utilized and
we present forces for the projector, while we outline the
differences for the case of a Wannier based correlated
subspace.
The DFT+U force functional consists of two parts,

namely the same functional form used in DFT except
that the DFT Fermi function is replaced by the DFT+U
density matrix utilizing DFT+U eigenvalues and eigen-
functions and an additional force term derived from the
Eint energy term. The computation of the forces requires
consideration of the derivatives of the correlated orbital
density matrix with respect to R, which in turn arise
from the changes of the correlated orbital wave functions
as the atomic positions change. The derivative of the
projector orbital is already computed within DFT force

formalism, therefore one can adopt the the same calcula-
tion already implemented in VASP. In the case of Wan-
nier functions, additional implementation is needed to
compute the derivative of Wannier function |WR

m 〉 with
respect to R.
The force functional following from the projector cor-

related orbital set can be derived from the energy func-
tional in Eq.32; taking derivatives with respect to R pro-
duces the same functional form as the PAW force func-
tional (see e.g. Ref. 39 for details) except that the eigen-

values ǫn and eigenfunctions ψ̃n are obtained by solv-
ing Ĥσ

U . The force has terms due to the change of the
pseudized core charge density ñZc via the explicit move-
ment of the ionic positions, the change of the compen-
sation charge n̂ itself, and the change of the projector
functions |p̃〉 as the ions are moved:

FDFT+U = −
∑

n

fn

〈

ψ̃n

∣

∣

∣

∂(Ĥσ
U − ǫn(1 +

∑

ij |p̃i〉qij〈p̃j |))

∂R

∣

∣

∣
ψ̃n

〉

= F 1
[∂ñZc

∂R

]

+ F 2
[ ∂n̂

∂R

]

+ F 3
[∂|p̃〉〈p̃|

∂R

]

(38)

where

F 3
[∂|p̃〉〈p̃|

∂R

]

=−
∑

n,ij

(D̂ij +D1
ij − D̃1

ij + V ij − ǫnqij)

× fn〈Ψ̃n|
∂|p̃i〉〈p̃j |

∂R
|Ψ̃n〉. (39)

qij is the correction to the overlap matrix given by

〈φi|φj〉 − 〈φ̃i|φ̃j〉. The explicit expressions of F 1 and
F 2 are the same as DFT forces given in Ref. 39. The
implicit changes of the Hamiltonian Hσ

U via the density
ñ, n1, ñ1, and n̂ are always cancelled out exactly against
the change of EPAW

dc terms in Eq. 32.
The evaluation of a force term from Eint requires the

derivative of the correlated orbital density matrix, i.e.
dnτσ

dR and the result depends on the choice of correlated
orbital sets. Within the projector scheme, the force term
arising from the implicit change of interaction energy cor-
rection Eint (Eq. 32) via the ortho-normalized density
matrix n̄τσ is given by

F int =
dEint[n̄τσ]

dn̄τσ
·
dn̄τσ

dR
= V σ

int[n̄
τσ] ·

dn̄τσ

dR
. (40)

Here, the calculation of dn̄τσ

dR term is complicated by the
R-dependence of the overlap matrixO (Eq.27). In practi-
cal applications the derivative of the density matrix with
respect to the ionic position R is thus approximated to
the change of the un-normalized nτσ via the derivative of
the projector function which is already present in PAW
force (Eq. 39):

F int ≃ V σ
int[n̄

τσ] ·
dnτσ

dR
. (41)

Taking a derivative of the −Tr(V int[n̄τσ] · nτσ) term in
Eq. 32 with respect to R leads to a term −V int[n̄τσ] ·
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dnτσ

dR which cancels out the term in Eq. 41 and a term

− dV int[n̄τσ]
dR ·nτσ which cancels out the implicit change of

V int[n̄τσ] term in Ĥσ
U .

The force functional using Wannier functions can be
derived in a similar way as the projector functions except
that the dnτσ

dR term needs to be computed explicitly in
terms of the change of Wannier functions with R. How-
ever, we have not yet implemented this. Instead, we have
determined the minimum energy structure in the phase
space of pressure and bond length difference as defined
in our previous paper13.

V. APPLICATION TO STRUCTURAL
PROPERTIES OF RARE-EARTH NICKELATES

A. Overview

In following sections we investigate the general issues of
interest in this paper, namely different correlated orbital
sets (Projector vs Wannier) and background electronic
structure methods (DFT+U vs SDFT+U), in the spe-
cific context of the structural properties of the rare-earth
nickelates, RNiO3. In these materials the basic struc-
tural motif is the NiO6 octahedron. At some values of
temperature, pressure and R, the materials exhibit a uni-
form phase in which all octahedra have approximately
the same mean Ni-O bond length. In other parameter
regimes the materials exhibit a two-sublattice dispropor-
tionated phase in which the octahedra on one sublattice
have a mean Ni-O bond length ∼ 0.1Å shorter than the
octahedra on the other sublattice. The materials are im-
portant for the present study because this basic struc-
tural property is closely linked to a fundamental elec-
tronic property, namely whether the material is a metal
or a correlation-driven site-selective Mott insulator32,41.
This linkage means that obtaining a correct description
of the structural properties poses a critical test for the
electronic structure methods.
Our previous studies12,13 showed that (S)DFT+U does

not provide a quantitatively accurate description of the
experimental structural and metal-insulator transition
phase diagram of RNiO3 series. A particular difficulty is
the prediction that the ambient-pressure ground state of
LaNiO3 is bond-disproportionated and insulating when
the actual material has a non-disproportionated R3̄c
structure and is metallic. A closely related deficiency of
the DFT+U method is an overestimation of the critical
pressure of the metal-insulator transition for materials
where the ambient pressure ground state is insulating.
DFT+DMFT methods produced much better results.
It is also the case that DFT+U (and DFT+DMFT)
wrongly predict that the ground state is ferromagnetic.
However the trends found in the DFT+U calculations

were found to track the trends found in the DFT+DMFT
calculations. For example the DFT+U T → 0 structural
phase boundary in the pressure-tolerance factor plane

was offset by a certain pressume from the DFT+DMFT
phase boundary, indicating that the difficulty is simply
that the DFT+U methods overestimate (to a consider-
able degree) the stability of the insulating state. Thus
since the aim of the current investigation is understand
how different formulations of the theory affect basic is-
sues of structure and energetics, rather than to accurately
model material properties, we can use the +U approxi-
mation as a flexible and inexpensive computational labo-
ratory with the expectation that the similarity of trends
noted above suggests that the general findings will be
applicable to DFT+DMFT as well.
We present results computed as described in Ap-

pendix A. In the current paper, we use the Vienna
Ab-initio Simulation Package (VASP)39,42 which adopts
the PAW formalism. For the exchange-correlation DFT
functional, we use a generalized gradient approxima-
tion (GGA) with the Perdue-Burke-Ernzerhof (PBE)
functional43 and also adopt a local density approxima-
tion (LDA) if necessary. We take the correlated orbitals
to be atomic-like Ni-centered d orbitals using the projec-
tor method and assume the additional interactions have
the form given in Eq. 3. Unless otherwise specified, we
use U=5eV and J=1eV for all computations.
We present results for three members of the material

family: LuNiO3 (strong insulator at ambient pressure),
NdNiO3 (insulating but near the phase boundary at am-
bient pressure), and LaNiO3 (metallic at ambient pres-
sure). In the rest of this section we introduce the materi-
als and compare the DFT+U and SDFT+U results using
both the GGA and LDA functionals for bond lengths and
energetics. In the following section we discuss the pro-
jector vs Wannier issue and in a third section present
implications for computed phase diagrams.

B. Bond disproportionation vs volume

We used the VASP implementation of (S)DFT+U us-
ing the GGA functional to perform full structural relax-
ations of the three compounds from the low-symmetry
bond-disproportionated structure with the unit cell vol-
ume constrained to take particular values (see Fig. 1).
The correlated orbital basis set was treated using the
same orthonormalized projector for all calculations (note
that the orthonormalization of the basis set required that
we modify the VASP energy and force formulas accord-
ing to Eq. 27). In many cases a disproportionated struc-
ture with two inequivalent NiO6 octahedra was found;
for these cases we computed the difference δa in mean
Ni-O bond length between Ni sites on different sublat-
tices. Generically if δa 6= 0 the band structure exhibits a
gap at the fermi level (for very small disproportionation
amplitudes the gapping may not be complete), but for
simplicity of presentation we do not consider the elec-
tronic structure here.
Results are shown in Fig. 1. At positive compression

(V − V0 < 0) the differences between SDFT+U and
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Figure 1. (Color online) Average Ni-O bond-length differ-
ence δa as a function of volume computed using the GGA
functional with DFT+U (top panel) and SDFT+U (lower
panel) for LuNiO3 (red square), NdNiO3 (blue diamond),
and LaNiO3 (green circle). U=5eV and J=1eV are used.
The same orthonormalized projector method is used to con-
struct the correlated subspace in all cases. V0 is the zero-
pressure volume computed for the given compound by the
given method.

DFT+U are quantitative, but large. We see that con-
sistently across the material family SDFT+U predicts
a higher δa at given compression and similarly predicts
that a higher critical compression is needed to drive the
structural transition (δa → 0) than does DFT+U. How-
ever, at negative compression (V −V0 > 0) the difference
is qualitative: DFT+U predicts a monotonic increase of
δa values as (V − V0)/V0 increases while SDFT+U cal-
culations indicate a reduction of δa as the cell volume is
increased and ultimately a reentrant structural transition
(seen in the data for LaNiO3 and expected for the other
materials from the downward curvature).

Fig. 2 shows the effect of varying the Hunds coupling
J on the computed bond disproportionation for LaNiO3.
In the DFT+U calculations, increasing J from 0 to 1 eV
has a dramatic effect, while a further increase to 2 eV has
a weaker effect, suggesting a saturation as J is increased.
On the other hand, the SDFT+U results show almost
no J-dependence, indicating that the spin dependent ex-
change potential in SDFT already effectively includes a
large on-site J and suggesting that J is not needed when
performing SDFT+U calculations. This could be prob-
lematic for SDFT+DMFT calculations, where the dy-
namical effect of J are typically important.

The upper portions of the two panels of Fig. 2 further
show that within DFT+U the choice of DFT method
(LDA vs GGA) produces quantitative but not quali-
tative differences over the volume range investigated,
with in particular the LDA+U exhibiting a smaller δa
at given J and volume, consistent with the known ten-
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Figure 2. (Color online) Bond disproportionation δa plot-
ted against relative volume change (V −V0)/V0 computed for
LaNiO3 for different Hunds coupling J at U=5eV using both
(a) GGA and (b) LDA functionals and different methods in-
dicated in the legends (DFT+U vs SDFT+U). The same or-
thonormalized projector method is used to construct the cor-
related subspace in all cases. V0 is the zero-pressure volume
computed using the given method and J=1eV. The change
of V0 at different J is negligible for SDFT+U and rather no-
table for DFT+U (see Fig.5) but it does not affect any results
discussed here.

dency of the PBE GGA functional used here to over-
estimate magnetism44. Alternatively, in SDFT+U the
choice of DFT method produces a qualitative difference,
with the SGGA+U method indicating reentrance of the
non-disproportionated phase at a small positive relative
volume while no indication of reentrance is found in the
LSDA+U calculations.

Interestingly, the J=2eV GGA+U calculations also
suggest that reentrance of the undistorted phase would
occur at larger relative volumes, consistent with the no-
tion that the SDFT methods imply a large (perhaps ex-
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Figure 3. (Color online) The trace of the site-resolved occu-
pancy matrix of the d electrons, Nd per Ni atom computed for
LaNiO3 as a function of volume using GGA+U with J=1eV
(pentagon dota), J=2eV (square dots) and SGGA+U with
J=0eV (circular dots). Two Nd values indicate two Ni atoms
with distinct Ni-O bond lengths.

cessively large) J already at the SDFT level. Taken to-
gether these results also suggest that the mathematical
origin of the reentrant transition is a (presumably un-
physical) effect of large J. The disproportionated phase
may be understood as a hybridization density wave corre-
sponding to relatively strong Ni-O bonding at the short-
δ − a site12 so although the precise connection is not
clear at this point we may speculate that the reentrance
is related to unphysically large spin-dependence of level
shifts of the Ni-d relative to O-p states, weakening the
Ni-O singlet bond that produces the distortion.
To elaborate the fact that SGGA+U has a similar ef-

fect to GGA+U with a large J , we show in Fig.3 the trace
of the site-resolved occupancy matrix, Nd as a function of
volume comparing GGA+U with J=2eV (square dots),
J=1eV (pentagon dota) and SGGA+U with J=0eV (cir-
cular dots). We can see that both SGGA+U with J=0eV
and GGA+U with J=2eV produce qualitatively similar
physics, i.e., the Nd difference between two Ni ions is
reduced as the volume increases and converges to the
value of an undistorted structure. The overall behavior
is consistent with the qualitative feature of the phase di-
agram in Fig. 2 (a). Also this is contrary to GGA+U
with J=1eV where the Nd difference barely changes for
the expanded volume. Nevertheless this reentrant tran-
sition occurs rather rapidly for SGGA+U compared to
GGA+U with J=2eV. We believe different double count-
ing correction forms in two methods can contribute to
this effect, however the detailed analysis of the origin is
beyond the scope of our paper.
The interplay between the DFT functional (LDA vs

GGA), the value of Hund’s J and the physics of the dis-
proportionation instability are also evident in the study
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Figure 4. (Color online) The magnetic moments per Ni atom
in LaNiO3 obtained using different J as a function of pressure
using both (a) GGA and (b) LDA functionals and different
methods indicated in the legends (DFT+U vs SDFT+U). The
same orthonormalized projector method is used to construct
the correlated subspace in all cases. V0 is the zero-pressure
volume computed using the given method and J=1eV.

of the magnetic moments presented in Fig. 4. The
DFT+U results reveal the expected dependence of mag-
netic moment on J , with magnetic moment increasing
with J with the dependence becoming weaker as the sat-
uration value M = 1 µB is reached and the critical vol-
ume for the magnetic transition also being J-dependent.
The difference between LDA+U and GGA +U results
reflects the stronger tendency toward magnetism charac-
teristic of the PBE-GGA functional. In effect, PBE-GGA
already contains a certain degree of local exchange. In
contrast, SDFT+U calculations in both GGA and LDA
produce large moments at all volumes, and with negligi-
ble J dependence.
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VI. ENERGETICS
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Figure 5. (Color online) The total energy of LaNiO3 as a func-
tion of relative volume difference computed using GGA+U
(top) and SGGA+U (bottom) with an orthonormalized pro-
jector definition of the correlated orbitals at J values indi-
cated. At each volume and for each method the structure is
relaxed and the energy of the relaxed structure is presented.
The zero of energy is chosen at a compression of 5% in all
curves.

In this section, we compare the DFT and SDFT predic-
tions for energies. We restrict attention to the GGA and
SGGA density functionals, define the correlated states
via orthonormalized projectors, and focus on LaNiO3.
For each relative volume, the structure was relaxed and
then the energy was evaluated. Fig 5 displays the de-
pendence of the total energy on the normalized volume
difference for different J values.
As found in the previous section’s analysis of the dis-

proportionation amplitude and magnetic moment, sub-
stantial differences between DFT+U and SDFT+U are
found. The DFT+U energy curve depends substantially
on J , changing rapidly as J is increased from zero and
saturating as J becomes large. Remarkably even the
equilibrium volume is J-dependent. The SDFT+U en-
ergy has negligible J dependence and is similar to the
J=2eV DFT+U result again suggesting that the SDFT
exchange correlation functional in effect contains a J
which (for the PBE-GGA case studied here) is substan-
tially larger than the J ∼ 1eV values believed to be phys-
ically reasonable.
Fig. 6 presents a decomposition of the energy into

the DFT contribution (EDFT , panel a) and the corre-
lation correction (CC) contribution (E∆KS +Eint, lower
panel), as defined in Eq. 10, for DFT+U (upper half
of each panel) and SDFT+U (lower half of each panel).
The DFT term EDFT contains the structural contribu-
tion while the CC term expresses the correlation physics.
EDFT is not monotonic in unit cell volume, expressing
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Figure 6. (Color online) Contributions to DFT+U energy
functional (cf Eq. 10) computed for LaNiO3 as a function of
relative volume. a) The DFT contribution and b) the corre-
lation correction CC contribution (E∆KS +Eint) are decom-
posed from Fig. 5 using the same relaxed structure at each
volume and compared for different methods (DFT+U (the
top panel) vs SDFT+U (the bottom panel)) and different J
values.

the basic physics of chemical bonding. Alternatively, the
CC contribution decreases monotonically as the volume
is increased for both DFT+U and SDFT+U and for all J
values, expressing the enhancement of correlation occur-
ring when hybridization is decreased and showing that
the equilibrium volume predicted by the correlated cal-
culation is larger than that predicted from the DFT con-
tribution alone.

Fig. 6 indicates that for the SDFT+U method neither
EDFT nor the CC term has significant J dependence
because the SDFT method already includes a large lo-
cal exchange contribution. Alternatively, in the DFT+U
calculation both terms have some J dependence. The
DFT+U CC term changes dramatically as J is increased
from 0 to 1eV, accounting for the noticeable change of
DFT+U energetics from J=0 to 1eV in Fig. 5 but does
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not change much as J is further increased because the
moment is saturated (see Fig. 4). It is also interesting to
note that the DFT+U CC energy at J & 1eV is compa-
rable to the SDFT+U CC energy at J = 0, further con-
firming the large value of J implicit in the SDFT method.
In the DFT+U method, some dependence of EDFT on J
occurs as J is increased from 1eV to 2eV, and it is inter-
esting to note that this is the J range where suggestions
of reentrance are visible in the DFT+U calculation. This
behavior again indicates that the unusual reentrant be-
havior is related to a rearrangement of the band-structure
by an unphysically large Hunds coupling.
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Figure 7. (Color online) The occupancy of the correlated
orbitals expressed as the number of d electrons Nd per Ni
atom computed for LaNiO3 at J values indicated for GGA+U
(the top panel) and SGGA+U (the bottom panel).

As extensively discussed elsewhere45,46, the occupancy
Nd of the correlated orbitals provides useful insights
into the physics of strongly interacting electron systems.
Fig. 7 displays the d occupancies computed for LaNiO3

for the parameters whose energies are shown in Fig. 6.
Within DFT+U, increasing the Hunds coupling J leads
to a decrease inNd, a signal of stronger correlation arising
from effectively smaller p-d hybridization. In SDFT+U
the correlations in this sense are already stronger at the
SDFT level (ie. SDFT+U yields smaller Nd), and adding
additional J does not change the situation.

VII. CHOICE OF CORRELATED ORBITAL

In this section we study the effect of the choice of cor-
related orbital on the calculated results. The DFT+U
method is used; SDFT+U is not considered in this sec-
tion. Fig. 8 presents the bond disproportionation am-
plitude δa versus reduced volume for different rare earth
nickelates using either MLWF (filled symbols, solid lines)
or ortho-normalized projectors (open symbols, dashed
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Figure 8. (Color online) The average Ni-O bond length dif-
ference δa as a function of reduced volume computed for ma-
terials indicated using DFT+U as implemented with the en-
ergy functional of Eq. 10. Both maximally localized Wannier
functions (filled symbols, solid lines) and ortho-normalized
projectors (open symbols, dashed lines)) are compared. In-
teraction parameters of U=5eV and J=1eV are used for
the projector-based calcualtions while the equivalent values
u=6.14eV and j=0.71eV (Slater-Kanamori parameterization)
are correspondingly used for the Wannier construction.

lines) for the correlated subspace. The qualitative trends
of δa as a function of reduced volume are similar for
both correlated orbitals. Substantial differences appear
only for very large compression, where the Wannier ap-
proach enhances the tendency to the bond disproportion-
ated states, though only for NdNiO3 and LaNiO3.

The origin of the difference is not clear at present, but
may have to do with the fact that size of the Wannier
function varies as the volume and the bond length differ-
ence change, while the projectors are defined using a fixed
radius. Fig. 9 displays the Wannier spread for NdNiO3

at (V − V0)/V0 = −12.5% as a function of structural
distortion. NdNiO3 at this volume shows noticeably dif-
ferent δa values between for MLWF (∼0.06Å) and for the
projector (∼0.03Å). As δa increases, the Wannier orbital
for Ni A (large Ni-O octahedron) becomes more localized
(smaller spread) and Ni B (small Ni-O octahedron) shows
the more delocalized (larger spread) Wannier orbital.
Compared to the projectors, therefore, the Ni A site may
be more susceptible to the Mott transition and the Ni B
electrons are more bound to nearest O holes enhancing
a tendency toward the site-selective Mott transition32.
This difference between the MLWF and the Projector
is demonstrated in Fig. 10 for the DFT+U partial den-
sity of states computed with the fixed NdNiO3 structure
(δa=0.06Å, (V − V0)/V0 = −12.5%). The site-selective
Mott gap is indeed larger for the MLWF (the top panel)
compared to the Projector (the bottom panel), therefore
the bond disproportionated structural phase can be ener-
getically more stable for the MLWF. Another difference
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Figure 9. (Color online) The spread of Ni eg maximally lo-
calized Wannier function (MLWF) as a function of the bond
length difference δa for NdNiO3 at (V − V0)/V0 = −12.5%.
Ni A (square dots) means the Ni ion with the longer Ni-O
bond length and Ni B (circular dots) means the one with
the shorter bond length. The Wannier spread is defined by
√

(〈r2〉 − 〈r〉2) and the value is averaged over two eg orbitals.
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Figure 10. (Color online) The partial density of states for the
bond disproportionated NdNiO3 (δa=∼0.06Å, (V −V0)/V0 =
−12.5%) computed using DFT+U with the correlated orbital
of the MLWF (top) and the Projector (bottom). Ni A d (with
the longer Ni-O bond length), Ni B d (with the shorter Ni-O
bond length), and O p data are shown for comparison. The
density of states is spin-averaged for up spin and down spin.

between the MLWF and the Projector is that the lead-
ing edges of the site-resolved excitation gaps for the two
Ni ions are different in the MLWF while they are almost
same for the Projector.

We now turn to the effect of orthonormalization, com-
paring in Fig. 11 structural relaxation calculations per-
formed using the orthonormalized projector orbital to
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Figure 11. (Color online) Average Ni-O bond length dif-
ference δa graph as a function of volumes obtained using
DFT+U . The normalization effect of the correlated orbital is
investigated by comparing both the ortho-normalized projec-
tor correlated orbital (filled symbols, solid lines) and the un-
normalized projector (open symbols, dashed lines). LuNiO3

(red square), NdNiO3 (green diamond), and LaNiO3 (blue
circle) results are displayed for comparison.

calculations and performed using the unnormalized pro-
jector implemented in VASP. Normalization has a par-
ticularly important effect in the small volume region of
LuNiO3, where the critical pressure calculated using the
unnormalized projector is overestimated and probably in-
correct. However, normalization has no noticeable effect
on the structural relaxation of LaNiO3. As the volume is
expanded the consequences of normalization are seen to
be minor. This discrepancy in the small volume region
may arise from an overestimate of the spectral weight in-
side the Ni atomic sphere, leading to a mis-estimate of
the correlation energy.

VIII. THE PHASE DIAGRAM OF RNIO3 AND
THE EQUILIBRIUM VOLUME V0

In this section, we compute the structural phase di-
grams and equilibrium volume V0 of the rare-earth nick-
elates RNiO3 obtained using DFT+U and SDFT+U as
functions of the reduced volume for different R ions.
MLWF and project definitions of the correlated orbitals
are also explored.
Fig. 12 displays the structural transition phase dia-

gram of rare-earth nickelates RNiO3 in the plane of re-
duced volume (V − V0)/V0) and choice R of rare earth
ion computed using the different beyond DFT methods
discussed in this paper. The structural transition is be-
tween the P21/n structure (δa >0) and Pbnm struc-
ture (δa=0) for all RNiO3 except rhombohedral LaNiO3.
For LaNiO3, the transition associated with the bond-
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Figure 12. (Color online) Structural phase diagram of the
rare-earth nickelates as a function of the volume compression
and rare earth ion, computed using DFT+U (square dots) and
SDFT+U (circle dots). The un-normalized projector (open
dots) and ortho-normalized projector (filled dots) are com-
pared for both methods. The MLWF correlated orbital result
(diamond dot) is also shown for DFT+U, yielding some sim-
ilarity to the phase boundary to the ortho-normalized pro-
jector. The experimental data (black dash-dot lines) are also
given for comparison47 (see also Ref. 12 and 13).

disproportionation separates the R3 structure (δa >0)
and the R3̄c structure (δa=0).
All DFT+U and SDFT+U results produce critical

compression for the transition which is too large relative
to experiment. (DFT+DMFT produces results in much
better agreement with experiment12,13). The SDFT+U
method (red circular dots) exhibits more rapid variation
of the critical compression with change of R ions than
does DFT+U (purple square dots).
The effect of the ortho-normalization in a correlated

orbital varies depending on the functional. SDFT+U im-
plemented using the un-normalized projector as adopted
in VASP (circular open dots and dashed lines, also shown
in Ref. 12) moderately reduces the critical pressures (fa-
voring the δa >0 region) compared to the same SDFT+U
implemented using the ortho-normalized projector (cir-
cular filled dots and solid lines). In contrast, DFT+U
with the ortho-normalized projector (square filled dots
and solid lines) more substantially moves the critical line
toward the structural phase with δa=0 (Pbnm) for the
heavy rare earths.
DFT+U implemented using the MLWF basis set (blue

diamond dot and solid line, also shown in Ref. 13 with
u=5eV and j=1eV of Slater-Kanamori parametrization)
also produces a similar phase boundary to the orthonor-
malized projector DFT+U calculation compared to other
methods. Therefore, we deduce that Wannier and or-
thonormalized projectors yield similar behavior.
The compression (vertical axis) of the structural phase
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Figure 13. (Color online) Equilibrium volume V0 calculated
using SGGA (filled symbols) and LSDA (open symbols) for
RNiO3 with R=La, Sm, Nd and Lu using DFT+U (square
dots) and SDFT+U. For SDFT+U, ortho-normalized projec-
tor (green diamond) and un-normalized projector (red circle)
calculations are compared. The experimental volumes at the
ambient pressure are depicted by a black dashed line with
open pentagonal dots. LDA(+U) results are shown only for
LaNiO3 since the pseudo potentials for other rare earth ions
except La are not available.

diagram in Fig.12 is defined as the relative change of vol-
ume compared to the equilibrium volume V0 computed
within each theoretical method. V0 is determined as the
volume of the minimum energy from an energy vs volume
curve and the atomic positions at each volume are ob-
tained by minimizing the inter-atomic forces. Results are
displayed in Fig. 13 First, we discuss results obtained us-
ing pure SDFT within the LSDA and SGGA approxima-
tions. The calculated V0 with GGA exchange-correlation
functional (filled symbols) is larger than the experimen-
tal one (dashed line), while the V0 obtained with the
LDA exchange-correlation functional (open symbols) is
smaller than the experimental value. This behavior is
well known in the DFT literature.
We next observe that the calculated V0 values com-

puted using SDFT+U are rather sensitive to the ortho-
normalization of correlated orbitals. The orthonormal-
ized projectors lead to substantially larger equilibrium
volumes than the un-normalized projectors, leading to
better agreement with experiment for LDA based func-
tionals and worse agreement for GGA, though in neither
method is the agreement particularly good.

IX. CONCLUSION

We studied different formulations of DFT+U and
SDFT+U in the context of total energy calculations in
the rare-earth nickelates. The correlated subspace was
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constructed in three different ways: maximally local-
ized Wannier functions, orthonormalized projectors, and
non-orthonormalized projectors. We computed the Ni-O
bond length difference δa as a function of pressure, the
structural phase diagram describing the transition be-
tween the bond-disproportionated structure (δa >0) and
the no bond-disproportionated structure (δa=0) as func-
tions of pressure and the rare-earth ions, and also the
equilibrium volume.

SDFT+U and DFT+U show qualitatively different
behavior in some circumstances. In particular, the
SGGA+U results of the structural transition in the rare-
earth nickelates show a re-entrant transition with pres-
sure, and this is not observed in GGA+U calculations
that are performed with a reasonable on-site exchange
J = 1eV. However, increasing J to 2eV in GGA+U pro-
duced qualitatively similar results to SGGA+U although
the re-entrant transition occurs rapidly for SGGA+U,
implying that the SGGA spin-polarized exchange cor-
relation functional results in a large effective on-site
exchange. SDFT+U based on the LSDA exchange-
correlation functional results in a more reasonable effec-
tive J , meaning that LSDA+U results using J=0 are
similar to LDA+U with J ∼1eV. The reentrant transi-
tion at negative pressure does not occur within DFT+U
calculations using the LDA functional for J ≤2eV. Our
results suggest that there is no need to use an on-site
exchange when performing SDFT+U (ie. set J = 0),
and this is effectively equivalent to using the approach of
Dudarev et al48. Additionally, our results imply that the
SGGA should be used with caution given its overempha-
sis of local exchange. More generally, DFT+U with an
appropriately chosen J can largely recover the qualitative
behavior of SDFT+U.

We demonstrated that orthonormalized projectors be-
haved rather similarly to MLWF near ambient pres-
sure; although notable differences are evident for NdNiO3

and LaNiO3 under large pressures. Additionally, the
un-normalized projector, as implemented in VASP, can
lead to notably different results, especially at high pres-
sures. Within SDFT+U, the equilibrium volumes are
substantially increased when computed using the ortho-
normalized orbitals compared to un-normalized orbitals.

Given that (S)DFT+U is equivalent to
(S)DFT+DMFT when the DMFT quantum impu-
rity problem is solved within Hartree-Fock, we expect
the general findings of this study to be applicable

to (S)DFT+DMFT as well. Given our finding that
DFT+U with an appropriately chosen J can largely
recover the qualitative behavior of SDFT+U, our work
supports the long held tradition of basing dynamical
mean field extensions on DFT theories rather than
SDFT theories. This is particularly important in cases
where the dynamical effects of J are crucial. Our
results have broad implications for the application of
SDFT+U, given that in the nickelates the choice of
SDFT functional leads to dramatic differences in the
effective on-site exhcange interaction. A very similar
conclusion was reached in a study of the spin crossover
molecule Fe(phen)2(NCS)2
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Appendix A: Computational details

The (S)DFT+U formalism is implemented in VASP
using the projector functions |p̃〉 as a correlated orbital
set. The Hamiltonian for (S)DFT+U is given by Eq. 30,
and the total energy and force equations are also derived
in Eq.32 and Eq.38. However, the VASP implementation
adopt the un-normalized density matrix nτσ as Eq.24. In
the current paper, we compare the VASP implementation
to the ortho-normalization of nτσ to give rise to n̄τσ as
derived in Eq27. Fortunately, the VASP implementation
provides both DFT+U (LDAUTYPE=4) and SDFT+U
(LDAUTYPE=1) methods.
For performing the summation of k points in the Bril-

louin zone, we used the tetrahedron method50. When
using projector correlated orbitals, a k-point mesh of
6 × 6 × 6 (for the Pbnm and P21/n structures) and
8 × 8 × 8 (for the LaNiO3 R3̄c and R3 structures) are
used with an energy cutoff of 600eV. When using the
Wannier functions as correlated orbitals, k points meshes
of size 10× 10 × 10 is used for Pbnm and P21/n, while
16× 16× 16 for R3̄c and R3.
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