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Reordering Fractional Chern Insulators into Stripes of Fractional Charges with
Long-Range Interactions
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Long-range interactions drive some of the rich phenomenology of quasiparticle collective states
in the fractional quantum Hall (FQH) regime. We test for analogues in models of fractional Chern
insulators (FCIs) derived from a screened Coulomb interaction. We find that the uniform FCI liquid
is surprisingly robust to long-range interactions but gives way to a unidirectional charge density wave
(CDW) of fractionally charged quasiparticles with increased screening length. Our results show that
FCIs offer a robust and important platform for studying quasiparticles collective states.

PACS numbers: 73.21.-b, 03.65.Vf, 71.27.+a, 73.43.-f

The collective behavior of quasiparticles can lead to
non-Fermi liquids that set new paradigms. The FQH
regime offers one of the best known examples1,2. Here
uniform quantum liquids of fractionally charged quasi-
particles, called composite fermions (CFs)3, form at cer-
tain fractional Landau level (LL) fillings. Wavefunction
analyses of CF exciton4 and Cooper pair instabilities5

show that FQH liquids transition to other intriguing
quasiparticle states: crystals6 and paired states7, respec-
tively. CFs have even been argued to form, much like
electrons8–10, their own stripe states11,12. These studies
show that some of the richness of the quasiparticle phase
diagram in the FQH regime derives from the long-range
part of the Coulomb interaction between electrons.

Recent work on short-range Hubbard models found an
intriguing analogue of FQH states in a flat band but in
the absence of a net magnetic field13–20. This uniform
quantum liquid, the FCI, should also display its own
FQH effect derived from fractionally charged quasipar-
ticles. Refs.21,22 have further shown that increasing the
single-particle bandwidth drives the uniform FCI state
into a CDW of the original particles via nesting.

Since FCI and FQH models are adiabatically
connected23, we can understand such transitions by ap-
pealing to the two distinct CDWs considered in the FQH
regime: CDWs of electrons and CDWs of CFs. CDWs
of electrons at filling ν of higher LLs are well approxi-
mated by Hartree-Fock analyses in the electron degrees of
freedom8–10,24, with, e.g., a Hartree-Fock wavefunction:
φν , dictated by the electron-electron interaction. The
FCI-CDW transition found in Refs.21,22 is similar to tran-
sitions between FQH liquids and CDWs of electrons in
higher FQH LLs8–10. But in lower LLs, CFs can form dis-
tinct CDWs6,11,12,25 captured by wavefunctions3,6,11,12:
J2pFρQφ

CF
ν∗ , that are not perturbatively connected to

electron CDW wavefunctions. Here the Jastrow fac-
tor J2p attaches 2p vortices to each electron to yield a
wavefunction at filling ν∗/(2pν∗ + 1). φCF

ν∗ is a uniform
Hartree-Fock wavefunction of CFs. Inter-CF interactions
can cause CDW ordering that favors application of the
density wave operator, ρQ, in certain combinations, de-
fined by the function FρQ , to generate a CDW of CFs

ordered at wavevector Q11,12,25. It is currently unknown

if FCI quasiparticles can themselves form CDWs to de-
fine rich phase diagrams akin to what has been found for
CFs in the lowest LL.

Stability to long-range interactions and screening de-
fines a crucial difference between the FCI and FQH
regimes. In the FQH regime, only the short-range part
of the bare electron-electron interaction is screened, leav-
ing a Coulomb tail26,27. But if flat bands defining FCIs
are to be found in materials, the basis must be defined
by band structure effects (e.g., interactions in combina-
tion with multi-orbital states22,28), not strong magnetic
fields. The relevant FCI interaction to study is there-
fore a Coulomb interaction that has its long-range part
screened. It is currently unknown if FCIs and related
quasiparticle collective states are too unstable, even for
screened interactions, to be found in nature. But promis-
ing work29–31 suggests that FCIs might be robust.

In this Letter we study a screened Coulomb interaction
in the FCI regime to explore stability of the quantum liq-
uid and search for collective behavior of quasiparticles.
We project a Yukawa potential, with a screening length
λ, into the flat band used to define the FCI19,32. We
find that the FCI is surprisingly stable for λ as large as
6 lattice constants. We also find a transition to a unidi-
rectional CDW, a stripe phase, as the screening length is
increased into the Coulomb limit.

The stripe phase we find here is distinct from stripe
phases of electrons normally discussed in the FQH regime
in high LLs. We find that the instability to the stripe
phase in the FCI Coulomb model is driven by the rear-
rangement of fractionally charged quasiparticles, from a
uniform liquid into the stripe phase. The stripe phase
we find here is akin to the stripe phases of CFs studied
in the lowest LL driven by inter-CF interactions11,12 and
complements recent work on FCIs33. We show this con-
clusively by explicitly computing the charge of each stripe
to find an exact rational fraction. Our findings have im-
portant consequences in the search for FCI physics in
materials because we show that they are stable for large
screening lengths and we have found at least one intrigu-
ing collective state of quasiparticles, a stripe state, de-
rived from excitations of the FCI state.

Model: We consider a single-particle basis de-
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rived from the following model on the checkerboard
lattice32:

∑
k,m ψ

†(k)dm(k)σmψ(k), where the fermion
pseudo-spinor basis states are defined on sublat-
tices A and B in the 2-site unit cell: ψ(k) ≡
(ck,A, ck,B)T , the flat band Hamiltonian parame-

ters are d1(k) = 2
√

2 cos(kx/2) cos(ky/2), d2(k) =

2
√

2 sin(kx/2) sin(ky/2), d3(k) = (2 −
√

2)[cos(kx) −
cos(ky)], and σ are the Pauli matrices. We work in the
lowest flat band but we have checked that including a fi-
nite bandwidth does not qualitatively change the results
presented below.

Recent work found numerical evidence for a gapped
uniform quantum liquid at a filling of 1/3 by projecting
the nearest neighbor Hubbard interaction into the low-
est flat band defined by dm

13–15. The resulting state,
in direct analogy to FQH states, demonstrate a 3-fold
topological degeneracy, a fractionalized Chern number
and should, in principle, exhibit a FQH effect if found
in materials. The role of long-range interactions derived
from the Coulomb interaction remains a key issue.

To study the interplay between screening and FCIs we
consider a model defined by a Yukawa interaction:

H = P e
2

2ε

∑
i 6=i′

e−rii′/λ

rii′
nini′P, (1)

where the projectors P imply that the model acts only in
the Fock space of the lowest single-particle flat band and
ni is the fermion number operator. Both rii′ (the inter-
site separation before projection) and λ are in units of
the spacing between the unit cells. We set the energy
unit to V ≡ exp(−1/

√
2λ)[
√

2e2/ε] to ensure that the
λ → 0 limit of H reduces to the nearest neighbor inter-
action while λ → ∞ reduces to the Coulomb limit. ε
is the dielectric constant. In the following we study the
eigenstates of Eq. (1) at N/Nc = 1/3 filling on a periodic
Lx × Ly lattice, where Nc is the number of unit cells.
Energetics: We numerically diagonalize Eq. (1) using
the Lanczos algorithm. We study N = 6, 8, 10, and
12 and present results for Lx × Ly = (N/2) × 6. We
are limited to N ≤ 12 because larger Hilbert space sizes
(∼ 1× 109 states for N = 12) are prohibitive. We stud-
ied other aspect ratios and have also considered tilted
periodic boundary conditions which, only for N = 6 at
this filling, allows us to access an additional system size.
In all systems studied we find uniform FCI states with
the requisite 3-fold topological degeneracy and a robust
gap, ∆λ, in the nearest neighbor limit, λ → 0. But the
Coulomb limit reveals a different state.

Fig. 1 shows representative data for the eigenvalues of
Eq. (1) in the Coulomb limit. Similar results were ob-
tained for all accessible N and large λ. The 15-fold de-
generacy found here stems from a 5-fold increase in the
3-fold degeneracy expected for the FCI state. In general,
we find that the degeneracy increases to 3 × Lx (3 × 2)
for Lx odd (even). The degeneracies occur at wavevec-
tors corresponding to a stripe modulation of the under-
lying uniform FCI states: KFCI + (nx, 0), where KFCI

Figure 1. Energy spectrum of Eq. (1) for N = 10 par-
ticles for the Coulomb interaction (λ = ∞) plotted as a
function of integers (Kx,Ky), where the total momentum is
2π(Kx/Lx,Ky/Ly). The ground state energy is E0. For com-
parison, the FCI state occurs at Lx ×Ky + Kx = 5, 15, and
25 for the short range interaction. The 15-fold degenerate
stripe state manifold therefore includes the states at the same
wavevectors as the FCI.

is any of the 3 topologically degenerate wavevectors of
the FCI state, nx = 0 and Lx/2 when Lx is even (i.e.,
when Lx an integer multiple of the stripe spacing), and
nx = 0, 1, ..., Lx − 1 otherwise. We discuss these degen-
eracies in the following sections.

The top panel of Fig. 2 depicts the evolution of the low
energy spectrum as a function of the screening length.
The low λ limit shows an FCI liquid with 3 degenerate
ground states and ∆λ > 0 up to λ ≈ 6.5 where a transi-
tion to a 15-fold degenerate state is found. We found the
same transition in the regime λ = 3.2−6.5 for N = 6−10.

The wavevectors and persistence of the underlying 3-
fold topological degeneracy of the FCI suggests that the
degenerate ground states in Figs. 1-2 for λ > 6.5 are
stripes of quasiparticles. To show this we first study the
spatial symmetry of the charge order. We then show
that the stripe states are best described as ordering of
quasiparticles instead of electrons.
Stripe Order: We use the static structure factor to study
the charge order:

Sq =
1

N2
c

∑
j,j′

e−iq·rjj′ 〈ñj ñj′〉,

where the tilde indicates projection to the lowest flat
band of the single-particle Hamiltonian so that j and
j′ label unit cells. We have verified that the low λ side of
the transition demonstrates uniform ground states, i.e.,
there are no peaks in Sq. But in the large λ regime we
find evidence for a peak at q = (π, 0) in Sq in the thermo-
dynamic limit, i.e., stripes aligned along the y-direction.
The unprojected structure factor leads to qualitatively
similar results.
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Figure 2. Top: Energy spectrum of Eq. (1) for N = 10 plotted
as a function of the screening length. The colors correspond
to the same (Kx,Ky) as in Fig. 1. The transition from an FCI
to stripes at λ ≈ 6.5 is signaled by a change in degeneracy
from 3 to 15. For λ >∼ 6.5 each of the 3 FCI states acquire a
5-fold degeneracy. Bottom: The ground state structure factor
peak plotted for the same parameters as the top panel. In-
set: Schematic of a one-dimensional slice along the x-direction
(perpendicular to the stripes). Spheres represent charge ex-
cess atop the uniform liquid. The Lx = 5 (Lx = 6) case fits
a non-integer (integer) number of stripes and shows one of 5
(2) configurations.

The bottom panel of Fig. 2 shows the evolution of the
structure factor peak with screening length. For low λ,
Sq remains at its background value until an apparently
first order transition at λ ≈ 6.5. (The transition softens
for N < 10) The peak of Sq here occurs at, (4π/5, 0) and
(6π/5, 0).

Fig. 3 plots the structure factor by combining data
for N = 8, 10, and 12. The top (bottom) panel indi-
cates the FCI (stripe) state. In the bottom panel, lattices
with N = 8 and 12 particles show peaks at q = (π, 0),
while the N = 10 data shows peaks at q = (4π/5, 0) and
(6π/5, 0), centered at q = (π, 0). Different system sizes
allow different values for the peak. There is one peak, at
(π, 0), for Lx even and two peaks, at ((Lx ± 1)π/Lx, 0),
for Lx odd. We therefore conclude that the peak of Sq

converges to q = (π, 0) for large system sizes.

Sq indicates that the ground states are uniform stripes
along the y-direction spaced by two lattice constants
along the x-direction. The ground state degeneracy can
then be explained as the number of ways [Lx (2) for odd
(even) Lx] to translate the stripes along x (perpendicular
to the stripes) and obtain the same state for each of the
3 topological sectors of the FCI. The even Lx case allows

Figure 3. The top panel plots the ground state structure
factor versus wavevector for the uniform FCI for λ = 1 in
Eq. (1). The bottom panel demonstrates the formation of a
stripe state for the Coulomb interaction, λ =∞.

stripes to occupy only two distinct sublattices whereas
the Lx odd case frustrates the two-lattice constant spac-
ing forcing an Lx degeneracy (See inset Fig. 2). Excited
states in Fig. 1 then correspond to density modulation
along the y-direction which have ∆λ > 0 in our finite-
size simulation.

Fractionally Charged Quasiparticles: We find that the
stripe state is a CDW of fractionally charged quasiparti-
cles atop the otherwise uniform FCI liquid. We note that
the charge of the FCI excitations is e/315. The charge
of quasiparticle stripes must therefore be an integer mul-
tiple of e/3. To verify this connection we perform flux
insertion13–15 and compute the density in real space to
extract the charge of each stripe.

Laughlin’s gauge argument34 points out that flux in-
serted along a cylinder axis induces perpendicular cur-
rent on the surface. Gauge invariance implies that the
periodicity with respect to the flux reveals the charge
of quasiparticles because we can make the replacement
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Figure 4. Spectral flow of the FCI (λ = 1, top panel) and
stripe state (λ = ∞, bottom panel) as a function of the flux
in units of Φ0 = h/e for N = 10. Both panels show a Φ0

spectral periodicity and a 3Φ0 eigenstate periodicity with re-
spect to the flux. The spectral flows are adiabatic within the
ground state manifold. The insets zoom in on the ground
state manifolds. The colors correspond to the same (Kx,Ky)
as in Fig. 1.

eA→ e∗A, where A is the vector potential and e∗ is the
renormalized charge. An added condition, ∆λ > 0, al-
lows for adiabatic spectral flow35. When both conditions
are met they imply a quantized Hall resistance with a
value dictated by the charge of the quasiparticles34–36.

The top panel of Fig. 4 shows adiabatic spectral flow
with respect to flux insertion in the FCI regime but with
λ = 1. Here a test flux is inserted along the x direction.
The spectra (eigenstates) show Φ0 (3Φ0) periodicity in
Φ. ∆λ > 0 and the 3Φ0 eigenstate periodicity imply a
Hall conductivity quantized at 1/3. Our results therefore
show that the FCI is favored for interactions with a non-
zero screening length, λ <∼ 6.5.

The bottom panel of Fig. 4 shows representative flux
insertion data in the Coulomb limit. Here the flux pumps
charge parallel to the stripes. The eigenstates of the
stripe phase show a 3Φ0 periodicity. Gauge invariance
therefore implies that flux evolution of the ground state
is consistent with stripes of quasiparticles with charge
e/3. There also appears to be a spectral gap and adia-
batic spectral flow consistent with fractionally quantized
Hall conductivity in the stripe phase. Our finite-size sim-
ulations cannot rule out the possibility that the gap col-
lapses in the thermodynamic limit due to long wavelength
fluctuations in the stripe phase.

To conclusively show that the stripes are fractionally

charged quasiparticles atop an otherwise uniform state,
we compute the charge of a single stripe. We add a weak
symmetry breaking term to Eq. (1):

∑
j εj ñj . For εj �

∆λ we obtained the same stripe density regardless of our
choice for εj , i.e., the stripes spontaneously break the C4

lattice symmetry. We also find that 3 of the degenerate
stripe states at KFCI are uniform in the single-particle
density, i.e., FρQ ∼ 1 +O(ρ2Q) in the wavefunction. This
is in contrast to the other stripe states in the degenerate
manifold showing charge modulation, FρQ ∼ ρQ+O(ρ2Q).

The inhomogeneous density allows us to compute the
charge of one stripe: Nqpe

∗/e =
∑
j∈R〈ñj − ρ0〉, where

Nqp is the number of quasiparticles, ρ0 = 1/3 is the
density of the uniform liquid, and the region R defines
summation over a single stripe by choosing j’s such that
〈ñj〉 > ρ0. For the uniform stripes studied here this con-
dition implies that we sum over the entire stripe. We find
Nqpe

∗/e to be a multiple of 1/3 within numerical accu-
racy for all system sizes studied by computing the charge
within the subspace of stripe states showing charge mod-
ulation. For example, for N = 8 we find Nqpe

∗/e = 4/3.
Since the FCI quasiparticles have charge 1/3 it is natural
to conclude that we have Np = 4 and e∗/e = 1/3. We
have tested that this results is robust against different
choices for εj . We have therefore found that increasing
λ orders quasiparticles atop the otherwise uniform liquid
into stripes.
Constraints on Effective Theories: Constraints on effec-
tive theories illustrate the difference between CDWs of
electrons and CDWs of quasiparticles. A minimal ef-
fective model must reproduce the lowest energies and
momenta. Truncation of Eq. (1) does not accomplish
this. For example, a classical model derived by drop-
ping off-diagonal terms in Eq. (1), Hc, leads to a non-
degenerate CDW in the ground state, e.g., at (Kx,Ky) =
(2, 4) for N=8. Adding the largest off-diagonal terms:
c̃†x,yñx,y±1c̃x±1,y + h.c., to Hc, leads to a CDW with de-
generacies and momentum sectors that are very different
from the full model.

An effective theory of quasiparticles must also satisfy
an exact constraint of fractional charge. Consider, for ex-
ample, an effective model built from anisotropic hopping

and interaction terms: −t
∑
〈j,j′〉 |r̂j,j′ · ŷ|(c̃

†
j c̃j′ + h.c.) +∑

j 6=j′(1− c|r̂j,j′ · ŷ|)ñj ñj/(2rjj′), where t and c < 1 are
fitting parameters and r̂j,j′ and ŷ are unit vectors. For
large c this theory can be thought of as weakly coupled
Luttinger liquids37. We have checked that the low energy
states of this model do not order at the same wavevectors
as Eq. (1). But more importantly, the stripes defined this
way can be fractionalized at any value. The effective the-
ory must also define an array of FCI quasiparticles with
a charge that is a rational fraction38–41.
Summary: We tested a model of FCIs that includes a
priori screening of the underlying Coulomb interaction.
Adiabatic flux insertion shows that the FCI survives for
sizable screening lengths. The perseverance of the FCI
state (and its quasiparticles) allowed a transition to an
intriguing stripe phase of fractionally charged quasipar-
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ticles. Our results show that some of the rich structure
considered in the FQH regime, e.g., stripes of quasipar-
ticles, manifests in the FCI regime.
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17 A. M. Läuchli, Z. Liu, E. J. Bergholtz, and R. Moessner,

Phys. Rev. Lett. 111, 126802 (2013).
18 T. Liu, C. Repellin, B. Bernevig, and N. Regnault, Phys.

Rev. B 87, 205136 (2013).
19 S. A. Parameswaran, R. Roy, and S. L. Sondhi, Comptes

Rendus Physique 14, 816 (2013).
20 E. J. Bergholtz and Z. Liu, Intl. Jour. of Mod. Phys. B 27,

1330017 (2013).
21 A. G. Grushin, T. Neupert, C. Chamon, and C. Mudry,

Phys. Rev. B 86, 205125 (2012).
22 S. Kourtis, J. W. F. Venderbos, and M. Daghofer, Phys.

Rev. B 86, 235118 (2012).
23 Y.-H. Wu, J. Jain, and K. Sun, Phys. Rev. B 86, 165129

(2012).
24 E. Rezayi, F. Haldane, and K. Yang, Phys. Rev. Lett. 83,

1219 (1999).
25 J. K. Jain, Composite fermions (Cambridge University

Press, 2007).
26 A. H. MacDonald and G. C. Aers, Phys. Rev. B 29, 5976

(1984).
27 F. C. Zhang and S. Das Sarma, Phys. Rev. B 33, 2903

(1986).
28 J. W. F. Venderbos, S. Kourtis, J. van den Brink, and

M. Daghofer, Phys. Rev. Lett. 108, 126405 (2012).
29 N. Y. Yao, A. V. Gorshkov, C. R. Laumann, A. M. Läuchli,
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