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We explore the ferromagnetic quantum critical point in a three-dimensional semimetallic system
with upward- and downward-dispersing bands touching at the Fermi level. Evaluating the static
spin susceptibility to leading order in the coupling between the fermions and the fluctuating ferro-
magnetic order parameter, we find that the ferromagnetic quantum critical point is masked by an
incommensurate, longitudinal spin density wave phase. We first analyze an idealized model which,
despite having strong spin-orbit coupling, still possesses O(3) rotational symmetry generated by the
total angular momentum operator. In this case, the direction of the incommensurate spin density
wave propagation can point anywhere, while the magnetic moment is aligned along the direction of
propagation. Including symmetry-allowed anisotropies in the fermion dispersion and the coupling
to the order parameter field, however, the ordering wavevector instead breaks a discrete symmetry
and aligns along either the [111] or [100] direction, depending on the signs and magnitudes of these

two types of anisotropy.

PACS numbers:

For decades it has been understood that electron in-
teractions may lead to interesting consequences at low
energy scales in three-dimensional (3D) semimetallic sys-
tems, in which spin-orbit coupling combines with cu-
bic crystalline symmetries, leading to a band degener-
acy at the Fermi energy.!® Such a band structure has
long been known to occur in HgTe and «-Sn (gray tin),
and has possibly been discovered more recently in the py-
rochlore PryIroO7.9714 Since the low-energy effective the-
ory for these systems was first developed by Luttinger!,
it has been argued using various approaches that in-
teractions could lead to an excitonic instability at low
temperatures>®, or that the system may be described
by an exotic non-Fermi liquid phase, characterized by
nontrivial power-law scaling of various physical quanti-
ties with temperature.?® In more recent work, the prop-
erties of such a system near an Ising antiferromagnetic
quantum critical point were explored, and the critical
theory was found to be governed by unusual critical ex-
ponents and emergent spatial anisotropy of the fermion
dispersion.” The theory describing the quantum phase
transition into an insulating nematic phase has also been
developed recently.®

In this work we explore the fate of a 3D semimetal
in the vicinity of a ferromagnetic (FM) quantum criti-
cal point. Working at zero temperature and approaching
the quantum critical point from the paramagnetic side,
we find that it is unstable toward an incommensurate
spin density wave (SDW) phase. In the most symmetric
version of the theory, there is a combined O(3) rotational
symmetry for spin and spatial degrees of freedom, which
is spontaneously broken by the SDW wavevector. The
O(3) symmetry is reduced to a discrete symmetry by ei-
ther of two sources of anisotropy: the Yukawa coupling
of the fermions to the fluctuating FM field, or the disper-

sion of the fermions themselves.(Throughout this work,
by anisotropy we shall mean terms preserving the lattice
point group symmetries, but not O(3) symmetry.) Ei-
ther of these sources of anisotropy reduces the O(3) sym-
metry breaking to a discrete symmetry breaking, with
the ordering wavevector lying along one of several high-
symmetry directions. In contrast to the more typical
case of an incommensurate SDW driven by Fermi surface
nesting, the incommensurability of the SDW found in
our work is unrelated to Fermi surface or doping effects.
Rather, the ordering wavevector depends on nonuniver-
sal parameters such as the temperature and strength of
the boson-fermion coupling.

In the following section we introduce the model Hamil-
tonian for a 3D parabolic semimetal coupled to a fluctu-
ating FM order parameter field and discuss its relevant
symmetries. In Section II we use this model to study
the effects of fermionic fluctuations on the bosonic order
parameter field, beginning with the O(3)-symmetric case
and then moving on to the anisotropic case, with details
of these calculations provided in the Appendix. In both
cases we obtain a negative contribution to the boson self-
energy that is linear in momentum, leading to an instabil-
ity to an incommensurate SDW phase. In Section I1I we
investigate the possibility of a fluctuation-induced first-
order phase transition directly from the paramagnetic to
the FM phase, evading both the FM quantum critical
point and the incommensurate SDW phase. Comput-
ing the free energy of the FM order parameter, we find
that the sign of the fluctuation-induced nonanalytic term
is such that no first-order transition results, in contrast
with the metallic case in which there is a nonvanishing
density of fermions at the Fermi energy.!> 17 Finally, in
Section IV we discuss the results and their possible rele-
vance to real materials.
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FIG. 1: Schematic phase diagram showing the onset of incom-
mensurate spin density wave (ISDW) order that preempts the
quantum phase transition to a ferromagnetic (FM) phase at
r < 0. The nature of the phase transition between the ISDW
and FM phases (not shown) is not specified by our theory.

I. THE MODEL

The following action describes a theory of fermions
coupled to a fluctuating FM order parameter ¢ at tem-
perature T' = 0:

—

S= /dT d%{dﬁ[& +Ho(=iV)]p + ¢ - [GY) 71 6
. ) L
+ \/Ni/z (M cos o + My sin )y (b}}
The fermion fields ¢ have 4N components, where N =1
in the physical case. The action (1) is similar to the one
studied in the Ising antiferromagnetic case’, but with
some important differences. Most obviously, the FM or-
der parameter q? is a vector, rather than a scalar as in
the AF case. The mass rg = [G;)O)(O,O)];il of this field
is tuned to zero at the FM quantum critical point, as
shown in Figure 1. Finally, as pointed out previously!s,
there are two symmetry-allowed terms through which FM
order can couple to the fermions. Hence u describes the
overall strength of the coupling between the fermions and
the field gi?, while @ parametrizes the relative strength of
the two allowed couplings. The 4 x 4 matrices appearing
in (1) are related to the S = 3/2 spin matrices’»!® by
M; = (84, Sy, S2) and M, = (82,53, 53).
The noninteracting part of the fermion Hamiltonian

appearing in (1) is the same as that appearing in Refs. 5,
18:

3 5
Ho(k) = cok® + 1 Y du(K)Tn + 2 Y dn(K)Ty  (2)

n=1 n=4

where
di (k) = V3kyk., da(k) = V3kyk,, ds(k) = V3k.k,,

1 (3)
da(k) = <= (k2 — k), ds(k) = 5(%3 — k3 — k).

The five I matrices satisfy {I';,I';} = 26;;, and one can
build ten additional matrices using I';; = 5:[I';, T';]. To-
gether with the unit matrix these make a complete ba-
sis of 4 x 4 matrices. We use the I'-matrix representa-
tion, spin matrices S;, and basis functions d;(k) given
in Ref. 18. For simplicity we assume particle-hole sym-
metry (cop = 0), which was found to emerge in the low-
energy theory from the renormalization group calcula-
tions of Refs. 5,7.

The bare fermion Green function is

Gol(iQ, k) = _’2;24); Hgoék), (4)

where

exe = /A3 () + d3 (k) + d2(10)] + 3ld3 (k) + d2(k)]. (5)

The two-fold degenerate energy bands thus have disper-
sion +ey, with a quadratic band touching point at k = 0.
In the isotropic case in which ¢; = ¢q, it is straightfor-
ward to show that [L + S, Ho(k)] =0, where L =r x k,
[1i,kj] = id;;, and L + S is the generator of rotations.
In this case the fermionic theory has complete rotational
invariance, and the dispersion from (5) becomes simply
Ek — C1 k2.

II. FERROMAGNETIC POLARIZATION
TENSOR AND SDW INSTABILITY

In this section we calculate the bosonic polarization
tensor, which describes the self-energy of the bosonic field
due to damping of spin fluctuations by fermionic excita-
tions. We begin with the isotropic case and then consider
the anisotropic case in the following subsections.

A. Polarization tensor: isotropic case

Let us evaluate the polarization function, first in the
relatively simple case where ¢; = cp. Subtracting off the
UV-divergent contribution IT7/(0,0) = —6;u*Ae/(27m2¢y)
(where A, is the ultraviolet momentum cutoff), which can
be absorbed into a redefinition of the bosonic mass term
by letting r = ro + II;/(0,0), one obtains the following:
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where we have set ¢; = ¢o = 1, and defined g = q/|q],
M(a) (Micosa + Misina), and q - A™ - q =
25 GiA7jG;.  The matrices A™ (not to be confused
with the momentum cutoff A.) are proportional to the
five symmetric Gell-Mann matrices and are given in the
Appendix, where we also provide the scaling functions
fi(iQ/q?). If it is further assumed that o = 0, so that
the magnetic coupling has complete O(3) symmetry, then
(6) becomes the following (noting that the traces in (6)
each give a factor of N):

(a=0)
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Including the bare kinetic terms, the dressed bosonic
stiffness is thus

G (i, @) =[G <m,q>1;1
+u’|q] [Fl (ZT%) (6i5 —
where we have introduced
=5 () - (8) - 5 () + 95 ().
19}

Fi=on () 30 (3) + 20 () 25 (9)

The factor in (8) proportional to (d;; — ¢;g;) describes
the dynamics of transverse spin fluctuations, while the
factor proportional to §;¢; describes longitudinal fluctu-
ations. Figure 2 shows the scaling functions appearing in
(8). While the transverse part remains positive for all val-
ues of || /q?, implying that these spin fluctuations have
a nonzero energy cost at all frequencies, the longitudinal
part becomes negative at frequencies |Q| < 0.42q?, im-
plying a vanishing energy cost for longitudinal spin fluc-
tuations at sufficiently small frequencies and momenta.

To O(q?), the static part of bare boson propagator has
the following analytic form:

;) + F> ( )qzqg} ,(8>

9)

(G 0,5 = r0i; + a*[v} (855 — 4idy) + v36:d;], (10)

agator for the FM field, given by (8). The solid line shows
I (iQ/qQ), and indicates a finite energy cost for transverse
spin fluctuations at all frequencies. The dashed line shows
Fy (iQ/qQ)7 which describes the energy cost of longitudinal
spin fluctuations and becomes negative for |Q2|/q®> < 0.30,
indicating a phase instability.

with stability of the bare theory requiring that v > 0
and v3 > 0 for 7 > 0. From (8) it is evident that if
one fixes @ = 0 and decreases momentum |q| with r
sufficiently small, there will be a critical value of |q| where
the negative correction u?F5(0)|q| will overtake the bare
term. The consequences of this become evident upon
inverting the expression (8) at £ = 0 to obtain the static
spin susceptibility:

1

0ij — Gigj
o+ Rl ) 1)
1 .
qi4;j,

xi;(0,9) =

+
r+v3q? + F2(0)u?|q]

where the constants are F;(0) &~ 0.0362, and F5(0) =~
—0.0042. Equation (11) makes it clear that the vanish-
ing longitudinal term for sufficiently small r corresponds
to an instability toward a spin density wave phase at
finite wavevector |Q| = |F3(0)|u?/2v3. This incommen-
surate instability is similar to the “spiral SDW” instabil-
ity that has been noted in previous theories of itinerant
fermion systems near a quantum critical point described



using the spin fermion model'®2°, and to the behavior
recently observed in the metallic ferromagnet PrPtAl2!
In the isotropic case that we have so far considered, the
wavevector Q of the SDW order could be along any di-
rection, and thus breaks an O(3) symmetry, with the
spins aligning along (since the SDW is longitudinal) the
direction of Q. The fact that the spins cannot inde-
pendently choose a direction along which to align is a
direct consequence of the spin-orbit coupling built into
this model, and distinguishes this theory from the spin
fermion theory of itinerant ferromagnets, for which the
SU(2) spin rotation symmetry is independent of spatial
rotations. Finally, we note that while our calculations
are performed at T = 0, one can see that at T > 0 the
temperature dependence will enter through the scaling
function Fy. This leads to temperature dependence of
the ordering wavevector, which is an unusual feature in
an SDW system.

B. Polarization tensor: Yukawa anisotropy

Before proceeding to the fully anisotropic case with
both ¢; # co and « # 0, in this section we investigate the
case in which the Yukawa coupling is anisotropic (« # 0)
but the fermion dispersion remains isotropic (¢; = ¢3).
In this case the summations in (6) may be performed to
obtain a polarization tensor of the following form:

I3 (i, q) —

U2|q< [hl(a%a Oé) + h2<;%7 Oé)(j,? + h3(:1%7a)qz1:| 613(12)

11/ (0,0) =
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The scaling functions h; are linear combinations of the
fi appearing in (6), with coefficients depending on the
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The scaling functions appearing in (14) are given in
the Appendix, Equations (A2)—(A4). Introducing the
anisotropy parameter § for the fermion dispersion by let-
ting ¢12 = 1 £ 6, these scaling functions can then be
obtained perturbatively in §, as shown in the Appendix.

As pointed out in the two previous subsections, the
behavior of spin excitations becomes increasingly domi-
nated by the contribution from II4(if2,q) at small mo-

Yukawa angle .

In order to determine the nature of the SDW instability
in the anisotropic case, we can obtain the eigenvalues and
eigenvectors of the polarization tensor for these two cases
from the following equation:

% [ﬂ¢(0’q> =11, (0, 0)] ho(@) = mo(Q)ts(@)- (13)

us|q

For q ~ (1,0,0), the eigenvectors are aligned with
the principal axes. In this case the longitudinal mode,
for which ¥4(q) = (1,0,0), has eigenvalue WéL)(q) =
h1 + ho + hg, while the two degenerate transverse modes

have WéT)((i) = hy. For q ~ (1,1,1), on the other

hand, the longitudinal mode has eigenvalue w((z)L) (q =
hi + hs + &hs + hq + 3hs, while the transverse modes
have eigenvalues WéT) (@ =h+ %hg + %h;). By tracking
the minimum eigenvalue as a function of q, as shown in
Figure 3, we find that the ordering occurs along [111] and

is longitudinal for all values of the Yukawa parameter in
the range 0 < o < /2.

C. Polarization tensor: fully anisotropic case

Considering now the more general case in which both
¢1 # c2, and a # 0, in this subsection we show the way in
which these two types of anisotropy favor ordering along
certain crystalline axes. The polarization tensor for the
FM field ¢ in this general case is given by

)] + Z of" (9,a) Tr [M' (@)1 M ()]

Z <I>(m”)( )Tr [T M ()T M7 (@0)] }

m,n=1

menta and frequencies. Due to the anisotropy, cer-
tain ordering wavevectors will be favored when either of
these parameters is nonzero. In order to determine the
wavevector of the SDW instability, we once again inves-
tigate the minimum eigenvalue my(q) from (13). This
quantity is plotted in Figure 3 as a function of the angle
of q. We find that the ordering occurs along [111] when
d > 0, while § < 0 favors ordering along [100]. With such
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FIG. 3: (a) The polarization tensor eigenvalues as a function
of the Yukawa angle o with § = 0. Blue (red) lines correspond
to longitudinal (transverse) modes, while solid (dashed) lines
have q ~ [100] ([111]). The lowest eigenvalue occurs for the
longitudinal mode with q ~ [111]. (b)-(d) The minimum
eigenvalues 74(q). The direction of the ordering wavevector
for the incommensurate SDW will correspond to one of the
potential minima, shown as red points. (b) Anisotropy in the
Yukawa coupling leads to minima along [111] and equivalent
directions. (c) The positive fermion dispersion anisotropy pa-
rameter § > 0 leads to minima along [111] and equivalent
directions. (d) 6 < 0 leads to minima along [100] and equiva-
lent directions.

anisotropy taken into account, the ordered state itself is
now an incommensurate SDW with wavevector whose di-
rection is locked to the crystalline axes, and both the zero
temperature and 7' > 0 transitions will no longer be in
the O(3) ferromagnetic class as in the naive unrenormal-
ized theory, but must be reconsidered in this light. For
brevity and to maintain focus we do not do this here.
One can also ask whether the incommensurate SDW
instability survives in the case that ¢ is not perturbatively
small. In this case the polarization tensor can be evalu-
ated by directly integrating the scaling functions appear-
ing in (14) numerically at @ = 0 for a given value of §. As
shown in Figure 4, the instability occurs for most values
of § when the Yukawa parameter lies in the physically ex-
pected range 0 < a < 7/2. The exception occurs in the
case where § approaches 1, or equivalently for ¢; > c¢s.
The physical case, however, is more likely in the oppo-
site limit of § < 0 (or equivalently ¢; < ¢2), which is the
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FIG. 4: Minimum eigenvalue of the polarization tensor as a
function of the dispersion anisotropy, with the wavevector q
along the [100] direction (blue) and [111] direction (orange).
The incommensurate SDW instability occurs at the wavevec-
tor for which the eigenvalue 74(q) is most negative. The
angle parametrizing the Yukawa interaction is set to o = 0
and a = 7/3 in (a) and (b), respectively.

case appearing most generically for simple tight-binding
models on the pyrochlore lattice.???* Accordingly, the
case ¢; < co was considered in the anisotropic RG the-
ory of Ref. 7. Also note that we have calculated m,(q)
only for wavevector directions g ~ [100] and g ~ [111].
Based on the results for small § shown in Figure 3 and
general symmetry considerations, it is natural to expect
that the ordering will occur along one of these directions,
though we have not shown this rigorously.

III. FREE ENERGY EXPANSION

Previous investigations of itinerant fermionic systems
near an FM quantum critical point have found that the
quantum phase transition can be precluded by either of
two types of instability.?* The first, in which fluctuations
contribute a negative term to the bosonic self-energy,
leading to an SDW instability at finite wavevector |Q],
was already discussed in the previous section. The sec-
ond is a fluctuation-induced first-order phase transition
into the FM phase, the possibility of which can be in-
ferred by the presence of a nonanalytic term in the order
parameter in the free energy expansion.'®'7 In this sec-
tion we derive the Landau free energy for the FM order



parameter, showing that, although a fluctuation-induced
nonanalytic term is present, its sign is such that no first-
order instability results. (The absence of such a transi-
tion has also been found in the Ising antiferromagnetic
7
case.”)
The following effective action is obtained by integrat-
ing out the fermions from the original action (1):

S = [[ar [ d'a (316017 +0idl")

~ u - N

— TrIn [Ggl — \/NM(oz)(b} .
The trace in the second term is a trace over matrix el-
ements, as well as over frequency and momentum. The
quartic term ~ b|$\4, with b > 0, is included since it is
allowed by symmetry and arises in the low-energy effec-
tive theory from integrating out high-energy modes. Due
to the gapless fermionic excitations, one cannot simply
follow Hertz?® and expand the logarithm in powers of
(E to obtain an effective theory for the order parameter
field. Rather, a useful first step is to differentiate (15)
with respect to the order parameter. And because we
are interested in uniform states, we can evaluate the re-
sult at zero external momentum and frequency, so one
has [éfbo)]i_jl = rd;;, i.e. the bare mass of the bosonic
field. The result is

(15)

-,

6F[¢] _ 6Seﬂ

0 a 0i iw=k=0

o o, u ds? d3q

=rd; +bp ¢; + N / g/ (2m)3 (16)

x Tr[(@ol(iﬂ,q) - \/%M(a) : q?) 1Mi(a)].

If we take the matrix inverse and specialize to the
isotropic case in which a = 0, this becomes

—roebot o [ 52 [ S (i9.0.9)

R
o N

-

SF[g]
0

£(i9, q, 0)] bi + bBB; (17)

Q,q

u2

+ N¢l /5;7q |:f (ZQ,q, (b) - f(ZQaCL 0):| )
where f(i€),q, $) is a complicated function, and in the
second line we have added and subtracted the UV-

divergent piece. By rescaling Q — |¢|Q, q — \/@q
in the second integral, and taking advantage of the fact
that—due to rotational symmetry—the integral must
only depend on the magnitude of qi? but not its direction,
(17) becomes

-

5F[¢]
i

2
= [r 057+ 5 [ fa, 0)] 2
, *a (18)
u e . .
+ NQS’L\/@/Q,(; [f (297 q, 1) - f(ZQ7 q, 0)} )

from which the free energy is

Flg] = ald|* + c|6]*/* + 3bl6[". (19)
By evaluating the integral in (18) numerically, the second
constant appearing in (19) is ¢ ~ 0.019u?/N. Since ¢ >
0, we conclude that the nonanalytic term does not lead
to a first-order phase transition into the FM phase, and
that the FM quantum critical point is preempted by an
incommensurate SDW via the mechanism discussed in
Section II.3°

IV. DISCUSSION

In this work we have shown that the quantum critical
point in a 3D parabolic semimetal near the onset of FM
order is preempted by an instability to an incommensu-
rate, longitudinal SDW phase. While the wavevector Q
characterizing the SDW order breaks a continuous sym-
metry in the idealized, O(3)-symmetric version of the
theory, including anisotropy terms allowed by crystalline
symmetry leads to a discrete symmetry breaking, with
Q along either the [111] or [100] direction, depending on
the values of the anisotropy parameters as shown in Fig-
ure 3. We have shown that the instability is present over
a broad range of anisotropies, apart from the extremely
anisotropic case where ¢; > cy. Investigating this limit
and its RG flows further, along the lines of Ref. 7, could
be an interesting direction for future work. Finally, we
have also investigated the possibility of a fluctuation-
induced first-order transition into the FM phase, find-
ing that, although a nonanalytic term in the free energy
does exist at zero temperature, its sign is such that no
first-order instability results.

While in this work we have not focussed on the role
played by Coulomb interaction, some general statements
about its effects can be made. As pointed out in previ-
ous works®”, Coulomb interaction tends to decrease the
effective mass difference between the electron and hole
bands, as well as the rotational anisotropy in the fermion
dispersion. Because the SDW instability dominates the
low-energy physics, the effects of Coulomb interactions
will be secondary near the FM quantum critical point.
(A possible exception is in the limit ¢; > ¢o, where—
as discussed above—the SDW instability is absent. In
this case we cannot rule out the possibility that the com-
bined effects of Coulomb interactions and spin fluctua-
tions could in principle lead to a stable anisotropic fixed
point such as the one found in Ref. 7.)

While there is no obvious existing material described
by the critical theory developed in this paper, it is possi-
ble that the vicinity of a (preempted) FM quantum crit-
ical point could be reached by doping existing parabolic
semimetals such as HgTe or a-Sn with magnetic impu-
rities such as Mn. Half-Heusler and Heusler materials
can exhibit narrow-gap or semimetallic behavior?6-27 as
well as ferromagnetic critical points?®, although to our
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In this Appendix we derive the scaling functions determining the polarization tensor given in the main text. In
order to compute the FM polarization tensor, we begin by evaluating the following general outer product of fermionic
Green functions:

3 A A A
/ / d°k [ (iw+i£227k+(2]>®(;0 (iw—ig,k—g)—G()(iw7k)®G()(ioJ,k):|

= |dq| {@1(£7Q)14®14+Z¢’§n) (5, @lel, (A1)

e o 1+ e A0, 9T,

m,n

where the UV-divergent piece has been subtracted off, as described in the main text. Once this quantity is determined,
any response function (and, in particular, the response function in the FM channel) can be calculated by contracting
(A1) with appropriate matrices. The scaling functions appearing in (A1) are given by

o Bz —(Exag/2 T Ex—¢ 1
@1(;%,(1) = / (27’[’)3 ( a2 q/g) ] 2 + E ) (AQ)
2 [(exq/z + extq/2)? — («Z;%) } *

. R . R " d3$ %dn(x - 7)
o (8.0) = -2 (%.0) = ¢, | 5 a : —r (A3)
2ex_g/2 |:(Exq/2 +extq/2)? — (é) ]
m, iQ A PO 3z (€x+A/2 + ex—4 2)dm(x + g)dn(x - Q) dm(x)dn(x)
q)é(L n)(q%vq) = CmC / (271')3 . q/ : - N 45)3( ' (A4)

12
2ex+q/26x—q/2 |:(Exél/2 +exra/2)’ — (zl%) }

From (A4) it can be noted that @im’n) = @Eln’m). In the above equations we have introduced ¢; 2.3 = ¢; and ¢45 = ca.
In what follows it is useful to introduce matrices such that

3

dm (x) = Z z A7 Ty, (A5)

ij=1
where the matrices A™ are
000 001 010
MoV oo1 ), =Y (o00]. A=Y [100].
2\o010 2 \100 2\000
100 100 (46)
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Moo Do) a2t 0 S0
2\0 0 0 2\ 0 0 2



These are proportional to the five symmetric Gell-Mann matrices?? \;:
2
V3

We shall also make use of the fact that these matrices are traceless (>, A]} = 0).

While it is possible to integrate the scaling functions (A2)—(A4) numerically for a fixed value of the external
momentum ¢, more convenient expressions can be obtained by separating out the q dependence from these integrals
by applying the following transformation:

(A17A27A3aA4,A5) = ()‘67)\43)\1»)\377)‘8)' (A7)

wi = [did; + (8ij — Gidy) cosn + €ijndi sinn)a
J
— 0J
= ZA%J:BJ.
J

and averaging the integrand over the angle 7. Because this transformation rotates the integration variable x around
the fixed unit vector q by an angle 7, one has x’?> = x? and q - x’ = q - x. The following product of rotation matrices
appears when (A8) is substituted into the scaling function integrals (A2)—(A4):

(A8)

ip AJ 1 q 7y ) Sl
AnpAgzq = LijLpq + §Tiijq + (LipTjq + TipLjq) cosn + (€ipaLjqda + €jqpLips) sinn

1 1 (A9)
+ iTiijq COS 27] + §(quaﬂp(ja + Ez’prqujb) sin 27),
where we have introduced L;; = ¢;G; and Tj; = d;; — ¢;G;, and used
Z €ipa€ighdads = TijTpq — TigThp;- (A10)

ab

We have also used the fact that, due to the structure of the tensors and vectors with which L and T are contracted,
we are permitted to interchange the indices i <> j, k <> I, p <+ ¢, and r <> s. (For this reason we use an arrow rather
than an equality in (A9).) Contracting with the appropriate tensors and averaging over the angle 7, we obtain

X ) o 3 ) 1
Nt Dyl Dy AT AY)y = G0 D)o D (Lo + 5T50Thn ) (A11)

AL+ Dol + Do = Dol = DatAP AP AT AL),
mAn q il § G 1
- AijAkl(x + %)P(x + %)q(x - %)T(x - %)s (LiijqulLrs + §LiijqulTrs (A12)
1 1 1
+ iLlersanpq + 2LikLprlequ + ganqulers + 4TilTps,TjkTqr>-

In obtaining this last expression, it was necessary to apply the angular rotation and averaging a second time in order
to fully separate out the dependence on q.

1. Case of isotropic fermion dispersion

Beginning with the fully isotropic case (¢; = ¢3 and « = 0), using the rotation of the integration variable described
above, and taking traces with the appropriate matrices, the scaling functions appearing in (6) are given by the
following integrals over momentum:

. o 2 . .
A& 2 2 a2 d L Lrdr L N L PR LY BT
q? (2m)2 Jo 4r2 2, 1)\2 i0)\? 64m q? q?
4((2r2+3)" - (—)

q2
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i 1 [e's) (%s) p2+22+l 24 1227322p2+lp2+§p4+i 24_3Z2p2+§p4
fS <): / dZ/O dpp{( 4)( 2 4 8 16) _ > 238 A14)

@ @) J oo [(p2+z2 + i)Z —22] [(2p2+222 + %)2 - (qu)z} o)
iQ 1 oo oo (PP +224+ 1) (22— 3p2 - 1) 222 — 1p?

fil 5 ) = 50 dz [ d 3{ } (A15)
! (q ) (2m) /—oo /o e [(P2+22+i)2_32} {(2p2+222 %) ( )2] CA(p? + 228

iQ 1 [ > PP+ 1
(@) ] dpps{ T e A
4 {(,02 +224+ 47 - zQ] {(2p2 +22243)" - (%) }

The integration coordinates are related to the original momenta k and q as z = k- q/q? and p? = k?/q? — 22
n (A14)—(A16) it is possible to perform the integrals over z numerically, then it is straightforward to perform the
remaining integrals numerically, as they are UV convergent due to the subtraction of II,(0,0) in (6).

In the case of isotropic fermion dispersion (c; = c2) but arbitrary Yukawa parameter «, the scaling functions
determining the polarization tensor in (12) can be expressed as the following linear combinations of f;(£2) in (A13)—
(A16) :

hi(i2, ) 634(178]01 492y 4 22fs + 267f5) — 634(190f1 4 583 + B84 + 285 f5) cos(2a)

1 (A7)

§(82f1 — 2f3 - 2f4 + 123f5) SIH(QO[)
hg(fl—%,a) = g(?ﬁfg + 17f4) [cos(2a) — 1] — 9(f5 + f4) sin(2a), (A18)

. 81
ha(8.0) = 5 £y 1~ cos2a). (A19)
h4(21%’ a) = 6l (404f3 + 743 f4) — o (92f3 + 173 f4) cos(2a) + 2(28f3 + 67f4) sin(2c), (A20)
iQ 9 9, .

hs (o2, ) = gf?, [1 — cos(2a)] + §f3 sin(2«). (A21)

2. Fully anisotropic case

In the more general anisotropic case where ¢; # co, we introduce the anisotropy parameter § for the fermion
dispersion by letting ¢1 2 = 1+ . The integrands in (A2)—(A4) can then be expanded perturbatively to leading order
in §. The fermion dispersion becomes

an:1 fmd?n (x+ %)
(x+ k2

A\ 2
fsie = (X2 5) 40 +0(5?), (A22)

where we have introduced &, = (1,1,1,—1,—1),,. As in the isotropic case, we can separate out the dependence on
q in (A2)—-(A4) by repeatedly applying the rotation (A8) and averaging over the angle n. (In some cases products
of more than four rotation matrices appear, leading to a much longer and more tedious calculation in which the
transformation (A8) must be performed up to four times.) This procedure results in the following expressions:

‘1’1( z,Q) ‘1)11( >+5 ‘I>12( )+¢’13<m)25aq A®-g)°

+ 0(6%), (A23)
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e (%q):qm(g)q./\" +5{¢>22( )q A q+¢>23<%) qZ€aq A"

(A24)
+ 020 () D (@ A" @)@ A"A"- @) + 05 () 0 €uq- ATAA" 61} +0(5%),

.0‘5
~—
o

-
3
2
)
-
3
2
+
KA
-
N
/\
\_/
.Q
>
3
-
3
.Q
+
A
e
w
A
v
?
3
>

)] @ aa
()0 g
6

ala
+ [0 () + (6n + £0)04!
VP8 + s comt (8] e o (8o 0

(@ A" @) &(@-A*-a)(q-A"A™-q)

(@-A™-a)) &ala-A"-a)(G-A"A" - q)

q2

>

€@ A"A™ - @)(@- A"A" - &) + @u1 (49) Do G(a-AT @)@ ATAA ) (A25)
Sld

A% @) (G- ATATAY - q) + Das (ZS;)Z&‘ -q)(q-A"ATAY - q)

g

Zgaq ATATATA - § + By g %)Zgaq ATACATA® - §

i

Zgaq APATATAY - § 4 Pyg

2

o]

(
(

Tr[A™A"] Zga 24 By (qﬂ) 3 Tr[A AT A% - A - q} +0(8%).

B)(@ A" Q@A@Y &la A q)

a

)
(#)2
+ @00 () (@A qZ&l ATATAG) + @5 () @ A" q Z§a CATAPA . )
(&)
(%)
20 ()

The scaling functions appearing in (A23)-(A25) are similar in form to those given in the isotropic case, though we
shall not list them all here explicitly for the sake of brevity.

Once the scaling functions are known, taking the traces in (14) gives the following expressions for the components
of the polarization tensor:

2
Ig" (i€2, q) — 1157(0,0) = §—2|q| (328 sin(2ar) — 285 cos(2ar) + 445)@1(3—%, q)

q? q?
+ (216 sin(2a) — 219 cos(20) + 315)8Y (2, q) (A26)

q27

+V/3(—2245in(20) + 132 cos(2a) — 260)0"7 (2, g)

+ (120sin(2a) + 21 cos(2a) + 75) (@(2’2)(’%,€1)+<I>(33)(’9 q) — oY (2 ,q))

+ (—8sin(2a) — 87 cos(2ar) + 55)@&5’5)(%, él)} ;

2
€T . €T U . 9 1 ay
Y (i, q) — I157(0,0) = 1—6\q| 3(72sin(2a) — 73 cos(2ax) + 105)@511 2)(;%, q)
(A27)
+2v/3(—80sin(20) + 75 cos(2a) — 107) 85 (2, q) |,



I (92, q) — TE7(0,0) =

+ (240sin(20) — 225 cos(2a) + 321) @5 (2, §)

11

|q| [(216 sin(201) — 219 cos(20) + 315)04Y (2, q)

(A28)

+v/3(80sin(20r) — 75 cos(2a) + 107) B (12, Q)} :

(662, ) — T12/(0,0)

+ 3(405sin(2a) + 7 cos(2) + 25) (@511’1)(;%7 q) —
+ (2165in(20) — 219 cos(2a) + 315)05" (12 4)
— 33cos(2a) + 65)4"7 (2 )

+ 4v/3(56 sin(20v)

2
- %“ﬂ [(328 sin(2a) — 285 cos(2ar) + 445) @1 (22, q)

q

q27

@(22)(@ A)+<I)(33)(zﬂ fl))
(A29)

+ (—8sin(2a)) — 87 cos(2a) + 55)@&5’5)(%7 fl)] ;

117 (i€, q) — 11%°(0,0) =

+v/3(80sin(2a) —

2
%6|q| [(—240 sin(2a) + 225 cos(2a) — 321)d Y (12, ¢)

q 9

75 cos(2a) + 107)<I>(1 5)(1% ,a) (A30)

+ (216 sin(20) — 219 cos(20) + 315)® > 3)(;” d)],

H;ﬁz (ZQ7 q) - HZZ (07 0)

—|—(12Osin(2a)+21cos(2a)+75)(<1)511’1)(g L&) + @7 (12, q)

u? . i
= 3—2|q| [(328 sin(2a) — 285 cos(2ax) + 445) ((bl(q%,

@)+ (4,q))
(A31)

q )

- o2 q) - @, éo)}

The remaining off-diagonal components follow from H” = H] ‘
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While the sign of ¢ is positive in the isotropic case and will
remain positive for perturbatively small anisotropy param-
eters ¢ or a, we have not proved this for arbitrary values of
the anisotropy due to the difficulty of obtaining a reliable
numerical result for the integral in (18), which becomes
four-dimensional when angular dependence is included.



