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Hg
1−x

CdxTe at a critical doping x = xc ≈ 0.17 has a bulk dispersion which includes two lin-
ear cones meeting at a single point at zero energy, intersecting a nearly flat band, similar to the
pseudospin-1 Dirac-Weyl system. In the presence of a finite magnetic field, these bands condense
into highly degenerate Landau levels. We have numerically calculated the frequency-dependent
magneto-optical and zero-field conductivity of this material using the Kane model. These calcula-
tions show good agreement with recent experimental measurements. We discuss the signature of
the flat band and the split peaks of the magneto-optics in terms of general pseudospin-s models and
propose that the system exhibits a non-π-quantized Berry phase, found in recent theoretical work.

PACS numbers: 78.20.-e, 78.20.Ls, 71.70.Di, 78.67.Wj

Introduction. With the development of condensed matter
Dirac systems, much research has focused on flat bands
and non-trivial Berry phases, among other features. The
macroscopic degeneracy found in dispersionless, or flat,
bands produces a singular density of states, potentially
opening the door to some interesting physics where in-
teractions can lift this degeneracy. In the presence of
a magnetic field, highly degenerate Landau levels (LL’s)
are formed out of continuous-dispersion systems. At par-
tial filling of these levels, interactions between electrons
give rise to the fractional quantum Hall effect1,2. In addi-
tion, room-temperature superconductivity has been pro-
posed in discussions of flat bands present on the surfaces
of topological media3. Another feature of many Dirac
materials is the non-trivial Berry phase. Such gives rise
to both the half-integer Hall conductivity and magneto-
oscillation shift seen in graphene, for example4,5. Most
recently, a variable Berry phase model has been pro-
posed which theoretically tunes the magnetic response
of a Dirac system from diamagnetic to paramagnetic6.
In contemporary literature, Hg1−xCdxTe (MCT) is

typically discussed in the context of quantum wells and
the quantum spin-Hall effect7,8. However, a particular

phase of the bulk material that exhibits a nominally flat
heavy-hole band at zero energy is also quite exciting in
its similarity to Dirac materials9. This phase exists at
critical cadmium concentration x = xc ≈ 0.17, marking
the transition between distinct phases: semimetal
for x < xc and semiconductor for x > xc. The flat
band provides its own signature in the magneto-optical
response of the material, much like in Dirac-Weyl
systems10. Within this communication, we provide a
numerical calculation of the bulk optical conductivity
for MCT, showing complete spectral-weight dependence
on photon frequency both in the presence and absence
of a magnetic field. This allows for direct comparison
to a recent experimental measurement and analysis
of MCT’s optical properties by Orlita et al.9. We
are able to show excellent agreement between theory
and experiment and provide further insight into the
signature and role of the flat band in this material.
Moreover, we show that this system can be linked to
the α-T3 model6 which has non-π-quantized Berry phase.

Kane Model. MCT at critical concentration xc is de-
scribed by a reduced Kane model Hamiltonian9,11,

ĤK = ~v
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whose parameters include v, a velocity characteristic to the material; Eg, a small energy gap; ∆, the spin-orbit
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FIG. 1. (Color online) Kane fermion dispersion for zero mag-
netic field with the parameters v = 1.06m/s, Eg = 4meV,
and (a) ∆ → ∞, (b) ∆ = 1 eV, (c) ∆ = 0.4 eV.

splitting providing a large band separation; and where
k± = kx ± iky. This model is only first order in mo-
mentum, which approximates the broad curvature in the
heavy hole bands of the actual material as being flat. The
form of the Kane Hamiltonian in Eq. (1) is obtained from
a previous presentation through a simple permutation of
the basis states9. Note, the limit ∆ → ∞ decouples the
fourth and fifth columns from the others, giving an ef-
fective 6 × 6 model which for Eg = kz = 0 maps to a
model with an unusual Berry phase (discussed below).
The presence of a finite nonzero ∆ acts to break particle-
hole symmetry.
Using the parameters of v = 1.06 × 106m/s and

Eg = 4meV taken from Ref.9, the so-called Kane
fermion dispersion is shown in Fig. 1 for different values
∆ = 0.4 eV, ∆ = 1 eV, and the limit ∆ → ∞. Each band
in the figure is doubly degenerate and the upper/lower
green/purple bands are unoccupied/occupied. We see
that for the infinite separation value in ∆, the dispersion
resembles the Weyl system with pseudospin s = 110,12,
although Eq. (1) does not map exactly onto this Hamil-
tonian. When in close vicinity, the bottom band distorts
the lower cone away from linearity, while narrowing
the upper cone, seen in the progression between panels
(a)-(c). For all subsequent calculations in modelling
MCT, the value of ∆ = 1 eV was used.

Zero-Field Optics. Using the general Hamiltonian in
Eq. (1), we can calculate the zero-field conductivity at
different photon energy, Ω, via the Kubo formula13,

Reσxx(Ω)

=
~e2

8π2

∑

λ,λ′

∫

d3k
∆nf
∆ε

|〈λ′| v̂x |λ〉|2 L(Ω−∆ε, η),
(2)

where the summation is over transitions from a state in
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FIG. 2. (Color online) Kane fermion absorption coefficient,
λ, for different values of parameter ∆ (solid red and dashed
blue) plotted against the zero-field experimental measurement
taken from Ref.9 (solid black line). Inset: cross section of
relevant band structures, showing asymmetry in the red curve,
with a typical transition from the flat band.

the initial band λ with energy ε to a final state in band
λ′ of energy ε′. v̂x = ∂Ĥ/∂(~kx) is the velocity operator
and L(x, η) = η/[π(x2 + η2)] is a Lorentzian function
centred at x = 0 with a full width at half maximum of
η, the scattering rate, taken to be 2meV. ∆ε = ε′ − ε
and ∆nf = nf(ε) − nf(ε

′), where nf is the Fermi-Dirac
distribution at chemical potential µ = 0+, which ensures
a filled flat band.

The red (solid) line in Fig. (2) is the result of a numer-
ical calculation of Eq. (2). This is plotted for comparison

with the MCT absorption coefficient, λ =
√

4Ωσ/ǫ0~c2,
measured experimentally as the black (solid) line. Note
that the experimental data is cut off below around 40
meV by the Restrahlen band (see Ref.9) and omission
of a low-frequency phonon peak. The blue (dotted)
line is λ in the approximation ∆ → ∞9. The major
component of the spectral weight in the calculated λ is
due to flat-to-cone transitions between bands. Linear
behaviour is exhibited in both the Kane model results
and the physical MCT measurement, akin to the 3D
Weyl system14 discussed below. In comparison, we see
that the red theoretical curve for ∆ = 1 eV provides a
better match to the slope in the experimental curve, but
the theory remains offset above the data. The non-zero
intercept extrapolated from the experimental data may
have arisen from a small unaccounted-for mismatch in
the dielectrics of the MCT and its substrate9. Linear
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conductivity is seen in some quasicrystal optical re-
sponses as well, where the negative intercept there has
been attributed to a frequency-independent conductivity
channel at low photon energy15. The better match using
finite ∆ demonstrates the importance of particle-hole
asymmetry whereby the upper cone is narrowed (see
inset), reducing the associated density of states and
absorption.

Magneto-Optics. At the introduction of a magnetic field
B = ∇ × A = Bêz, a Peierls substitution is made in
the momentum, k → k + eA/~c. This allows one to
rewrite the Hamiltonian in terms of ladder operators,
k+ →

√
2a†/ℓB, k− →

√
2a/ℓB. ℓB =

√

~/e|B| is the
magnetic length scale. The operators act on Fock de-
grees of freedom, |m〉, found in the energy eigenvector,
with a |m〉 = √

m |m− 1〉, a† |m〉 =
√
m+ 1 |m+ 1〉, and

[a, a†] = 1. The wavefunction for each LL,
∣

∣ψλn
〉

, gets
labelled with a Fock number n and a band index λ. In
this finite-field case, we can make use of the 3D Kubo
formula written now in the LL basis,

Reσxx(Ω)

=
~e2

4πℓ2B

∑

ψ,ψ′

∫ ∞

−∞
dkz

∆nf
∆ε

|〈ψ′| v̂x |ψ〉|2 L(Ω−∆ε, η).

(3)

The summation on ψ in Eq. (3) is taken over band index
λ and Fock number n.
With a finite magnetic field, the double degeneracy of

the bands in Fig. 1 is lifted as they condense into LL’s
that disperse along kz (Fig. 3). These bands carry a large
density of states at each value of momentum kz. At the
point kz = 0, the Hilbert space of Eq. (1) decomposes
into two independent sectors, with the upper 4× 4 block
being referred to as Sector A and the lower block Sector
B. In the simplified limit of ∆ → ∞ and Eg = 0, the
2D (kz = 0) Sector A provides LL’s quantized with en-

ergies εA2D = γ
√
4n− 7 (n ≥ 2) in units of γ = ~v/

√
2ℓB.

Sector B, however, allows levels with a different energy
spectrum, εB2D = γ

√
4n− 1 (n ≥ 1). In Fig. 3, red (solid)

bands belong to Sector A at kz = 0 and blue (dashed)
bands to Sector B. The green (solid) flat band at zero
energy consists of many LL’s that are in either sector at
kz = 0. Restricted to this 2D limit, optically activated
transitions between the two sectors are strictly forbid-
den. The result is an optical conductivity, made up of
two congruous spectra from each sector, shifted in energy.
This was calculated using the 2D version of Eq. (3) for a
magnetic field strength of 16T and is shown in Fig. 4(a).
The conductivity in Sector A (red spectrum) is shifted to
lower energy relative to Sector B (blue), but shares the
same form. Each peak describes optically activated tran-
sitions between LL’s at particular energies which obey
the selection rule n → n ± 1. The majority of features
seen are due to excitations out of the flat band into the
conduction band. Excitations out of the lower cone begin
to appear at higher energies and are relatively suppressed
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FIG. 3. (Color online) Dispersive Landau levels in the 3D
Kane system under a 16T magnetic field with Eg = 4meV
and ∆ = 1 eV. At kz = 0, red (solid) bands reside in Sector
A and the blue (dashed) bands in Sector B . At zero energy
(green) there are many Landau bands which are in either sec-
tor at kz = 0. Illustrated are transitions that are responsible
for the peaks indicated in the next figure.

(see Ref.10). For example, the small shoulder on the left
of the red peak seen near 240meV and the last two blue
peaks all come from cone-to-cone transitions. Referring
to the flat-to-cone series of peaks, we see that the re-
duced height of the second peak in each sector (indicated
by arrows) produces a non-monotonic decline in the peak
heights. We have recently predicted this same effect also
in the 2D Dirac-Weyl systems with integer pseudospin-s,
where it indicates the presence of a flat band10. The par-
ticular signature in the Kane model of a single reduced
peak points specifically to its pseudospin-1 nature.

In moving to the full 3D conductivity, the extra
dimension of dispersion does not change the location of
the 2D peaks, but merely adds a tail to them stretching
out toward high energies. Tails from neighboring peaks
add together to build an overall linear profile, having
been described in the context of the hypothetical 3D
pseudospin-1/2 Weyl system by Ashby and Carbotte14.
This extension to 3D is seen in the result of Eq. (3) pre-
sented in Fig. 4(b) as absorbance, A = dλ, for B = 16T
and a sample thickness of d = 3.2µm. In the background
of the figure is the absorbance of MCT at 16T for com-
parison9. By slightly filling the first positive LL, we have
been able to construct the cyclotron resonance peak in
the quantum limit (red arrow in Figs. 3 and 4(b)), which
is seen at the same energy in the experiment. Also
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FIG. 4. (Color online) (a) Magneto-optics of the 2D massless
Kane fermion system. Red shading indicates contributions
from transitions in Sector A, while blue those from Sector
B. The sum of these is the total conductivity in black. (b)
Magneto-optical absorbance for the 3D system in a 16T mag-
netic field in red (solid). In the background is the MCT ab-
sorbance measurement in black (solid) from Ref.9. Indicated
in both plots are the secondary peaks straddling 200meV
found in each Weyl-like spectrum and discussed in the text.
In (b), the red arrow indicates the cyclotron resonance peak.

indicated are those secondary peaks from the flat band,
which retain their reduced height characteristic. The
frequency-dependent conductivity calculated here offers
a strong agreement between theory and experiment
and we see that the measured absorbance too displays
the secondary peaks with a reduced height (a sign of
the pseudospin-1 dynamics in MCT). This latter fact
demonstrates the broad curvature of the MCT heavy
hole band which can be sufficiently approximated as flat.
As in the zero-field calculation shown in Fig. 2, there
is a vertical offset between the two data sets, the pos-
sible source of which is discussed in the preceding section.

Weyl System. Throughout this communication, there has
been reference to the pseudospin-1 nature of the Kane
model, particularly seen in the individual Sectors A and
B separately. Note, however that each sector does not

map to the purely s = 1 Weyl Hamiltonian,

Ĥs
W = ~vŜSS · kkk, (4)

where ŜSS is the set of pseudospin-s matrices. Instead, in
the limits Eg = 0 and ∆ → ∞, the 2D (kz = 0) Sectors
A and B can be seen to be an admixture of s = 1 and
s = 1/2 Weyl systems. For instance, around Sector A,
the 3× 3 Hamiltonian is

ĤA =

√
2α√

1 + α2
Ĥ1
W +

2(1− α)√
1 + α2

(

Ĥ1/2
W ⊕ 0

)

(5)

with α = 1/
√
3. As a single matrix, one sees that Eq. (5)

describes the low-energy physics around the K point in
the α-T3 model proposed by Raoux et al.6,

Ĥα =
~vk√
1 + α2





0 e−iθ 0
eiθ 0 αe−iθ

0 αeiθ 0



 . (6)

Similarly, Sector B maps to the K ′ valley index in the
Raoux et al. model. In Eqs. (5) and (6), the value α = 1
corresponds to the s = 1 Weyl system and α = 0 to the
s = 1/2 (graphene) system with a dormant uncoupled
flat band. Intermediate values of α are an admixture of
both and exhibit bands with a non-π-quantized Berry
phase. For α = 1/

√
3 one determines that the Berry

phases assigned to the lower, flat, and upper cones are
(π/2,−π, π/2), respectively. Physical MCT, existing
in three dimensions, couples the two valleys through
a non-zero kz , with additional corrections provided by
∆ and Eg. Raoux et al. proposed an experimental
realization of the α-T3 model in an optical lattice loaded
with cold fermionic atoms. Furthermore, with our
new insight, we suggest that MCT could provide a
solid-state analog for this model with a unique Berry
phase, manifest in the relative shift of magneto-optical
absorption peaks between sectors in Fig. 416.

Summary. We have calculated the frequency-dependent
magneto-optical response of the massless Kane fermion
MCT system, providing a rigorous quantitative predic-
tion of the optical spectral weight under each line. Good
agreement with experimental data was obtained by ap-
plying a reduced Kane model which approximates the
material’s heavy hole band to be exactly flat. Moreover,
we have been able to demonstrate the kinship that these
Kane fermions possess with the appropriate Dirac-Weyl
counterpart in the α-T3 model, which gives rise to a split-
peak magneto-optical spectrum and points to an unusual
Berry phase. In addition, the cyclotron resonance peak
in the quantum limit has been identified in both theory
and experiment. MCT continues to offer many opportu-
nities for exploration, not only in the study of topological
phenomena, but also here in the associated field of Dirac
materials with unusual Berry phase.
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G. Montambaux, Phys. Rev. Lett. 112, 026402 (2014).

7 B. A. Bernevig, T. L. Hughes, and S.-C. Zhang, Science
314, 1757 (2006).

8 M. König, S. Wiedmann, C. Brüne, A. Roth, H. Buhmann,
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