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The Hubbard model with local on-site repulsion is generally thought to possess a superconduct-
ing ground-state for appropriate parameters, but the effects of more realistic long-range Coulomb
interactions have not been studied extensively. We study the influence of these interactions on su-
perconductivity by including nearest and next-nearest neighbor extended Hubbard interactions in
addition to the usual on-site terms. Utilizing numerical exact diagonalization, we analyze the signa-
tures of superconductivity in the ground states through the fidelity metric of quantum information
theory. We find that nearest and next-nearest neighbor interactions have thresholds above which
they destabilize superconductivity regardless of whether they are attractive or repulsive, seemingly
due to competing charge fluctuations.

I. INTRODUCTION

The role of strong electronic correlations on uncon-
ventional superconductivity (SC) remains an important
open question1. The two-dimensional single-band Hub-
bard model with an on-site repulsive Coulomb interac-
tion has been well-studied as the simplest effective model
which can capture the influence of correlations on the
electronic properties. It is generally accepted that it pos-
sesses a superconducting ground state with d-wave sym-
metry upon carrier doping (changing the chemical poten-
tial); however, only a few studies can provide an exact so-
lution, including a thermodynamic limit calculation lim-
ited to asymptotically small coupling2,3. In the interme-
diate to strong coupling regime, studies include numer-
ically exact simulations4–6, t − J model calculations7,8,
and exact diagonalization on finite clusters9–11.

While the on-site Coulomb terms in the doped Hub-
bard model are sufficient for producing a superconduct-
ing ground state, one would like to understand the effects
of more realistic, long-range Coulomb interactions. Of-
ten, Hubbard models are used to approximate real mate-
rials such as cuprates, so parameter choices are typically
renormalizations of their bare values. As such, it makes
sense to consider both repulsive and attractive extended
interactions of various magnitudes12. Naively, repulsive
(attractive) nearest neighbor interactions are expected
to suppress (enhance) SC, since d-wave pairs comprise
spins on nearest neighbor sites. Conversely, attractive
next-nearest neighbor interactions favor diagonally ad-
jacent spins but seemingly not SC’s nearest neighbor
configuration, whereas repulsive interaction may enhance
SC by suppressing diagonal adjacency. Calculations of
repulsive nearest-neighbor interactions find that it in-
deed suppresses SC, but this does not mean that SC
is destabilized. Although some contend that arbitrar-
ily small interactions will destabilize SC13, several cal-
culations show that SC remains stable until interactions
reach some threshold14–18. On the other hand, attractive
nearest-neighbor interactions are found in Hartree-Fock

calculations to enhance SC above some threshold when
considered alone19. However, one should also consider
spin and charge correlations driven by these interactions,
as they may enhance20 or compete21 with SC.

Here, we apply the fidelity metric from quantum in-
formation theory to explore the influence of extended
Hubbard interactions on SC. This method has been used
to investigate classical as well as quantum critical be-
havior in various systems22–32 and is a clear test of
SC9–11. Utilizing numerical exact diagonalization, we
find that nearest and next-nearest neighbor interactions
have thresholds above which they destabilize SC regard-
less of whether they are attractive or repulsive.

II. THEORY

The two-dimensional extended Hubbard model in real
space comprises kinetic and interaction terms, depicted
schematically in Fig. 1. The kinetic portion of the Hamil-
tonian is

Hkin = −t ∑
⟨ij⟩σ

(c†iσcjσ + c
†
jσciσ) + t

′
∑
⟪il⟫σ

(c†iσclσ + c
†
lσciσ),

(1)

where c†iσ (ciσ) creates (annihilates) a fermion at site i
with spin σ. ⟨⟩ and ⟪⟫ denote nearest and next-nearest
neighbor sites, resp. Throughout, we set t = 1. The
interacting portion of the Hamiltonian includes extended
interactions up to next-nearest neighbors:

Hint =U∑
i

c†i↑c
†
i↓ci↓ci↑ + V ∑

⟨ij⟩σσ′
c†iσc

†
jσ′cjσ′ciσ

+ V ′
∑

⟪il⟫σσ′
c†iσc

†
lσ′clσ′ciσ. (2)

We determine the ground state wavefunction for the
model using exact diagonalization. The Hamiltonian ma-
trix was diagonalized using the Parallel Arnoldi PACK-
age (PARPACK)33, which provides an efficient method
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FIG. 1. (Color online) The operations of the kinetic and in-
teraction Hamiltonian terms on spins: t and t′ are nearest and
next-nearest neighbor hopping, resp, U is the onsite interac-
tion, and V and V ′ are next-nearest neighbor interactions.
The lattice is a 16B Betts cluster with periodic boundary
conditions, with atoms at the intersections.

to obtain a set of properly orthonormalized eigenvectors
and is more numerically stable compared with standard
Lanczos techniques. Due to the exponential growth of the
Hilbert space with cluster size, we work with a conserved
electron number (canonical ensemble), fix the total mo-
mentum (translational symmetry), and work in the total
spin 0 sector. In a past fidelity study of the 16B Betts
cluster11, the Hubbard model with U ∼W was found to
have a superconducting ground state when doped with
4 holes (25% filling) and with periodic boundary condi-
tions (Fig. 1). Therefore, we study this cluster for the
effects of extended interactions on SC.

Having determined the ground state, one can under-
stand the physical properties of the model using corre-
lation functions. In our study, we are interested in the
superconducting correlator, and the spin and charge cor-
relations are also basic for our understanding. For d-
wave SC, the pair density matrix9,11,34,35 between sites
i, j at any separation distance in the ground state ∣Φ0⟩ is

P SC
ij = ⟨Φ0∣D

†
iDj ∣Φ0⟩, where Di = ∆i,i+x̂ − ∆i,i+ŷ, ∆ij =

ci↑cj↓ + cj↑ci↓. The charge density matrix is P charge
ij =

⟨Φ0∣ρiρj ∣Φ0⟩ − ⟨Φ0∣ρi∣Φ0⟩
2, where ρi = c

†
i↑ci↑ + c

†
i↓ci↓. The

spin density matrix is P spin
ij = ⟨Φ0∣SiSj ∣Φ0⟩, where Si =

c†i↑ci↑ − c
†
i↓ci↓.

Specifically, these correlators are used to construct
charge and spin structure factors, which we analyze as

a function of wave vector.

N(q) = (1/N)∑
j

P charge
0j eiq⋅rj (3)

S(q) = (1/N)∑
j

P spin
0j eiq⋅rj (4)

where N is the number of sites, q is the wave vector, and
rj is the position of site j. A structure factor to measure
relative SC is similarly constructed with P SC

ij , but it is
preferable to use an absolute measure of the presence of
SC.

To investigate SC in Hubbard models, we calculate
the fidelity, which was first used widely in quantum in-
formation to provide the criterion for distinguishing be-
tween quantum states36,37. This quantity has now been
utilized increasingly in general physics for investigating
classical as well as quantum critical behavior in various
systems22–32. This metric measures the ground state
wavefunction’s rate of change and shows whether the
ground state adiabatically connects to a superconduct-
ing state. Recently, it was used to demonstrate SC in
the t-J9,10 and on-site Hubbard models11.

This technique involves adding an additional term to
the Hamiltonian:

HSC = −
λSC
N
∑
ij

D†
iDj ; (5)

The full Hamiltonian has the form H(λSC) =Hkin+Hint+

HSC. The fidelity metric is defined as

g(λSC, δλ) = (2/N)(1 − F (λSC, δλ))/δλ
2, (6)

where the fidelity F = ⟨Φ0(λSC)∣Φ0(λSC+δλ)⟩. For finite-
size systems as in this work, a change in the ground
state’s symmetry occurs via a quantum critical crossover
(QCC) that appears as a broad peak in g. This provides a
signal of strong SC: The ground state of H(λSC) at large
λSC is expected to possess long-range SC with a correla-
tion length at least of order the cluster size. If g displays
no QCC as one reduces λSC, then this SC persists in the
Hamiltonian of interest down to λSC = 0.

To substantiate the results of a fidelity analysis, we
evaluate the ratio between the largest and next largest

eigenvalues of the density matrices P SC
0j and P charge

0j , re-

ferred to as R ratios9–11,35,38. These eigenvalues are pro-
portional to the structure factors for all values of q (Eq.
3 and following text). Therefore, for charge correlations,
if Rcharge > 1, there is a q for which the correlations
are strongest, and Rcharge is the factor by which they are
larger than the next strongest correlations. If Rcharge = 1,
then there is no dominant q. For SC, only the familiar
q = 0 correlations may be present in our model, so this is
the dominant correlation for cases where RSC > 1. Like
correlators, the magnitude of R > 1 is not meaningful by
itself, but its trends as a function of interaction parame-
ters provide confirmation for the fidelity results.
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FIG. 2. (Color online) The semi-logarithmic plot of fidelity
metric vs. λSC for repulsive and attractive (a) nearest-
neighbor and (b) next-nearest neighbor interactions on su-
perconductivity with 4 doped holes. The insets show the fi-
delity metric over a larger range of λSC to confirm that it is
smooth without peaks for λSC > 0.5. Also shown are RSC

ratios for (c) nearest-neighbor and (d) next-nearest neighbor
interactions and Rcharge density matrix eigenvalue ratios for
the same (e,f).

III. RESULTS

We show the effects of nearest and next-nearest neigh-
bor interactions - both repulsive and attractive - on su-
perconductivity. The SC is clearest for the parameters
U = 8, t′ = −0.311, so we employ the same set here to
analyze the effects of extended interactions on SC. To
stabilize the numerics, steps of δλ = 10−4 prove to be
sufficient.

Figure 2(a) shows the fidelity metric for nearest neigh-
bor interactions. For large λSC, the state is expected to
possess long-range SC with a correlation length at least
of order the cluster size. Starting with a strong pairing
field, λSC = 5, and decreasing λSC, the fidelity metric g
increases monotonically (see inset of Fig. 2(a)). This in-
dicates an increased rate of change in the ground state
as it approaches a potential QCC. For V = 0, g contin-
ues to increase monotonically and does not peak down
to λSC = 0; The ground state is still superconducting at
λSC = 0, as found in the previous study11.

Adding nearest neighbor interactions, we find that at-
tractive and repulsive interactions have thresholds above
which they suppress SC. The range of interactions shown
is chosen to reach or cross these thresholds. For the re-
pulsive case, V = 1 is similar to V = 0 but for V = 2, the

QCC peak, which defines λ∗SC, is at 0.12; at λSC = 0 the
system is no longer superconducting. Note that although
this peak includes a sharp jump, the ground state’s total
momentum remains at zero for all λSC shown. For at-
tractive V < 0, g increases with decreasing λSC even for
interactions as large as V = −4 but with a much smaller
slope than for smaller attractive interaction. For larger
interactions λ∗SC > 0 as SC is destabilized (not shown).
This contradicts the intuition that attractive and repul-
sive interactions have opposite effects on SC.

Similarly for next-nearest neighbor interactions in Fig.
2(b), we find that attractive and repulsive interactions
have destabilization thresholds. For ∣V ′∣ = 1, g increases
with decreasing λSC (see inset of Fig. 2(b)), indicating
that the system remains superconducting. However, for
larger V ′ = −2,2.2, one observes λ∗SC > 0; the system is no
longer superconducting, although the total momentum is
unchanged. (At V ′ = 2 the peak is still at λ∗SC ≤ 0.) The
jump in the fidelity metric for V ′ = −2 is due to a sudden
change in the ground state, whereas the smoother peak
structure for V ′ = 2.2 indicates a more gradual crossover.
Contrary to intuition, nearest and next-nearest neighbor
interactions all destabilize SC beyond some threshold, re-
gardless of whether they are attractive or repulsive. All
of these destabilizing cases with λ∗SC > 0 are confirmed
by level crossings in the ground state energy at λ∗SC (not
shown). It is possible that there are competing phenom-
ena stabilized by these interactions.

The fidelity results for nearest and next-nearest neigh-
bor interactions are further confirmed by RSC ratios in
Figs. 2(c,d), resp. In the cases where V or V ′ desta-
bilize SC and the fidelity metric peaks at λ∗SC > 0,
RSC drops sharply as λSC crosses below λ∗SC, corrobo-
rating the suppression of SC. Additionally, the observa-
tion that RSC = 1 at λSC = 0 clearly indicates a non-
superconducting system. Conversely, for the V,V ′ cases
with stable SC, RSC evolves smoothly for λSC > 0 just
like the fidelity metric, implying no destabilization of SC
in this range.

To explore the possibility of phenomena competing
with SC, we consider charge fluctuations (CF), which
are analyzed via the Rcharge ratios for nearest and next-
neighbor interactions in Figs. 2(e,f), resp. In all cases
where SC is destabilized, as RSC drops sharply at λ∗SC,
Rcharge increases sharply. This suggests that the increas-
ing CF destabilizes SC. Consistently, in cases of stable
SC, both RSC and Rcharge evolve smoothly.

To find the wave vector of the CF for nearest neigh-
bor interactions, Fig. 3(a) displays the charge structure
factor N(q). At V = 2, where SC is destabilized, N(q)
clearly peaks for CF with wave vector q = (π,π). For the
other values of V that do not destabilize SC, (π,π) CF is
suppressed. V < 0 favors (π

2
,0) CF, which coexists with

SC until it is destabilized for V < −4 (not shown). Both
attractive and repulsive interactions favor CF that seems
to destabilize SC, but they have different wave vectors.

We also consider the interplay between the spin struc-
ture factor S(q) in Fig. 3(b) and superconductivity. At
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FIG. 3. (Color online) The (a) charge and (b) spin structure
factors for all wave vectors q in the cluster at which they can
be distinct in our model, for nearest neighbor interactions,
and (c,d) the same for next-nearest neighbor interactions.

V = 0, the presence of SC is accompanied by (π,π) spin
fluctuations (SF). These are suppressed along with SC
at V = 2 in favor of CF, whereas they increase for V < 0
where SC survives. It is CF, not SF, that appear to
compete with SC at larger values of V .

For next-nearest neighbor interactions, the CF is found
via the charge structure factor in Fig. 3(c). At V ′ = −2,
where SC is destabilized, the structure factor N(q) peaks
for CF with wave vector q = (π,π), while for V ′ = 2.2 it
peaks at q = (π,0). For the other values of V ′ that do
not destabilize SC, no CF dominates. Both the attractive
and repulsive interactions favor CF that destabilize SC,
but with different wave vectors. Conversely, in Fig. 3(d),
the spin structure factor shows that q = (π,π) SF follow
the behavior of SC and are thus suppressed at larger ∣V ′∣.

IV. DISCUSSION AND CONCLUSION

Utilizing numerical exact diagonalization, we analyzed
the signatures of superconductivity through the fidelity
metric, R ratios and structure factors. Consistent with
intuition and past studies14–18, repulsive nearest neigh-
bor interactions destabilize SC beyond some threshold
seemingly due to competing CF. However, we find that
this trend holds true for all nearest and next-nearest
neighbor interactions, whether repulsive or attractive.

These trends can be understood by simple considera-
tions. The nearest neighbor repulsion and next-nearest
neighbor attraction do not favor neighboring charge (see
Fig. 1) and therefore drive (π,π) CF, consistent with
lower dimensional16,39 and weak coupling studies15,40,41.
The diagonally adjacent charge favored by (π,π) CF is

incompatible with the nearest-neighbor spins of d-wave
SC. The next-nearest neighbor repulsion favors (π,0) CF
for larger interactions. Even this wave vector may be in-
compatible with SC because it is somewhat restrictive
on neighboring spins. Even if the obtained wave vectors
may be subject to finite size limitations of the cluster,
they are consistent with their driving interactions and
other studies42–45.

Even attractive nearest neighbor interactions, which
may be expected to favor d-wave SC, will destabilize
it for large enough interactions due to CF. This can
be understood by considering the strong coupling limit,
t/U, t/V → 0. For attractive ∣V ∣ ≫ U , the electrons
will gather as closely as possible. In our 16-site model
with twelve electrons, the optimal configurations have six
doubly-occupied sites with at most seven nearest neigh-
bor bonds, by occupying a 2 × 3 block for example. The
structure factors of these configurations peak at N(π

2
,0)

(or equally N(0, π
2
)) because their periodicity equals the

size of the lattice. Their energy is E∣V ∣≫U = 28V + 6U .
Conversely, in the ∣V ∣ ≪ U limit, the sites are rarely
doubly-occupied. Twelve out of sixteen singly-occupied
sites have between sixteen and twenty occupied bonds,
resulting in an energy E∣V ∣≪U between 16V and 20V . Set-
ting E∣V ∣≫U = E∣V ∣≪U , these energies cross at V between
−U/2 and −3U/4, consistent with V = −U/2 at which
we obtained the destabilization of SC by CF. Further-
more, if such a strong coupling picture is appropriate in
the thermodynamic limit, one may expect some thresh-
old ∣V ∣ ≲ U above which charge gathers together and SC
is destabilized.

In this work, we are able to access a broad phase space
of extended interactions in a well-controlled manner via
numerical simulations. The results are suggestive for
the rich phase diagrams of strongly correlated materials,
which may have varying effective extended interactions
and screening lengths. These can give rise to or influence
charge, spin, and superconducting behavior.
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