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Quantum theory of spin relaxation in the elastic environment is revised with account of the
concept of a phonon spin recently introduced by Zhang and Niu (PRL 2014). Similar to the case of
the electromagnetic field, the division of the angular momentum associated with elastic deformations
into the orbital part and the part due to phonon spins proves to be useful for the analysis of the
balance of the angular momentum. Such analysis sheds important light on microscopic processes
leading to the Einstein - de Haas effect.
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I. INTRODUCTION

The problem of conservation of angular momentum in
systems containing magnetic moments has been around
since the discovery of Einstein – de Haas1 and Barnett2
effects one hundred years ago. The first effect demon-
strated that the change in the magnetic moment of a feely
suspended body generates mechanical rotation, while the
second demonstrated that mechanical rotation induces
magnetization. For some time the Einstein – de Haas
and Barnett effects were used to measure the gyromag-
netic ratio of solids.3 The significance of such measure-
ments was diminished by the discovery of the electron
spin resonance and the ferromagnetic resonance that pro-
vided a more accurate determination of the gyromag-
netic ratio. After that the experiments on macroscopic
magneto-mechanical gyroscopic effects have been largely
abandoned. Surprisingly, however, microscopic mecha-
nisms of the transfer of the spin angular momentum to
the phonon system and subsequently to the body as a
whole remain poorly understood even for a single spin in
a crystal.

The tradition that goes back to the pioneering work on
spin-phonon relaxation by Van Vleck4 consists of ignor-
ing conservation of angular momentum under the excuse
that the Hamiltonian of the system does not possess full
rotational invariance. It is clear, however, that in theory
(and in experiment) the angular momentum in a sys-
tem of interacting spins and phonons is conserved. This
prompted a significant effort by a number of researchers
to formulate the theory of magneto-elastic interactions
in a rotationally invariant manner.5–11 The advantage of
such approach is that it is parameter free in a sense that
spin-phonon rates can be expressed in terms of the well-
known independently measured parameters.

Emergence of micro- and nanoelectromechanical de-
vices (MEMS and NEMS) rejuvinated interest to
the problem of angular momentum in magneto-
mechanical systems.12 Einstein – de Haas effect at the
nanoscale has been experimentally studied in magnetic
microcantilevers13,14 and theoretically explained by the
motion of domain walls.15 Switching of magnetic mo-
ments by mechanical torques in nanocantilevers has

been proposed.16–18 Mechanical resonators containing
single magnetic molecules have been studied by quantum
methods.19–23 Experiments have progressed to the mea-
surement of the angular momentum exchange between of
a single molecular spin and a carbon nanotube.24,25

In nanoresonators the problem is somewhat simpler
due to the finite number of resonant modes. For a sin-
gle spin in a macroscopic body, however, the number of
phonon degrees of freedom is practically infinite. In rela-
tion to the angular momentum this problem has received
significant recent attention in experiments with atomic
spin-based qubits26,27 and in application to spintronics.28
To address this problem, Zhang and Niu recently intro-
duced a concept of the phonon spin.29

In this paper we investigate this concept for the pro-
cess of the relaxation of a single atomic spin in a macro-
scopic body. By developing an approach similar to that
for photons we find that within the elastic theory the an-
gular momentum of phonons can be naturally split into
the orbital angular momentum L(1) and the spin angular
momentum L(2). The orbital part corresponds to the ro-
tation of the elastic medium around a certain point, while
the spin part corresponds to a small-radius circular shear
displacements of points of the elastic media around their
equilibrium positions, see Fig. 1.

Figure 1: Conceptual representation of the motion of the elas-
tic medium that generates the orbital angular momentum L(1)

and the phonon spin angular momentum L(2).

The paper is structured as follows. The concept of the
angular momentum in classical and quantum theories of
elasticity is discussed in Section II. Conservation of the
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total angular momentum is studied in Section III by com-
puting its commutator with the Hamiltonian. Quantum
dynamics of the angular momentum of the relaxing spin
and emitted phonons is investigated in Section IV. Sec-
tion V contains summary of the results and some final
comments.

II. THE ANGULAR MOMENTUM

A. Angular momentum in the classical theory of
elasticity

The angular momentum of the elastic solid is defined
as

L =

ˆ
d3r (r + u)× p, (1)

where time-indendent r corresponds to the non-deformed
body, u(r, t) is deformation, and p(r, t) = ρu̇(r, t) is the
momentum density. It consists of two parts

L = L(1) + L(2), (2)

where

L(1) =

ˆ
d3rρ r× u̇, L(2) =

ˆ
d3rρu× u̇. (3)

The orbital part described by L(1) corresponds to the
rotation of the elastic medium around the origin, while
the spin part described by L(2) corresponds to a small-
radius circular shear displacements of points of the elastic
media around their equilibrium positions, see Fig. 1.

Applying time derivative to these expressions one ob-
tains

L̇(1) =

ˆ
d3rρ r× ü, L̇(2) =

ˆ
d3rρu× ü. (4)

The dynamical equation for the displacement field is the
Newton’s equation

ρ
∂2uα
∂t2

=
∂σαβ
∂rβ

(5)

with the force in the right-hand-side being a gradient of
the stress tensor σαβ = δH/δeαβ . Here H is the Hamil-
tonian density of the system and eαβ = ∂uα/∂rβ is the
strain tensor. After integrating by parts in equations (4)
and assuming zero elastic stress at the boundary of the
body, one obtains

L̇(1)
α = −

ˆ
d3rεαβγσγβ , L̇(2)

α = −
ˆ
d3rεαβγeβδσγδ.

(6)
Within the linear elastic theory in the absence of in-
ternal torques (ignored by the conventional theory of
elasticity30) the stress tensor σαβ is symmetric, thus L̇(1)

is zero. However, L̇(2) is not vanishing in this approxi-
mation, thus L̇ = 0, expected on physical grounds, is not
fulfilled.

To prove L̇ = 0 for elastic systems, one has to take into
account the intrinsic anharmonicity of the elastic theory
due to the nonlinearity of the strain tensor,30

uρη =
1

2
(eρη + eηρ + eνρeνη) . (7)

The fact that H must depend on uρη leads to

σγδ =
δH
δeγδ

=
δuρη
δeγδ

δH
δuρη

=
δH
δuγδ

+ eγρ
δH
δuρδ

(8)

which is non-symmetric. Substituting this into Eq. (6),
one can prove L̇ = L̇(1) + L̇(2) = 0.

B. Spins as a source of internal torques

Anharmonicity, however, is not the only reason for σαβ
to be non-symmetric. It also happens in the presence of
spins because spin dynamics generates internal torques.
Consider, e.g., a uniaxial spin Hamiltonian of the form

ĤS = −D (n · S)
2 (9)

with n being the magnetic anisotropy axis. The corre-
sponding Hamiltonian density is HS = ĤSδ(r). Elastic
deformations of the body rotate the anisotropy axis n by
a small angle φ

φ =
1

2
∇× u(r), φα =

1

2
εαβγeγβ . (10)

To the first order in φ one has n = ez + [φ× ez].
Expanding ĤS up to the linear terms in φ, we get
ĤS = ĤA + Ĥs−ph, where ĤA = −DS2

z and the spin-
lattice coupling is given by31

Ĥs−ph = −D (SxSz + SzSx)φy +D (SySz + SzSy)φx.
(11)

The corresponding stress tensor σαβ = δHs−ph/δeαβ is
non-symmetric. Writing it as

σαβ =
δHs−ph

δeαβ
=
δHs−ph

δφγ

δφγ
δeαβ

=
1

2

δHs−ph

δφγ
εγαβ (12)

and using εαβγεδβγ = 2δαδ, in Eq. (6) one obtains

L̇(1) = −
ˆ
d3r

δHs−ph

δφ
= −∂Ĥs−ph

∂φ
. (13)

This explicitly expresses the internal mechanical torque
in terms of rotation of the lattice and the spin with re-
spect to each other in the presence of spin-lattice cou-
pling. In what follows we will show that L(2) associated
with the phonon spin is also generated in the problem
of relaxation of the atomic spin, although we could not
obtain for L(2) a simple formula as for L(1) above. The
phonon-spin angular momentum L(2) turns out to be im-
portant for the conservation of the total angular momen-
tum, even in cases when the problem is solved with har-
monic non-interacting phonons.
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C. Quantum theory of phonon angular momentum

To obtain the second-quantized expression for the
angular momentum, we use canonical quantization of
phonons

u(r) =

√
~

2ρV

∑
kλ

ekλe
ik·r

√
ωkλ

akλ + h.c., (14)

where ρ is the mass density, V is the volume, ekλ are po-
larization vectors, ωkλ are phonon frequencies and a†, a
are creation and annihilation operators of phonons. One
uses Eq. (14), as well as

p(r) = ρu̇(r) = −i
√
ρ~
2V

∑
kλ

ekλ
√
ωkλe

ik·rakλ + h.c.

(15)
The angular momentum of the body, Eq. (1), consists

of two contributions, L̂ = L̂(1) + L̂(2) that have been
discussed earlier. Here L̂(1) is first order in phonon oper-
ators and it can be interpreted as the orbital angular mo-
mentum of the phonons. The term L̂(2) is second-order in
phonon operators and it can be interpreted as the spin
of the phonons. Splitting the angular momentum into
two parts is similar to that of photons. It will be shown
below that the spin of a phonon is ~ and the phonon-spin
eigenstates are circularly-polarized phonons.

The operator of the orbital angular momentum be-
comes

L̂(1) =

√
ρ~
2V

∑
kλ

√
ωkλ [ekλ × jk] akλ + h.c., (16)

where jk ≡ i
´
d3r reik·r. As, by symmetry, jk can only

be directed along k, only transverse phonons contribute
into L̂(1). In an infinite body, wave vectors are continu-
ous, so that one can replace summation by integration

1

V

∑
k

. . .⇒
ˆ

d3k

(2π)
3 . . . (17)

Then one can express jk as

jk = (2π)
3
∂kδ (k) . (18)

Dropping the terms aa and a†a† in L̂(2) that do not
conserve the number of phonon excitations, one obtains
after integration over the volume

L̂(2) =
i~
2

∑
kλλ′

[ekλ × ekλ′ ] akλa
†
k′λ′ + h.c. (19)

Keeping only transverse phonons, λλ′ = 1, 2 and using
[ek1 × ek2] = k/k, one arrives at

L̂(2) = i~
∑
k

k

k

(
a†k2ak1 − a†k1ak2

)
. (20)

This operator becomes diagonal in terms of numbers of
circularly-polarized phonons ak± ≡ (ak1 ± iak2) /

√
2

L̂(2) = ~
∑
k

k

k

(
−a†k+ak+ + a†k−ak−

)
. (21)

Each such phonon carries an angular momentum ~ par-
allel or anti-parallel to its wave vector that can be inter-
preted as the spin of the phonon.

III. CONSERVATION OF ANGULAR
MOMENTUM

Let us now check conservation of the total angular mo-
mentum

J = L + ~S (22)

that implies that J must commute with the Hamiltonian.
The dynamical change of the spin operator has to be
absorbed by the angular momentum of the elastic matrix,
whose evolution is given by

ˆ̇L =
i

~

[
Ĥs−ph, L̂

]
. (23)

In particular, the precession of the spin around the
anisotropy axis creates the co-wiggling of the elastic ma-
trix with the spin.

It turns out that by commuting operators one can
prove conservation of some parts of the angular momen-
tum, whereas the complete prove of conservation requires
a full quantum-mechanical solution for the relaxing spin
and phonons created by its precession, presented in the
next section. The situation is different for the angular
momentum components perpendicular and parallel to the
anisotropy axis.

We will study the spin-lattice model introduced above
quantum mechanically (H ⇒ Ĥ). Introducing spin oper-
ators S± ≡ Sx ± iSy that follow commutation relations
[S±, Sz] = ±S±, one obtains from Eq. (11)

Ĥs−ph = − iD
2

(S+Sz + SzS+)φ− + h.c., (24)

where φ± ≡ φx± iφy. Using Eqs. (10) and (14) with the
atomic spin located at r = 0, one obtains

φ± =
1

2

√
~

2ρV

∑
kλ

e± · [ik× ekλ]
√
ωkλ

(
akλ − a†kλ

)
, (25)

where e± ≡ ex ± iey.
We will need commutators[
φ±, L̂

(1)
]

= i
~

2V

∑
kλ

(e± · [k× ekλ]) [ekλ × jk] (26)

and[
φ±, L̂

(2)
]

=
~
2

√
~

2ρV

∑
kλ

k
√
ωkλ

(e± · ekλ)
(
akλ − a†kλ

)
(27)
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that follow from Eqs. (25), (16), and (20).
Let us first consider dynamics of the transverse com-

ponents of the angular momentum. The dominant source
of spin precession around the anisotropy axis is the un-
perturbed spin Hamiltonian ĤA:

Ṡx =
i

~

[
ĤA, Sx

]
= − i

~
D
[
S2
z , Sx

]
=
D

~
(SzSy + SySz) .

(28)
For the matrix, let us first consider the dynamics of the
phonon orbital angular momentum L̂(1). From Eq. (26)
with the help of the identity∑
λ=1,2

(ekλ ·A) (ekλ ·B) = A ·B−
(
k

k
·A
)(

k

k
·B
)
(29)

and Eq. (18) one obtains[
φ±, L̂

(1)
x

]
= i

~
2V

∑
kλ

(e± · [k× ekλ]) (ex · [ekλ × jk])

= i
~

2V

∑
kλ

(ekλ · [e± × k]) (ekλ · [jk × ex])

= i
~

2V

∑
k

[e± × k] · [jk × ex]

= i
~

2V

∑
k

{(e± · jk) (ex · k)− (e± · ex) (k · jk)}

= i
~
2

ˆ
d3k {kx∂kxδ (k)− (k · ∂kδ (k))}

= i~. (30)

Now from Eqs. (23) and (24) one obtains

ˆ̇L(1)
x = −D (SySz + SzSy) . (31)

Combining this with Eq. (28), one obtains the conserva-
tion law

~Ṡx + ˆ̇L(1)
x = 0. (32)

In the same way one can obtain ~Ṡy + ˆ̇L
(1)
y = 0.

However, Eq. (32) is not the whole story. One has
to consider ˆ̇L

(2)
x,y using Eqs. (27) and (24). The result-

ing expression is a sum over k, linear in phonon opera-
tors. It is of the same order as the contribution to ~Ṡx,y
due to the spin-phonon interaction, i

[
Ĥs−ph, Sx,y

]
, that

was ignored above. Both terms discussed here are much
smaller than the dominant terms in the angular momen-
tum, conserved according to Eq. (32). These small terms
are related to the spin-lattice relaxation of the spin. It is
impossible to prove conservation of these terms without
performing the full quantum-mechanical solution of the
problem of spin relaxation.

Considering dynamics of the longitudinal component
of the angular momentum, one can prove

L̇(1)
z =

i

~

[
Ĥs−ph, L

(1)
z

]
= 0 (33)

by a calculation similar to that in Eq. (30). The terms
Ṡz and L̇

(2)
z are related to spin-lattice relaxation and they

are sums over k, linear in phonon operators. However,
one cannot prove

~Ṡz + L̇(2)
z = 0 (34)

without the full solution of the quantum problem that
will be presented below.

IV. QUANTUM THEORY OF THE RELAXING
SPIN

This problem resembles the problem of the relaxation
of the excited state of an atom accompanied by the ra-
diation of a photon. The atom is characterized by the
discrete energy levels while the electromagnetic field has
a continuum of quantized photon states of an arbitrary
energy. In a similar manner a spin in the uniaxial crystal
field has discrete energy levels characterized by the mag-
netic quantum number m, while phonons have a contin-
uum of states characterized by energies ~ωkλ.

A. General solution

To facilitate solving the problem of spin-lattice relax-
ation, we reduce the spin-phonon Hamiltonian to the
rotating-wave approximation (RWA) form that conserves
the energy. Consider transitions of the spin |m− 1〉 →
|m〉 for m > 0 decreasing its energy and call the spin
states |1〉 and |0〉, respectively. With the help of Eq. (24)
one obtains the spin matrix element of this transition〈

m− 1
∣∣∣Ĥs−ph

∣∣∣m〉 =
iD

2
(2m− 1) lm−1,mφ+, (35)

where lm−1,m ≡
√
S (S + 1)−m(m− 1). The explicit

form of φ+ in terms of the phonon operators, Eq. (25),
then yields the following operator of the RWA coupling

V̂ =
∑
kλ

(
A∗kλX

01a†kλ +AkλX
10akλ

)
, (36)

where

Akλ ≡ −
D

4
(2m− 1) lm−1,m

√
~

2ρV

e+ · [k× ekλ]
√
ωkλ

(37)

and the X-operators are defined by

X01 |1〉 = |0〉 , X10 |0〉 = |1〉 . (38)

The quantum state of the system can be specified by

Ψ =

(
cX10 +

∑
kλ

ckλa
†
kλ

)
|00〉 , (39)
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where |00〉 is the “vacuum” state. Ψ has only one exci-
tation, spin or phonon. Considering the excited state of
the spin as the reference-energy state, one obtains the
Schrödinger equation for the coefficients

ċ = − i
~
∑
kλ

Akλckλ

ċkλ = −i (ωkλ − ω0) ckλ −
i

~
A∗kλc, (40)

where ω0 ≡ (E1 − E0) /~ is the frequency of the transi-
tion between the spin levels.

One can integrate the equations for the phonon modes
ck assuming the initial condition of the phonon vacuum:

ckλ(t) = − iA
∗
kλ

~

ˆ t

0

dt′e−i(ωkλ−ω0)(t−t′)c(t′)

= − iA
∗
kλ

~

ˆ t

0

dτe−i(ωkλ−ω0)τ c(t− τ) (41)

and insert the result into the equation for the spin c:

dc

dt
= − 1

~2

∑
kλ

|Akλ|2
ˆ t

0

dτe−i(ωkλ−ω0)τ c(t− τ). (42)

In this integro-differential equation, c(t − τ) is a slow
function of time, whereas the memory function f(τ) =∑

kλ |Akλ|2 e−i(ωkλ−ω0)τ is sharply peaked at τ = 0. Thus
one can replace c(t − τ) ⇒ c(t), after which integration
over τ and keeping only real contribution responsible for
the relaxation yields the equation

dc

dt
= −Γ

2
c, (43)

and thus

c = e−(Γ/2)t, (44)

where

Γ =
2π

~2

∑
kλ

|Akλ|2 δ (ωkλ − ω0) (45)

is the spin relaxation rate. Now, adopting this solution
in Eq. (41) and integrating over time, one obtains for the
phonons

ckλ(t) =
A∗kλ
~

e−i(ωkλ−ω0)t − e−(Γ/2)t

ωkλ − ω0 + iΓ/2
. (46)

B. Dynamics of the phonon-spin angular
momentum

Let us now compute the phonon-spin angular momen-
tum L

(2)
z resulting from the relaxation of the spin. Re-

member that L(1)
z = 0 according to Eq. (33). It is not

neccessary to use circularly polarized phonons: one can

work with linearly polarized phonons using Eq. (21) and
Eq. (39). For the quantum expectation value one obtains

L(2) = i~
∑
k

k

k
(c∗k2ck1 − c∗k1ck2) . (47)

Using Eq. (46) and setting ωkλ ⇒ ωk, one obtains

L(2) =
i

~
∑
k

k

k
(Ak2A

∗
k1 −Ak2A

∗
k1)

×
1 + e−Γt −

(
e−i(ωk−ω0)t + ei(ωk−ω0)t

)
e−(Γ/2)t

(ωk − ω0)
2

+ Γ2/4
.

(48)

In the integration over ωk, one goes to the upper and
lower complex half-plane for the two different oscillating
terms. As the result one obtains

L(2) =
2π

~Γ

(
1− e−Γt

)∑
k

k

k
δ (ωk − ω0) (iAk2A

∗
k1 + h.c.) .

(49)
It remains to show that the integral over k in this expres-
sion can be expressed through Γ so that Γ cancels and
the result simplifies. Indeed, the combination that enters
Eq. (45) after simplifications becomes

|Ak1|2 + |Ak2|2 = D2 [(2m− 1) lm−1,m]
2 ~

4ρV

k2
z

ωk
. (50)

On the other hand, in Eq. (49) one obtains

iAk2A
∗
k1 + h.c. = −D2 [(2m− 1) lm−1,m]

2 ~
4ρV

kkz
ωk

.

(51)
Note that in Eq. (49) only the longitudinal component
L

(2)
z is non-zero by symmetry. The latter is just the neg-

ative of Eq. (50) that enters Γ, Eq. (45). Thus in Eq.
(49) Γ cancels out and one obtains the simple behavior

Lz = L(2)
z = −

(
1− e−Γt

)
~, (52)

as the spin undergoes a relaxational transition |m− 1〉 →
|m〉. This means that the total angular momentum in the
system spin + phonons is conserved.

V. DISCUSSION

We have analyzed the transfer of the angular momen-
tum from the atomic spin to the orbital and spin angular
momentum of phonons. These two parts of the angular
momentum of the phonon system are clearly distinguish-
able. The orbital part is first order on the phonon oper-
ators. Its classical counterpart is the twist of the elastic
matrix around the position of the atomic spin, which is
linear on the displacement field. The spin part of the
phonon angular momentum is second order on phonon
operators. Its classical counterpart corresponds to the
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rotational shear deformations that are quadratic on the
diplacement field.

Conservation of the angular momentum in the process
of the relaxation of the atomic spin has been demon-
strated by us explicitly. It turns out that the change in
the transverse part of the atomic spin is balanced by the
orbital part of the phonon angular momentum, while the
change in the relaxing longitudinal part of the atomic
spin is balanced by the spin part of the phonon angu-
lar momentum. These findings can be useful in schemes
where individual atomic spins (e.g., used as qubits) are
manipulated by phonons.

The solution of the full quantum many-body problem
of the angular momentum conservation in a system of
many relaxing spins in the elastic environment is missing
at this time. It should be solved first for an isotropic
elastic environment with the spin-phonon interaction of
the simplest form (11) for which the mechanism of the
transfer of the angular momentum between the spin and
the elastic environment is apparent. Spins coupled by
exchange interaction in a ferromagnet represent a many-
body extension of the single-spin model studied in this
paper. This problem can be readily solved only for small
deviations of the spin system from equilibrium, described
in terms of magnons and their interaction with phonons.
However, theoretical description of magnetization rever-
sal and the ensuing transfer of the angular momentum is
a complicated problem that is beyond the scope of this

paper. The problem of many paramagnetic spins inter-
acting with the lattice is also non-trivial due to coherent
and incoherent collective effects such as superradiance
and phonon bottleneck. Solutions of the Schrödinger
equation have been obtained before in the context of
phonon-laser32 and phonon bottleneck33 effects but the
analysis of the angular momentum conservation for these
problems is significantly more complicated.

Another outstanding problem, not addressed in this
paper, is how the orbital and spin angular momenta car-
ried by phonons get transferred to the rotation of the
body as a whole in the Einstein – de Haas effect. To
answer this question one must recall that in a typical
Einstein – de Haas experiment one induces rotational os-
cillations of a macroscopic body by the low-frequency ac
magnetic field. The corresponding time scales are much
greater than lifetimes of phonons emitted in atomic spin
transitions. Consequently such phonons fully equilibrate
on the time scale of the transfer of the angular momen-
tum from atomic spins to the body as a whole.
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