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Anisotropic magnetoresistance driven by surface spin orbit scattering

Steven S.-L. Zhang1,2, Giovanni Vignale1 and Shufeng Zhang2

(Dated: June 15, 2015)

In a bilayer consisting of an insulator (I) and a ferromagnetic metal (FM), interfacial spin orbit
scattering leads to spin mixing of the two conducting channels of the FM, which results in an uncon-
ventional anisotropic magnetoresistance (AMR). We theoretically investigate the magnetotransport
in such bilayer structures by solving the spinor Boltzmann transport equation with generalized
Fuchs-Sondheimer boundary condition that takes into account the effect of spin orbit scattering at
the interface. We find that the new AMR exhibits a peculiar angular dependence which can serve as
a genuine experimental signature. We also determine the dependence of the AMR on film thickness
as well as resistivity spin asymmetry of the FM.

PACS numbers: 72.25.Mk, 72.25.-b, 72.10.-d, 72.15.Gd

I. INTRODUCTION

Anisotropic magnetoresistance (AMR) is a generic
magnetotransport property of ferromagnetic metals. In
general, the longitudinal resistance of a bulk polycrys-
talline ferromagnetic metal only depends on the relative
orientations of the magnetization vector and the current,
which can be cast in the form1,

ρ = ρ0 + ∆ρb(̂je ·m)2 (1)

where ĵe = je/je is the unit vector in the direction of the
current density, m is the unit vector in the direction of
the magnetization, ρ0 is the isotropic longitudinal resis-
tivity and ∆ρb quantifies the magnitude of the bulk AMR
effect (typically ∆ρb ∼ 1% for transition metals and their
alloys). The effect has found many practical applications
in magnetic recording and sensor devices2.

Recently, the AMR effect has also played a key role in
measurements of spin Hall angle3–5 as well as spin torque
generation6–9 in FM/heavy-metal and FM/topological-
insulator (TI) bilayers. The structural inversion asym-
metry of these structures, combined with strong spin or-
bit coupling in the non-magnetic layers, generates a large
Rashba-type spin-orbit coupling10–12

V̂s.o. = −λ2cV ′ (z)σ · (p̂× z) (2)

where σ is the Pauli spin matrix, p̂ is the momentum op-
erator, λc is the effective Compton wave length, z is the
unit vector normal to the interface, V (z) is the potential
in the vicinity of the interface (which only varies in the
z− direction), and V ′(z) is its derivative, which is large
only in the interfacial region. A natural question arises:
will the interfacial spin orbit interaction alter the AMR
in the FM layer? At first glance, one might think the
spin orbit interaction, commuting with the total in-plane
momentum, px and py, cannot alter the in-plane resis-
tivity. However, this argument fails for a ferromagnetic
metal since the in-plane momenta of either spin com-
ponent are not separately conserved, and the spin-orbit
coupling transfers momentum from one spin channel into
the other.
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FIG. 1: Schematics of the transverse AMR effect induced by
surface spin orbit scattering in a FM/I bilayer. The longitu-
dinal resistivity changes when the magnetization m is rotated
in the plane perpendicular to the electric field E. Specifically,
the resistivity is at a maximum when m is perpendicular to
the interface (i.e., β = 0) and reaches a minimum when m
lies in the plane of the interface (i.e., β = ±π/2). This un-
usual AMR effect arises from spin mixing of the conducting
channels of the FM, which depends on the relative directions
of the magnetization m and the effective spin orbital field
Hso ∼ z × E.

In this paper, we show that, in the presence of surface
spin orbit scattering, the AMR of a ferromagnet exhibits
an angular dependence that is distinctly different from
the conventional one described by Eq. (1). As shown in
Fig. 1, when the magnetization vector m is swept in the
plane perpendicular to the applied electric field E, a vari-
ation in the longitudinal resistivity occurs, which has no
analogue in Eq. (1): the resistivity has a maximum when
m is along the z−axis (i.e., normal to the film plane)
and reaches a minimum when m is along the y−axis
(i.e., orthogonal to both E and z), even though the an-
gle between the magnetization and the current does not
change. The physical origin of this unconventional an-
gular dependence lies in the concerted actions of surface
spin orbit scattering and spin asymmetry in the conduc-
tivity of the FM, which can be understood qualitatively
within the two-current model13,14. The surface spin orbit
scattering plays a crucial role in mixing the two parallel
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FIG. 2: The figure conceptually demonstrates, within a two-
current model, that spin mixing induced by interfacial spin
orbit scattering causes a redistribution of current in the two
conducting channels by decreasing the resistance of the (spin-
down) channel with higher resistance R↓ and increasing the
resistance of the (spin-up) channel with lower resistance R↑.
The overall effect of the spin mixing is an increase in the total
resistance.

current channels of majority and minority spins; more-
over, the degree of spin mixing depends on the relative
orientation of the magnetization and the effective mag-
netic field Hso ∼ je×z seen by the electron spin. Specif-
ically, spin mixing is strong when m is perpendicular to
Hso while it is weak when m is aligned with Hso. As
shown in Fig. 2, the spin mixing causes, as long as the
resistivities of the two current channels are not identical,
a redistribution of current by decreasing the resistivity of
the channel with higher resistivity and increasing the re-
sistivity of the channel with lower resistivity: this results
in an overall increase of the total resistivity13,14. The
largest resistivity therefore coincides with the largest de-
gree of spin mixing, which occurs when m is perpendic-
ular to Hso.

The remainder of this paper is organized as follows. In
Sec. II, we present a quantitative theory of the spin-orbit
driven AMR in a FM/I bilayer with strong interfacial
spin orbit coupling. In Sec. III, we compare the pre-
dicted AMR with the recently interesting AMR found in
heavy-metal/ferromagnetic-insulator (FI) (e.g. Pt/YIG
bilayers and etc.). Material consideration for the exper-
imental observation of our predicted AMR will also be
discussed. Finally, we draw a conclusion in Sec. IV.

II. SPINOR BOLTZMANN EQUATION MODEL

Our theoretical analysis is based on the spinor form
of the semiclassical Boltzmann equation: the non-

equilibrium distribution function, f̂(k,z), is a 2 × 2 ma-
trix in spin space15,16. At variance with previous stud-
ies17–21 we exclude from our consideration heavy met-
als with strong spin-orbit coupling: in fact, we assume
that the spin-orbit coupling is negligible in the bulk of
the ferromagnet, so as to avoid contamination from the
conventional bulk AMR effect. For simplicity, we also
assume same Fermi wave vector kF but different relax-
ation times for majority and minority electrons, just as
in the seminal paper by Valet and Fert in calculating the
CPP-GMR22. Such simplification is justified since the
essence of our effect is in the difference of the relaxation
times (and hence the resistivities) of majority and minor-

ity spins, while the exchange splitting is responsible for
spin dephasing of the transverse spin component15,23.

A. Bulk transport equations

The equation of motion for f̂(k,z) in the steady state
is

vz
∂f̂(k,z)

∂z
− eEvx

(
∂f0(k)

∂εk

)
Î = −1

2

{
τ̂−1, δf̂(k,z)

}
(3)

where f0(k) is the equilibrium distribution function,

τ̂−1 = (τ ′)
−1
(
Î − pσ ·m

)
is the spin dependent relax-

ation rate with

(τ ′)
−1

=
[
(τ↑)

−1
+ (τ↓)

−1
]
/2 (4)

and

p ≡
[
(τ↓)

−1 − (τ↑)
−1
]
/
[
(τ↑)

−1
+ (τ↓)

−1
]

(5)

being, respectively, the average momentum relaxation
rate and the spin asymmetry in resistivity, τ↑ and τ↓ be-
ing the momentum lifetimes of the two spin channels, and
{ , } standing for an anticommutator. Notice that in the
collision term of Eq. (3) we require that the difference

δf̂(k, z) ≡ f̂(k, z)− f̂l.e.(k, z) (6)

between the non-equilibrium distribution and a local
equilibrium distribution24–26

f̂l.e.(k, z) = f0(k)Î +
∂f0
∂εk

[
µ0 (z) Î + σ · µs (z)

]
(7)

tend to zero for long times. The parameters µ0(z) and
µs(z) of the local distribution are fixed in such a way
that the condition∫

d3k
[
f̂(k,z)− f̂l.e.(k, z)

]
= 0 (8)

is self-consistently satisfied. By doing this, we satisfy the
physical requirements of particle and spin conservation in
the collision processes, as well as the continuity equations
that go with them.

To solve the Boltzmann equation, we further separate
the distribution function into an equilibrium part and a
small non-equilibrium perturbation, i.e.,

f̂(k,z) = f0(k)Î+
∂f0
∂εk

[
g (k,z) Î + h(k,z) · σ

]
(9)

where g (k,z) Î and h(k,z) · σ are the spin-independent
and spin-dependent components of the non-equilibrium
distribution. By inserting Eq. (9) into Eq. (3), we obtain
a set of coupled equations for the scalar and vector parts
of the distribution function
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vz
∂g

∂z
− eExvx = −

g−µ0 − p
(
h‖ − µs‖

)
τ ′

(10)

vz
∂h‖

∂z
= −

h‖ − µs‖ − p (g − µ0)

τ ′
(11)

and

vz
∂h⊥
∂z

= −h⊥ − µs⊥
τ ′

(12)

where h‖ = m · h(k,z), µs‖ = m·µs (z), h⊥ =
(m× h)×m and µs⊥ = (m×µs)×m. The equations
(10)-(12) have the general solutions

g± (k,z) = eτvxEx +A±k e
∓ (1−p)z
|vz|τ′ +B±k e

∓ (1+p)z

|vz|τ′ +
∑
α

∫ z

0

dt
[
µ0 (t) + αµs‖ (t)

] ∂
∂t
e
∓ (1−αp)(z−t)

|vz|τ′ , (13)

h±‖ (k,z) = peτvxEx +A±k e
∓ (1−p)z
|vz|τ′ −B±k e

∓ (1+p)z

|vz|τ′ +
∑
α

α

∫ z

0

dt
[
µ0 (t) + αµs‖ (t)

] ∂
∂t
e
∓ (1−αp)(z−t)

|vz|τ′ , (14)

and

h±⊥ (k,z) = C±k e
∓ z
|vz|τ′ +

∫ z

0

dtµs⊥ (t)
∂

∂t
e
∓ (z−t)
|vz|τ′ , (15)

where the superscript + labels the solution for vz > 0
and the subscript − for vz < 0. The sum over α runs
over the values α = ±1. The four unknown constants
Ak, Bk, and Ck (where Ck is a vector orthogonal to m,
hence with only two components) will now be determined
from the boundary conditions.

B. Boundary conditions

Up to this point, the interfacial spin-orbit interaction
has not appeared in our calculations. In particular, the
collision term in Eq. (3) did not contain it, and therefore
conserved spin. The spin-orbit coupling appears in the
boundary condition that connects the distribution func-
tion for electrons impinging on the interface (label −) to
the distribution function for electrons that are scattered
off the interface (label +). Specifically, in order to take
into account the rotation of spin upon scattering off the
interface with the potential

V̂scat. = VbΘ (−z)−
(
Vbλ

2
c

)
δ (z)σ · (p̂× z) (16)

(where Vb is the barrier height of the insulator, Θ (z) is
the unit step function, z is the unit vector normal to the
interface and the delta function confines the SO coupling
to the interface at z = 0), we introduce the following
spinor generalization of the Fuchs-Sondheimer boundary
condition27–29:

f̂+(k; z = 0) = sIR̂
†f̂−(k;z = 0)R̂+ (1− sI) f0Î (17)

where the superscripts + and − correspond to the distri-
bution functions with vz > 0 and vx < 0 respectively, the

parameter sI varies between 0 and 1, characterizing the
fraction of electrons being specularly reflected29 (sI = 1
when the interface is perfectly smooth and sI = 0 when
the interface is extremely rough) and R̂ is a 2×2 reflection
amplitude matrix in spin space which captures the spin
rotation of the reflected electrons. The physical assump-
tion underlying the boundary condition (17) is that only
the electrons that are specularly reflected (with probabil-
ity sI) have their spins rotated by a definite angle. Elec-
trons that are diffusively reflected return to the metal
with randomly oriented momentum and spin direction,
which are determined by the random orientation of the
normal to the rough surface and the associated Rashba
field. For these electrons we assume that the distribution
coincides with the original equilibrium distribution.

The explicit form of the spin rotation matrix for spec-
ularly reflected electrons is

R̂ =

[
−k2b + (λckb)

4
q2
]
Î + 2i (λckb)

2
kzσ · (q× z)

(κ− ikz)2 − (λckb)
4
q2

(18)

where κ ≡
√
k2b − k2z with kb ≡

√
2m∗eVb/~2. The deriva-

tion of R̂ is presented in the Appendix. We note that in
Eqs. (17) and (18) we have assumed that the Fermi wave
vector of the electrons in the FM is spin independent.
This assumption allows us to focus on the spin rotation
due to the interfacial spin orbit coupling, while neglecting
the well-studied spin dependent scattering based on the
exchange band splitting.30,31 In addition, our treatment
neglects the interference between the incident and the re-
flected electron waves at the interface. This is justified
when the correlation length of the surface roughness is
comparable to the Fermi wavelength in which case the
phase coherence between incident and reflected waves is
destroyed by surface roughness.32

For simplicity, we assume spin independent specular
reflection only at the outer surface of the FM layer (z =
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d), i.e.,

f̂+(k;z = d) = f̂−(k;z = d) (19)

Neglecting spin-dependent scattering from the other sur-
face simplifies the calculation without altering any qual-
itative features of the results. By inserting Eq. (9) into
the boundary conditions as well as Eq. (8) , we can find

unique solutions for f̂(k,z) and the charge current den-
sity can be calculated as

je (z) =
−e

(2π)
3Tr

∫
dkf̂(k,z)v (20)

C. Anisotropic magnetoresistance

After some algebra, we find the charge current den-
sity up to second order in the spin orbit coupling, i.e.,

O
(

(λckb)
4
)

je (z) = c0Ex

{[
1−α(1)

xx (z)− α(2)
xx (z)

]
x̂+αyx (z) ŷ

}
(21)

where c0 = e2τk3F /3πm
∗
e is Drude conductivity and two

position dependent coefficients read

α(1)
xx (z) = (1− sI)

∑
σ

(1 + σp)Fpσ (z) (22)

α(2)
xx (z) = sIp (λckF )

4 [
4−

(
m2
x + 3m2

y

)]∑
σ

σGpσ (z) ,

(23)
and

αyx (z) = sIp (λckF )
4
mxmy

∑
σ

σGpσ (z) , (24)

where

Fpσ (z) ≡ 3

4

∫ 1

0

dξ
(1− ξ2) cosh

[
(1−σp)(d−z)
ξλ0(1−p2)

]
exp

[
(1−σp)d
ξλ0(1−p2)

]
− sI exp

[
− (1−σp)d
ξλ0(1−p2)

]
(25)

and

Gpσ (z) ≡ 3

2

∫ 1

0

dξ
ξ(1− ξ2)3/2 cosh

[
(1−σp)(d−z)
ξλ0(1−p2)

]
exp

[
(1−σp)d
ξλ0(1−p2)

]
− sI exp

[
− (1−σp)d
ξλ0(1−p2)

] ,
(26)

and λ0 ≡ vF (τ↑ + τ↓)/2 is the average electron mean

free path. The first term, α
(1)
xx , is independent of the

magnetization direction: it is the resistivity due to inter-
facial roughness32. The third term, αyx, corresponds to
the well-known planar Hall effect1,13. Here p is the spin
asymmetry in the resistivity, defined in Eq. (5).

The second term, α
(2)
xx , describes the new AMR ef-

fect. We note that this effect is of second order in
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the spin-orbit coupling and vanishes when the resistiv-
ity spin asymmetry p = 0. The experimentally rele-
vant quantity is the spatially averaged longitudinal re-
sistivity, which is obtained from the formula ρ−1xx (d) =

(1/d)
∫ d
0
dz je,x (z) /Ex. As we discussed earlier, the

bulk spin-orbit coupling (not included in our calculation)
produces a conventional AMR with angular dependence
shown in Eq. (1). Therefore in general, the longitudinal
resistivity of the FM thin film should take the form

ρxx (d) = ρ0 + ∆ρ(b+s)so m2
x −∆ρ(s)so m

2
y (27)

where the first term on the rhs of Eq. (27) is the isotropic
resistivity and the second term is the AMR with conven-

tional angular dependence of (̂je ·m)2 to which both bulk
and surface spin orbit coupling may contribute57. The
most interesting term is the third term which is solely
due to the surface spin orbit scattering and can be dis-
tinguished from the bulk AMR based on the different
angular dependence.

In Fig. 2, we show ∆ρ
(s)
so (normalized by ρ0) as a func-

tion of the resistivity spin asymmetry p. This figure de-

livers two main messages. First, ∆ρ
(s)
so is positive when
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p 6= 0. This confirms the angular dependence of the AMR
we sketched in Fig. 1(b). The second message is that

∆ρ
(s)
so is an even function of the resistivity spin asymme-

try p. This is consistent with our two-current model: the
spin mixing resistivity only relies on the absolute value of
the difference between the two conduction channels but
not on the sign of that difference. We point out that the
resistivity spin asymmetry in transition metal alloys de-
pends strongly on the alloy type, as nicely demonstrated
experimentally by Fert and Campbell33. For example,
they showed p = 0.83 for FeMn while p ∼ 0 for FeCo.
This suggests the possibility of verifying the theory in
detail by studying the AMR in different transition metal
alloys.

In Fig. 3, we show the thickness dependence of ∆ρ
(s)
so

for several values of the resistivity spin asymmetry.
When the FM layer thickness is much larger than the

mean free path, i.e., d � λ0, ∆ρ
(s)
so exhibits a standard

1/d thickness dependence as can be analytically worked
out via Eq. (26). As a note of caution, we point out
that when spin dependent scattering is present at both
surfaces of the FM layer and the thickness of the FM is
comparable to the mean free path, one may need to take
into account the quantum interference between electrons
reflected from both interfaces and thus a quantum ap-
proach may be desirable34–39. However, when the thick-
ness is much larger than the mean free path, the con-
tributions from the two interfaces add up constructively
and hence the angular and thickness dependence of the
AMR should remain qualitatively the same.

As a final point of this section, we provide an order
of magnitude estimate of our new AMR for some real
material and experimental condition. Let us consider
a Fe thin film at room temperature with |p| ∼ 0.540,

sI = 0.8, λ2c ∼ 0.05 Å
2
, kF ∼ 1.7 × 108 cm−141and

d = λ0 ∼ 3.7 nm42, we find the transverse AMR ratio

(i.e.,∆ρ
(s)
so /ρ0) is about ∼ 1× 10−3, which is comparable

to its bulk value (∼ 0.2%1) and is at least an order of
magnitude larger than the AMR found in heavy-metal/FI
bilayers such as Pt/YIG43–50.

III. DISCUSSION

It is instructive to compare the AMR that we predict
in this paper for FM/I bilayers with the intriguing AMR
recently observed in NM/FI bilayers.43–50 Although the
angular dependences of these AMR’s turn out to be sim-
ilar, their physical origins are remarkably different. The
AMR discussed in this paper arises from the combined
effect of the intrinsic resistivity spin asymmetry of the
FM and the extrinsic interfacial spin orbital scattering.
Whereas, the AMR observed in NM/FI bilayers remains
controversial and has been attributed to several differ-
ent mechanisms such as (i) the bulk spin Hall effect (also
known as the spin Hall magnetoresistance)18,46 (ii) sur-
face states with spin orbit coupling,19,20 and (iii) mag-

netic proximity effect.44,45,50

While the magnetic proximity effect is no longer op-
erative in FM/I bilayers, the spin Hall and surface state
mechanisms would in principle contribute to the AMR
in such bilayer structures. However, these mechanisms
should be distinguishable from the one proposed in this
paper for the following reasons. In FM/I bilayers, the
bulk spin orbit coupling is expected to be much weaker
than that in heavy metals (such as Pt, Ta, Pd, etc.), re-
sulting in a much weaker spin Hall magnetoresistance.
Similarly, the surface state contribution to the AMR
in a NI/FI bilayer system has been claimed to scale as
λ2ckF ∼ 1 Å20 which is much shorter than the electron
mean free path of the metal layer. We therefore ex-
pect our interfacial scattering mechanism to dominate
the AMR of the system.

Lastly, let us consider the choice of materials for the
observation of our novel AMR. In order to obtain a siz-
able transverse AMR, it is essential to have a FM/I
bilayer with a large difference between the conductivi-
ties of majority and minority spin carriers in the ferro-
magnetic metal, and a strong spin-orbit interaction at
the FM/I interface. A very promising system in this
respect is FM grown on top of a TI such as Bi2Se3,
Bi1.5Sb0.5Te1.7Se1.3 or Sn-doped Bi2Te1.7Se1.3

51–53. Re-
cently, large spin transfer torque9 and spin-charge con-
version54 effects were observed in these Py/TI bilayers,
indicating the presence of strong spin orbit coupling at
the interface. Non-topological-oxide/ferromagnetic inter-
faces may also provide large spin-orbit interaction, as
implied by tunneling AMR studies in Fe/MgO/Fe junc-
tions55,56

IV. CONCLUSION

In conclusion, we have predicted an unconventional
AMR in FM/I bilayers. This new AMR arises from the
concerted actions of the surface spin orbit scattering and
the spin asymmetry in the conductivity of the FM layer.
Furthermore, we found this new AMR exhibits an an-
gular dependence that is distinct from that of the con-
ventional bulk effect: the resistance changes when the
magnetization is rotated around the current, even if the
angle between these two vectors does not change. Also,
the thickness dependence of the AMR scales with electron
mean free path of the FM layer, which can be experimen-
tally distinguished from other possible surface induced
magnetoresistance.
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Appendix A: Spinor form reflection amplitude with
interfacial Rashba spin orbit coupling

In this appendix, we derive the spinor form reflection
amplitude given by Eq. (18) in the main text. First, we
write down the following piece-wise scattering wave func-
tions corresponding to the interfacial potential described
by Eq. (16) in the main text

ψk

(
r‖,z > 0

)
=

1√
2
e−ikzzeiq·r‖χ+

1√
2
eikzzeiq·r‖R̂χ

(A1)
and

ψk (r,z < 0) =
1√
2
eκzeiq·r‖ T̂ χ (A2)

where r‖ is the in-plane position vector, q and kz are
the in-plane and perpendicular-to-plane wave vectors re-
spectively, κ =

√
k2b − k2z with kb ≡

√
2m∗eVb/~2, R̂ and

T̂ are the 2 × 2 reflection and transmission amplitude
matrices in spin space, and χ is an arbitrary spinor.

Now we are ready to determine R̂ and T̂ matrices by
the following quantum mechanical matching conditions

ψk

(
r‖,0

+
)

= ψk

(
r‖,0

−) (A3)

and

ψ′k
(
r‖,0

+
)
−ψ′k

(
r‖,0

−) =
[
(kbλc)

2
σ · (p̂× z)

]
ψk

(
r‖,0

)
(A4)

By placing the scattering wave functions into the above
two equations, we find(

Î + R̂
)
χ = T̂ χ (A5)

and(
−κT̂ − ikz Î + ikzR̂

)
χ =

[
(kbλc)

2
σ · (q× z)

]
T̂ χ

(A6)

Combining the two equations, we find an equation for R̂
only,

{[
(κ− ikz) Î + (kbλc)

2
σ · (q× z)

]
R̂+ (ikz + κ) Î + (kbλc)

2
σ · (q× z)

}
χ = 0 (A7)

For any χ, the equation is valid if[
(κ− ikz) Î + (kbλc)

2
σ · (q× z)

]
R̂+ (ikz + κ) Î + (kbλc)

2
σ · (q× z) = 0 (A8)

From Eq. (A8), we find the reflection amplitude matrix

R̂ =

[
−k2b + (kbλc)

4
q2
]
Î + 2i (kbλc)

2
kzσ · (q× z)

(ikz − κ)
2 − (kbλc)

4
q2

(A9)

. Note that R̂ is a unitary matrix as can be easily checked
via Eq. (A9). This unitarity is required by flux conser-
vation.
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S. Takahashi, R. Gross, G. E. W. Bauer, S. T. B. Goen-
nenwein, and E. Saitoh, Phys. Rev. Lett., 110, 206601
(2013).

18 Y.-T. Chen, S. Takahashi, H. Nakayama, M. Althammer,
S. T. B. Goennenwein, E. Saitoh, and G. E. W. Bauer,
Phys. Rev. B , 87, 144411 (2013).

19 S. S.-L. Zhang and S. Zhang, J. Appl. Phys., 115, 17C703
(2014).

20 V. L. Grigoryan, W. Guo, G. E. W. Bauer, and J. Xiao,
Phys. Rev. B , 90, 161412 (2014).

21 B. F. Miao, S. Y. Huang, D. Qu, and C. L. Chien, Phys.
Rev. Lett., 112, 236601 (2014).

22 T. Valet and A. Fert, Phys. Rev. B , 48, 7099 (1993).
23 M. D. Stiles and A. Zangwill, Phys. Rev. B , 66, 014407

(2002).
24 H. Haug and A. P. Jauho, Quantum Kinetics in Transport

and Optics of Semiconductors (Springer Verlag, 2007).
25 G. Giuliani and G. Vignale, Quantum Theory of the Elec-

tron Liquid (Cambridge University Press, 2008).
26 W. H. Bulter, O. Heinonen, and X. G. Zhang,

“The physics of ultra-high-density magnetic recording,”
(Springer-Verlag Berlin Heidelberg, 2001) Chap. 10, pp.
291–293.

27 K. Fuchs, Proc. Cambridge Philos. Soc., 34, 100 (1938).
28 E. H. Sondheimer, Phys. Rev., 80, 401 (1950).
29 G. E. H. Reuter and E. H. Sondheimer, Proc. Roy. Soc.

(London), 195, 336 (1948).
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