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The intrinsic spin Hall effect (SHE) originates from the topology of the Bloch bands in momentum
space. The duality between real space and momentum space calls for a spin Hall effect induced from
a real space topology in analogy to the topological Hall effect (THE) of skyrmions. We theoretically
demonstrate the topological spin Hall effect (TSHE) in which a pure transverse spin current is
generated from a skyrmion spin texture.

Transverse spin accumulation in semiconductors due
to extrinsic spin-orbit scattering was first predicted by
Dyakonov and Perel [1, 2]. Strong spin-orbit coupling
(SOC) of the disorder scatters different spins in oppo-
site directions leading to a non-zero transverse spin cur-
rent perpendicular to the charged current. Evidence of
the predicted asymmetric scattering of different spins was
later observed in optical [3] and photovoltaic [4] experi-
ments. Hirsch named this phenomenon the ‘spin Hall ef-
fect’ (SHE) and proposed that the chargeless transverse
spin current can be transferred back to a Hall voltage
using an inverse SHE measurement [5]. Later theoretical
studies predicted an intrinsic contribution to the SHE in
the presence of SOC due to the topological property of
the Bloch states at the Fermi surface [6–10]. Direct obser-
vations of the SHE have been experimentally achieved in
semiconductors using Kerr rotation microscopy[11, 12].

In magnetic materials, SOC can lead to a non-linear
contribution to classical Hall signal[13–15]. The non-
linearity, which is proportional to the magnetization, is
a result of the transverse accumulation of itinerant ma-
jority spins resulting in the anomalous Hall effect (AHE)
[16]. Similar to the SHE, the AHE can result from intrin-
sic or extrinsic mechanisms. The intrinsic contribution to
the AHE is related to the Berry curvature of the Fermi
surface which is determined by the topological nature of
the Bloch bands [15, 17].

Both the intrinsic AHE and the intrinsic SHE result
from a non-trivial topology in momentum space. Simi-
larly, a Hall effect in a magnetic system can result from a
non-trivial topology in real-space [18]. An electron hop-
ping through magnetic sites with a chiral texture acquires
a Berry phase and experiences an emergent gauge field
during transport [19]. The emergent gauge field generates
a Hall voltage that does not originate from SOC, and it is
usually referred to as the ‘topological Hall effect’ (THE)
[20]. Recently, skyrmion lattices, which are topologically
non-trivial chiral spin textures, have been observed in he-
lical magnets [21–23]. The measured Hall signal result-
ing from the THE is a signature of the skyrmion phase
in many B20 magnetic compounds [24–27].

In the adiabatic limit, each electron spin passing
through a single skyrmion has its spin aligned with the

direction of spatial magnetization of the skyrmion which
generates an emergent gauge field of up to one flux quan-
tum [23]. One flux quantum confined in the area of a
single skyrmion corresponds to a gigantic effective field.
Moreover, the direction of this effective field is opposite
for opposite spins, so that opposite spins are deflected in
opposite directions. This might separate the spin current
from the charge current, generating an unconventional
topological spin Hall effect (TSHE) which does not orig-
inate from band topology. Motivated by these possibil-
ities, in this letter we theoretically investigate the THE
and the TSHE resulting from a single magnetic skyrmion.
The TSHE phenomenon discovered here can be explained
in terms of a general physical picture that would apply
equally well to a skyrmion lattice.

Due to the lack of periodicity, we apply the non-
equilibrium Green’s function method (NEGF) to simu-
late the coherent transport of itinerant spins traversing
a single magnetic skyrmion [28]. The tight-binding elec-
tron Hamiltonian we employ is,

He = −JH
∑
i

c†iσici · Si − t
∑
〈i,j〉

(
c†i cj + h.c.

)
, (1)

where σi is the spin of itinerant electrons, JH is the
Hunds’ rule coupling, t is the nearest neighbor hopping,
and Si is the local magnetization. It has been pre-
viously discussed that the external magnetic field does
not contribute much to the Hall effect, therefore we ne-
glect its effect on the electron by taking the hopping
parameter to be real [16]. Thus, the Hall signal ob-
served in the following calculations is purely from the
emergent gauge field of the skyrmion. The spin tex-
ture {Si} contains a single skyrmion located at the cen-
ter of a 4-terminal cross bar (as shown in Fig. 1).
This texture is fully damped using the Landau-Lifshitz-
Gilbert (LLG) equation with the magnetic Hamiltonian
HS = −J

∑
〈i,j〉 Si ·Sj−D

∑
〈i,j〉 r̂i,j ·Si×Sj−

∑
i h0 ·Si.

Here J is the nearest neighbor exchange coupling, D
is the Dzyaloshinskii-Moriya interaction, and h0 is the
external magnetic field perpendicular to the cross-bar
plane. For simplicity we choose D = J = hz0. Peri-
odic magnetic boundaries are applied at the terminals
in order to mimic the semi-infinite ferromagnetic leads.
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FIG. 1. (color online) The geometry of a 31×31 tight-binding
cross bar. The arrows denote the in-plane component of the
magnetization texture of a single skyrmion. The color plot
demonstrates the Sz component. The four terminals are num-
bered clock-wise.

Other boundaries along the cross bar are taken as mag-
netic open boundaries, which gives large in-plane magne-
tization components at the edges. These boundary condi-
tions have been applied to simulate helimagnetic ribbons
[29]. The skyrmion at the center is generated by manu-
ally creating a unity topological charge and then relaxing
the spin texture until the magnetic energy is stable. De-
tails of the magnetic dynamical simulations can be found
in Ref.[30]. It is assumed in the following that the elec-
tron current density is below the threshold for skyrmion
motion [10, 29], so that the skyrmion is pinned within
the central region.

For the electron transport calculation, semi-infinite
boundary conditions for electron states are applied to
the four terminals of the cross bar. Each terminal is
assumed to be a thermal bath of carriers with chem-
ical potential µm. The semi-infinite electrodes are in-
cluded by adding self-energy terms, Σm = t†gRmt, to the
terminal blocks of He, where gRm is the surface Green’s
function of terminal m. The retarded Green’s function
of the device region bounded by the terminals is given
by GR = [εI−He −

∑
m Σm]

−1. In the linear response
limit, the zero-temperature terminal currents, Im, are
given by Im = (e/h)

∑
n Tm,nδµn. δµn denotes the chem-

ical potential shift due to an applied bias in terminal n,
(δµn = µn − εF ). Tm,n = Tr

[
ΓmG

R
mnΓnG

A
mn

]
(m 6= n)

is the transmission coefficient between terminal m and
n, where GA

mn = GR†
mn, and Γm = i

(
Σm −Σ†m

)
. At

steady state, the charge current is conserved such that
Tmm = −

∑
n 6=m Tmn. A Symmetric bias is applied be-

tween terminals 1 and 3, δµ1 = −δµ3 = δµ = 0.1JH.
Enforcing I2 = I4 = 0 in the Hall effect measure-

ment, the transverse Hall voltage can be solved as δµ2 =
δµ (P −Q) / (P +Q) and δµ4 = δµ (R− S) / (R+ S),
where

P = T21T41 + T21T42 + T21T43 + T24T41

Q = T23T41 + T23T42 + T23T43 + T24T43

R = T42T21 + T21T41 + T23T41 + T24T41

S = T42T23 + T21T43 + T23T43 + T24T43

. (2)

Thus, the topological Hall angle can be evaluated as
tan θTH = EH/Ex = (µ2 − µ4)/(µ1 − µ3).

Once δµm and Im are obtained, then the total ter-
minal spin current, ISαm (α = x, y, z), is evaluated
from ISαm = ~

2Tr [σαIneq
m ] , where σα = I ⊗ σα is

the extended Pauli matrix and Ineq
m is the terminal

current operator Ineq
m = i

2π~

[
δGn

mΣ†m −ΣmδG
n
m +

GR
mδΣ

in
m − δΣ

in
mGA

m

]
, δGn

m =
∑
n GR

m,nΓn,nGA
n,mδµn,

and δΣin
m = Γm (εF ) δµm. The intensity of the TSHE

is described by the spin Hall angle, a renormalized ratio
between the transverse spin current and the longitudinal
charged current

θTSH =

(
2e

~

)
σSzxy
σxx

=

(
2e

~

)
Isz42
I13

, (3)

where I13 = I1 − I3, and ISz42 = ISz4 − I
Sz
2 .

First, we study the THE and TSHE for the case of pure
spin injection. By setting t = 0.2JH, the tight-binding
band-width is smaller than the spin splitting given by
JH. Therefore, no matter where the Fermi level lies, the
electron injection does not mix different spins. The topo-
logical Hall angle θTH and topological spin Hall angle
θTSH for different positions of εF are shown in Fig. 2(a)
and (b), respectively. The corresponding surface density
of states (DOS) that determines the type of current injec-
tion at terminal 1 is shown in Fig. 2(c). When the surface
DOS is zero, the Fermi surface lies in the spin gap, injec-
tion is absent, and both θTH and θTSH are zero. As εF
passes through the bands, pure spin injection gives a Hall
angle up to ±0.2 indicating the expected THE. The spin
Hall angle θTSH of ±0.005 is negligible. At εF = ±JH,
both θTH and θTSH change sign.

The sign change of the Hall angles can be explained
by the spin and carrier-type composition of the injec-
tion from the ferromagnetic contacts. For each transport
channel, a one-dimensional tight-binding chain gives a
negative cosine electron band dispersion, which has a sign
change of the effective mass at the band center. The ef-
fective mass (m∗) is positive at the bottom band-edge,
and becomes negative at the top. When an up-spin elec-
tron with positive m∗ is injected from terminal 1, it is
scattered to the “right” due to the effect of the emergent
gauge field generated by the skyrmion. This is denoted
as scenario (I) in Fig. 2(d). Alternately when m∗ < 0,
an up-spin electron injected from terminal 1 is equivalent
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FIG. 2. (color online) THE and TSHE for the case of pure
spin injection (t = 0.2JH). The (a) topological Hall angle θTH

and the (b) topological spin Hall angle θTSH are shown as a
function of εF . The surface density of states at terminal 1 is
shown in (c). The four scenarios of different carrier-type and
spin compositions are illustrated in (d).

to a down-spin hole injected from terminal 3. Since the
spin scattering due to the skyrmion is anti-symmetric,
the down-spin hole is scattered to its “left” as denoted by
scenario (II). In a multi-channel scenario due to the trans-
verse confinement, the tight-binding band splits into sev-
eral sub-bands. Thus, the number of the electron bands
and the hole bands crossing the Fermi level changes at
different positions of εF . As εF moves from the bottom
band-edge to the band-center, the number of electron
bands crossing εF decreases, while the number of hole
bands increases as depicted in Fig. 2(c). Right at the
band-center, the electrons and holes are equal, indicat-
ing an equal contribution from both scenarios (I) and (II),
which leads to a cancellation of both θTH and θTSH. Fur-
ther increasing εF , scenario (II) starts to dominate such
that θTH and θTSH change sign. Similar arguments can
be applied to scenario (III) and (IV) for the down-spin
case (see Fig. 2(d)).

Semiclassically, the relative strength of THE to the
TSHE can understood as a cancellation of the transverse
electric field due to charge accumulation at contacts (2)
and (4) with the gauge field of the skyrmion. In all of
these pure-spin injection scenarios, the spin current is

FIG. 3. (color online) THE and TSHE in the case of mixed
spin injection (t = 1.5JH). (a) and (b) demonstrate the values
of θTH and θTSH for different positions of εF . The red dashed
lines correspond to the case where the central skyrmion is
removed. (c) is a plot of the surface DOS at terminal 1.

carried by charge which leads to a transverse accumu-
lation of charge resulting in a Hall voltage and hence
a THE. Since the transverse electric field cancels the
Lorentz force given by the emergent gauge field of the
skyrmion, a continuous spin current is suppressed at the
steady state, making the TSHE insignificant. However,
an order-of-magnitude increase in θTSH can be achieved
in the case of mixed spin injection which we discuss next.

To simulate mixed spin injection, the hopping term
is increased to t = 1.5JH such that the injection band-
widths of each spin are enlarged and overlap in some
range of εF . The calculated values of the θTH and θTSH
are shown in Fig. 3, along with the corresponding results
in the absence of a skyrmion for comparison. For energies
in the range of −4.5JH < εF < −JH and JH < εF <
4.5JH, θTH vanishes to ∼ 0, whereas θTSH increases by
approximately an order of magnitude compared to the
case of pure-spin injection. Additionally, in the energy
range −JH < εF < JH, the Hall angle θH corresponding
to the THE is finite and roughly the same order as that
in the case of pure-spin injection.

To explain the presence of the TSHE, we again re-
fer to the four scenarios shown in Fig. 2(d). Within
−4.5JH < εF < −JH, the transport is dominated by sce-
nario (I)+(III) as shown in Fig. 3(c). In this case, both
the spin-up and spin-down electrons are injected from
terminal 1. Due to the presence of a skyrmion there ex-
ists a topological Hall effect which produces a transverse
electrical field, ETH. At steady state, the zero-current
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condition at terminals 2 and 4 requires eETH = −F ↑
and eETH = −F ↓ satisfied simultaneously. Due to the
chirality of the skyrmion, the emergent field experienced
by the up spin is opposite to that experienced by the
down spin, which generates opposite emergent Lorentz
forces on the two types of spins (F ↑= −F ↓). Therefore,
the zero-current condition in the transverse direction can-
not be satisfied unless ETH = 0. Although imbalanced
spin injection occurs due to the ferromagnetic electrodes,
the THE must be suppressed in steady state as long as
the transport is dominated by the same type of carrier.
Since there is no electrostatic field to balance the emer-
gent Lorentz force, up-spin and down-spin carriers flow
in opposite directions at the transverse terminals. As-
suming the transverse terminals are coupled to perfect
electrodes, the accumulated spins vanish quickly into the
thermal bath. Thus, a continuous spin Hall current is
established. Similar explanations [(II)+(IV)] can be ap-
plied for JH < εF < 4.5JH.

When the transport is dominated by two different
types of carriers with the same spin, the TSHE is sup-
pressed, and the THE voltage becomes finite. This occurs
when εF is within the range [−JH, JH], and the transport
is dominated by the scenarios (II)+(III). In this case the
down-spin electrons and holes are injected from termi-
nals 1 and 3, respectively. The electrons and holes are
scattered in opposite directions and then accumulate at
terminals 2 and 4, respectively. Since the same spin is
assigned to opposite charges, a non-zero ETH develops
at terminals (2) and (4) resulting in a finite THE with a
vanishing TSHE.

To further demonstrate the differences between the
THE and the TSHE, we show the vector map of the spin
current density JSz (r) and the corresponding color map
of the charge accumulation in Fig. 4. The spin texture
and the terminal numbering are the same as in Fig. 1.
For the THE case shown in Fig. 4(a), εF = −0.05JH and
the transport is dominated by scenario (II)+(III). There
is a net drop in the transverse chemical potential between
leads 2 and 4. The JSz vectors circulate symmetrically on
either side of the skyrmion, generating no significant to-
tal transverse spin current. This corresponds to the case
where θTH ≈ −0.2 and θTSH ≈ 0. For the TSHE case
shown in [Fig. 4(b)], the transport is dominated by sce-
nario (I)+(III). The equal-potential contour of δµ (r) = 0
cuts all the way across the vertical bar indicating little
charge imbalance between leads 2 and 4. In transverse
leads 2 and 4 there is a net spin current directed from
lead 2 to lead 4 giving a negative θTSH ≈ −0.05.

The TSHE discussed here is of similar magnitude as
the SHE in widely used Pt thin films [31]. However, the
physical mechanism giving rise to the TSHE is funda-
mentally different from the one leading to the spin Hall
effect in strong spin orbit coupled systems. In such sys-
tems, the spin Hall effect results from the topological
property of the Bloch bands in momentum space. In

FIG. 4. (color online) Vector map of ~JSz (arrow plot) and
the effective chemical potential distribution (color map) for
(a) the THE and (b) the TSHE. A longitudinal applied bias
of δµ1 = −δµ3 = 0.1JH is applied. For the THE (a), the spin
current symmetrically circulates on either side of the skyrmion
resulting in no net transverse spin current. The electron and
hole accumulation induces an imbalanced transverse poten-
tial distribution. For the TSHE (b), the transverse chemi-
cal potential distribution is symmetric, and a charge-less spin
current is established in the transverse direction.

contrast the TSHE results from the topological property
of the skyrmion spin texture in real space. The real-
space topology exerts opposite emergent Lorentz forces
on different spins which can induce the TSHE.
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