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We study the dynamics of magnetic correlations in the half-filled fermionic Hubbard model follow-
ing a fast ramp of the repulsive interaction. We use Schwinger-Keldysh self-consistent second-order
perturbation theory to investigate the evolution of single-particle Green’s functions and solve the
non-equilibrium Bethe-Salpeter equation to study the dynamics of magnetic correlations. This ap-
proach gives us new insights into the interplay between single-particle relaxation dynamics and the
growth of antiferromagnetic correlations. Depending on the ramping time and the final value of
the interaction, we find different dynamical behavior which we illustrate using a dynamical phase
diagram. Of particular interest is the emergence of a transient short-range ordered regime character-
ized by the strong initial growth of antiferromagnetic correlations followed by a decay of correlations
upon thermalization. The discussed phenomena can be probed in experiments with ultracold atoms
in optical lattices.

PACS numbers: 71.30.+h,71.27.+a,71.10.Fd,71.10.Hf,75.40.Gb,64.60.A-,64.60.Bd

Introduction - Non-equilibrium dynamics of quan-
tum many-body systems has been the subject of exper-
imental inquiry in many areas of physics in the recent
years. For example, pump-probe experiments in solid-
state systems have addressed such important issues as
the observation of the Higgs mode in superconductors1,2

and the identification of dominant couplings in cuprate
superconductors.3–6 A particularly exciting direction is
the dynamical generation, suppression, or manipulation
of ordered phases using external fields. Non-equilibrium
induced superconductivity7,8 in cuprate compounds, ul-
trafast melting of charge-density-wave order,9–11 tran-
sient generation of spin-density-wave order in pnictides,12

and ultrafast manipulation of the order in multiferroics,13

are examples of such possibilities.

Artificial systems of ultracold atoms allow a clean
and tunable experimental realization of the paradigmatic
condensed matter models that underlie many solid-state
systems. In these experiments, microscopic parameters
can be rapidly changed using external fields and non-
equilibrium quantum dynamics can be probed.14–24 For
example, in Ref. 18 Jo et al. reported an experimental
study of the possible occurrence of the Stoner ferromag-
netic instability following a rapid interaction quench to
the BEC side of a Feshbach resonance with large pos-
itive scattering length (for subsequent experiments and
analysis see Refs. 21,25).

Here, we study dynamical instabilities and the growth
of magnetic correlations in the repulsive fermionic Hub-
bard model following an interaction ramp. At half-filling,
the paramagnetic (PM) state is unstable toward antifer-
romagnetic (AFM) ordering for weak on-site repulsion at
low temperatures [see Fig. 1 (a,b)]. This permits a con-
trolled perturbative analysis. One of the central findings
of our study is the identification of an extended parame-
ter regime in which the prethermal state that emerges af-
ter the interaction ramp26,27 exhibits growing AFM cor-
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FIG. 1: (color online). (a) Linear interaction ramp U(t)
with ramping time tr and final interaction Uf , (b) Schematic
equilibrium phase diagram showing the paramagnetic phase
(PM), the critical temperature T eq

c (U) for the antiferromag-
netic (AFM) phase, and the relaxation trajectory to a final
temperature Tf (c) Time scales and different regimes (see
text), (d) Qualitatively different regimes for the evolution of
the equal-time AFM correlations; NP: slow growth to normal
phase result. TSO: transient short-range order; AFM corre-
lations initially develop and later decay upon thermalization,
Tf > T eq

c (Uf). OP: AFM correlations grow and final thermal-
ized state expected to be the ordered phase, Tf < T eq

c (Uf).
(e) The dynamical phase diagram showing different regimes
after a ramp from an initial PM state at temperature Ti = 0
as a function of Uf and tr. The dashed lines are meant as a
guide to the eye.

relations, and can develop sizable domains with short-
range AFM order; interestingly, these features are only
transient and decay when the thermal equilibrium state is
approached [see Fig. 1 (d,e)]. Phenomenologically, “tran-
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sient short-range order” (TSO) in the present context can
be understood by first noting that at half filling, the log-
arithmic divergence of the spin susceptibility that results
from Fermi surface nesting is only suppressed by finite
temperature. The prethermal single-particle momentum
distribution npt

k is found to closely resemble the initial
low-temperature distribution n0

k for k ≈ kF,27 and thus
elicits a strong AFM response and even an instability for
large enough on-site repulsion. The instability is main-
tained for a time inversely proportional to the thermal-
ization rate of the low-energy prethermal quasiparticles.
The disordered PM state is eventually recovered as nk(t)
slowly approaches the final thermal state in which the
generated temperature Tf exceeds T eq

c , the critical AFM
transition temperature.

Considerable progress has been made in the accu-
rate description of many-body quantum dynamics in
one dimension28–34 and in infinite dimensions using the
non-equilibrium extension of dynamical mean field the-
ory (DMFT).35,36 The situation is more challenging in
two and three dimensions where accurate and efficient
methods are not available. Previous works on the non-
equilibrium dynamics of the Hubbard model27,37–40 and
itinerant fermions41 have studied thermalization follow-
ing interaction ramps, which is found to be preceded by
the rapid establishment of a prethermal plateau with a
substantially modified nk. On another front, the dynam-
ics of the order parameter in quenches has been stud-
ied within the integrable BCS theory.42–44 These works,
however, do not take into account single-particle exci-
tations and order parameter fluctuations at finite mo-
mentum, both of which break integrability and substan-
tially modify the physics in low dimensions. More re-
cently, quenches from the ordered AFM phase into the
normal phase have been analyzed within DMFT,45–47 as
well as slow ramps into the AFM state starting with a
small seeding field.48 In the latter case the dynamics of
the magnetization was studied, however, the interplay
between single-particle properties and the two-particle
spin-spin correlation function during the relaxation dy-
namics was not addressed. We show that this interplay
introduces additional complexity and richness to the non-
equilibrium dynamics.

Model and formalism - We consider the quasi-two-
dimensional Hubbard model49 with nearest neighbor
hopping and a time-dependent on-site interaction,

H =
∑

k,σ

εk c
†
k,σck,σ + U(t)

∑

i

ni,↑ni,↓. (1)

The dispersion is εk = −2J(coskx + cos ky), where J
is the nearest neighbor hopping amplitude. We work in
the units where h̄ = kB = J = 1 and assume half-filling
〈n↑〉 = 〈n↓〉 = 1/2 hereafter. The dispersion satisfies the
perfect nesting condition εk+q0

= −εk for q0 = (π, π),
and the PM state exhibits an AFM instability signaled
by the divergence of the static magnetic susceptibility
χzz
q0
(iω = 0). At weak coupling, the critical tempera-

ture Tc can be estimated within RPA, Tc ∼ Je−
√

cJ/U

where c is a numerical constant.50 Higher order correc-
tion analogous to the ones discussed by Gor’kov51 in the
theory of superconductivity are found to be important
already at weak coupling and result in an O(1) correc-
tion to the prefactor of Tc; this correction can be con-
veniently captured by replacing U → Ueff in the RPA
calculation.50,52–55 A first estimate of the growth rate of
the staggered magnetization in the PM state, ∆q0

, can

be obtained from linear response, ∆q0
∼ Je−

√
c̄J/Ueff .25

Nonlinear corrections quickly become relevant due to the
fast single-particle relaxation dynamics, making this re-
sult questionable for longer times.

Going beyond linear response, we describe the dynam-
ics within the framework of Φ-derivable approximations56

and non-equilibrium Green’s functions on the Schwinger-
Keldysh contour.57–59 The closed-time-path single-
particle Green’s function is defined as Gi,σ;j,σ′ (t, t′) =

−i
〈

TC [ci,σ(t1) c
†
j,σ′(t2)]

〉

, where C is the round-trip
Schwinger-Keldysh time contour, t1, t2 ∈ C are contour
times and TC is the contour time-ordering operator. The
initial state of the system at t = 0 is assumed to be a
uniform and uncorrelated paramagnet. In this setup, the
SU(2) and translation symmetry is preserved at all times
such that Gi,σ;j,σ′ ≡ δσσ′Gi−j(t, t

′). Dynamical sym-
metry breaking requires a weak inhomogeneity or small
seeding field, which we do not assume here; rather we
probe the growth of magnetic correlations by studying
the non-equilibrium spin-spin correlation function χK

q ,
and the growth (instability) of domains from the retarded
response χR

q .
In the momentum basis, Gq(t, t

′) is obtained by solv-
ing the non-equilibrium Dyson equation G−1

q (t, t′) =

G−1
0,q(t, t

′)−Σq(t, t
′). Here, G−1

0,q(t, t
′) = (i∂t−ξq) δC(t, t

′),
where δC is the contour δ-function, and the self-energy is
obtained as Σq(t, t

′) = −δΦ[G]/δG−q(t
′, t), where Φ[G]

is the Luttinger-Ward functional. We consider ramps
to weak final interactions Uf < 4J such that a skele-
ton expansion of Φ[G] up to the second order in U is
justified:48,60

++ +
σ

σ̄ σ̄

σ σ̄

σ σ̄

σ σ̄

σ

σ

σ̄σ

σ̄

Φ[G] =

ΦH[G] ΦF[G] Φ2B[G] Φ2Bx[G]

. (2)

These vacuum diagrams determine Σ and the irre-
ducible vertex I(11′; 22′) = δ2Φ[G]/δG(1′1)δG(22′)
in the particle-hole channel. The latter is used
to calculate the spin-spin correlation function
χµν
q (t, t′) ≡ −i

〈

TC[Ŝ
µ
q (t) Ŝ

ν
−q(t

′)
〉

by solving a
non-equilibrium Bethe-Salpeter equation. Here

Ŝµ(q) = 1
2

∑

k c
†
k+q,α σµ

αβ ck,β with {σµ} being

the Pauli matrices. The SU(2) symmetry implies
χµν
q (t, t′) = 1

2
δµνχ+−

q (t, t′), where χ+− is the transverse
spin-spin correlator and its diagrammatic calculation is
more economical than the diagonal correlators.

Carrying out such calculations in real-time and on a
dense two-dimensional momentum grid is numerically
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extremely challenging, even for low order Φ-derivable
approximations. We therefore make additional simpli-
fying approximations to proceed. First, we approxi-
mate the irreducible vertices by their local parts, i.e.
Σq(t, t

′) → Σℓ(t, t
′), where Σℓ(t, t

′) is a q-independent
self-energy similar as in DMFT. The local approximation
captures the full temporal structure of the vertices while
significantly simplifying the forthcoming analysis. Also,
the momentum dependence of Σq is known to be fairly
weak at weak-coupling.55,61,62 The SU(2) symmetry of
the state implies ΣF = Σ2Bx = 0, and we find

Σℓ(t, t
′) =

σ̄

σ σ +
σ

σ̄ σ̄

σ
= U(t)n δC(t, t

′)

− U(t)U(t′)Gℓ(t, t
′)Πph

ℓ (t, t′), (3)

where n = 1/2 is the filling, Gℓ(t, t
′) = 1

N

∑

q Gq(t, t
′)

is the local Green’s function, and Πph
ℓ (t, t′) =

Gℓ(t, t
′)Gℓ(t

′, t). The Hartree term only gives a dynam-
ical phase and can be gauged out using the particle-
hole symmetry of the half-filled state. The second-
order self-energy, however, is non-trivial and describes
the single-particle relaxation dynamics. The transverse
spin correlator in the framework of Φ-derivable approx-
imations is obtained by supplementing the real-time
action with a fictitious transverse magnetic field term
−
∫

C
dt

∑

q Bq(t) Ŝ
−
−q(t) and calculating the induced lin-

ear variation in the Green’s function χ+−
q (t1, t2; t

′) ≡
δTr[Gq(t1, t2;B)S+]/δBq(t

′). The result is a contour
Bethe-Salpeter equation (BSE),

χ+−
q (t1, t2; t

′) = Πph
q (t1, t2; t

′+, t′) +

∫

C

dt′1

×
∫

C

dt′2 Π
ph
q (t1, t2; t

′
1, t

′
2) Iℓ(t

′
1, t

′
2)χ

+−
q (t′2, t

′
1; t

′), (4)

where Πph
q (t1, t2; t

′
1, t

′
2) = 1

N

∑

k Gk+q(t1, t
′
1)Gk(t

′
2, t2)

and Iℓ(t1, t2) = IF(t1, t2) + I2Bx(t1, t2):

Iℓ(t1, t2) =
↑

↓

↑

↓
+

↑

↓

↑

↓
, (5)

is the local irreducible vertex, consisting of a Fock (lad-
der) part IF(t1, t2) = iU(t1) δC(t1, t2), and a second-order
“Gor’kov” part I2Bx(t1, t2) = −U(t1)U(t2)Π

pp
ℓ (t1, t2),

where Πpp
ℓ (t1, t2) = Gℓ(t1, t2)Gℓ(t1, t2). These vertex

parts arise from ΦF and Φ2Bx vacuum diagrams, respec-
tively. Finally, the transverse spin correlator is calculated
as χ+−

q (t, t′) ≡ χ+−
q (t, t+; t′).

Even in the local approximation, the numerical solu-
tion of Eq. (4) for the 3-time function χ+−

q (t1, t2; t
′) is

formidable and requires the inversion of very large ma-
trices. Had the vertex I2Bx(t

′
1, t

′
2) been local in time (as

in IF), the BSE in Eq. (4) could be immediately reduced
to a numerically tractable integral equation for the 2-time
correlator χ+−

q (t, t′), with only one intermediate contour

integral. This motivates us to approximately incorpo-
rate the role of I2Bx vertex correction via an effective
time-local vertex. For temperatures T ≪ W (band-
width = 8J) and near-equilibrium states, the spread
of I2Bx(t, t

′) on t − t′ is of the order of W−1, which is
considerably smaller than ∆−1

q0
, the inverse growth rate

mentioned before. Therefore, beyond the numerical re-
duction of the non-equilibrium instability rate, no qual-
itatively distinct behavior is expected to emerge as a
matter of the temporal non-locality of the vertex I2Bx.
As mentioned before, the equilibrium Gor’kov correction
can be obtained by replacing U → Ueff [U ] in the RPA
calculation,50,52–54 where Ueff [U ] is found by requiring
that the correct AFM transition temperature is repro-
duced. Here, we assume that the same approximate pic-
ture holds for the weak-coupling non-equilibrium dynam-
ics as well, and use the equilibrium effective interaction
as a time-local vertex, albeit at the instantaneous value of
U(t), i.e. Iℓ(t1, t2) → iUeff [U(t1)] δC(t1, t2). This allows
us to set t2 = t+1 in Eq. (4) and simplify it to

χ+−
q (t, t′) = Πph

q (t, t′)+
∫

C

dt′′ Πph
q (t, t′′) iUeff [U(t′′)]χ+−

q (t′′, t′), (6)

where Πph
q (t, t′) = Πph

q (t, t+; t′+, t′). For the numerical
solution of the non-equilibrium Dyson equation and the
above BSE, see 55.

Results and Discussion - For concreteness, we con-
sider an uncorrelated PM state at initial temperature
Ti = 0 subject to a linear interaction ramp to a fi-
nal value of Uf within a time interval tr [Fig. 1(a)].
The timeline of the single-particle dynamics is shown
schematically in Fig. 1(c). Following the ramp, a brief
switching regime with a duration ts ∼ 1/J is observed38

which leads to a prethermal single-particle momentum
distribution npt

k that deviates from the initial distribu-

tion by O(U2
f ).

27 Collisions slowly smear npt
k to a ther-

mal distribution (see Fig. 2). The thermalization rate of
the low-energy quasiparticles is found as γth ∼ U4

f /J
3

for short ramps, and a smaller value γth ∼ U4
f /(J

5t2r )
for long ramps.38 The final temperature Tf generically
increases with Uf and decreases with tr. We moni-
tor the evolution of the single-particle momentum dis-
tribution nk(t), and the equal-time Keldysh correlator

χK
q (t, t)=−i〈{Ŝ+

q (t), Ŝ
−
−q(t)}〉, and the retarded spin cor-

relator χR
q (t, t

′) = −iθ(t− t′)〈[Ŝ+
q (t), Ŝ−

−q(t
′)]〉.

We identify qualitatively different behaviors depending
on Uf and tr, which is concisely collected in the dynamical
phase diagram shown in Fig. 1(e). The symbols (NP, ×)
correspond to weak growth, (TSO, ⋄) to transient AFM
correlations along with a PM state upon thermalization,
and (OP, ◦) to AFM ordered phase upon thermalization.
The evolution of the AFM correlations for each of these
dynamical modalities is shown schematically in Fig. 1(d).
The NP regime is identified by a monotonic growth of
the equal-time spin correlator χK

q to its final equilibrium
value and being bounded by it, along with a decaying spin
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FIG. 2: (color online). Momentum distribution function nk(t)
for Ti = 0, Uf = 3 and different ramping times. (a) tr = 0.5,
Tf ≈ 0.29 > T eq

c , (b) tr = 1.5, Tf ≈ 0.15 > T eq
c , (c) tr = 2,

Tf ≈ 0.08 < T eq
c . The dotted lines show the final equilibrium

nk at T = Tf . (d) the time dependence of χzz,K
q0

(t, t) for
different tr in TSO and OP regime (semi-log plot). The long-
time limit of the correlators in the TSO regime is shown on
the plot from an equilibrium calculation at T = Tf .

63

response (χR
q , see 55) for all modes. In the TSO regime,

one observes an enhancement of AFM correlations for
intermediate times ts <∼ t <∼ γ−1

th ; in this regime, AFM
seeds can rapidly grow into sizeable domains as signaled
by the exponentially growing retarded response function.
These features eventually subside at longer times t >∼ γ−1

th

as the system thermalizes in the disordered PM state.
Finally, in the OP case, AFM correlations keep grow-
ing exponentially and the final thermal state is expected
to be ordered. The detailed long time evolution in this
state depends on inhomogeneities present in any real sys-
tem and requires a fully self-consistent treatment of the
emerging order parameter, which is beyond the scope of
this paper.

Fig. 2 shows examples of the evolution of the instan-
taneous momentum distribution nk(t) = 1

2
− i

2
GK

k (t, t)

and spin-spin correlation function iχK
q0
(t, t) for Ti = 0

and Uf = 3 in the TSO regime (tr = 0.5, 1) and the
OP regime (tr = 2). As discussed before, γth and Tf de-
crease with increasing tr, such that prethermal regimes
are maintained for longer times. This allows the AFM
correlations in the TSO regime to grow to sizeable val-
ues, as seen in Fig. 2(d). Since Tf > T eq

c , iχK
q0
(t, t) is

eventually expected to subside to the thermal equilib-
rium result in those cases. The regime OP is realized
in panel (c) where the ramp time tr = 2 is longer, the
heating is lower, and the system can thermalize in the
ordered phase. Finally, the growth of AFM correlations
in real space after the ramp can be seen by calculat-
ing χK(t, r) = 1

N

∑

q e
iqr χK

q (t, t), as shown in Fig. 3 for

tr = 1 (TSO), 2 (OP). A clear AFM pattern develops
once iχK

q0
(t, t) has grown to large enough values.
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FIG. 3: (color online). Equal time spatial spin correlation
function iχK(t, x) for tr = 1 (left, TSO), and tr = 2 (right,
OP) for Ti = 0 and Uf = 3 for different times t and lattice
spacing a = 1. Notice the different scale on the vertical axis.

Conclusions - We have studied the evolution and in-
terplay of fermionic quasiparticles and collective mag-
netic correlations in the Hubbard model at half-filling
following an interaction ramp, and have identified three
regimes of qualitatively different dynamical behavior.
Of particular interest is the occurrence of a parameter
regime in which the prethermal state is marked with
strong but transient AFM correlations.

The non-equilibrium phenomena discussed here can
be probed in ultracold atoms experiments using mea-
surements of local spin correlations,64,65 Bragg scat-
tering of light,66 time-of-flight and noise correlation
measurements67–69 once low enough temperatures are
achieved. In fact, a significant enhancement of the AFM
correlations has been reported recently.66,70 We point out
that questions addressed in this paper are generally im-
portant for the many ongoing experimental efforts for
realizing quantum simulators of the fermionic Hubbard
model. Inelastic losses in the vicinity of Feshbach reso-
nances are fast and the experiments need to be performed
rapidly to avoid strong heating of the atoms. Separating
transient dynamical phenomena from equilibrium prop-
erties is crucial for drawing conclusions from such exper-
iments.

Our work further opens the interesting new direction
of designing protocols to realize novel many-body states
using metastable prethermal states, in particular, states
which may not be realized in equilibrium. Finally, our
results show that fermionic systems with gapless excita-
tions can introduce new features to the Kibble-Zurek pic-
ture of domain formation and coarsening in the dynami-
cal crossing of phase boundaries discussed in the context
of purely bosonic systems.71–73
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