
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Decay of the Kohn mode in hydrodynamic regime
A. Iqbal, A. Levchenko, and M. Khodas

Phys. Rev. B 92, 024303 — Published 15 July 2015
DOI: 10.1103/PhysRevB.92.024303

http://dx.doi.org/10.1103/PhysRevB.92.024303


Decay of the Kohn mode in hydrodynamic regime

A. Iqbal,1 A. Levchenko,2, 3 and M. Khodas1, 4

1Department of Physics and Astronomy, University of Iowa, Iowa City, Iowa 52242, USA
2Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

3Department of Physics, University of Wisconsin-Madison, Madison, Wisconsin 53706, USA
4Racah Institute of Physics, Hebrew University of Jerusalem, Jerusalem 91904, Israel

(Dated: June 2, 2015)

We develop a hydrodynamic description of the collective modes of interacting liquids in a quasi-
one-dimensional confining potential. By solving Navier-Stokes equations we determine analytically
excitation spectrum of sloshing oscillations. For parabolic confinement, the lowest frequency eigen-
mode is not renormalized by interactions and is protected from decay by the Kohn’s theorem, which
states that center of mass motion decouples from internal dynamics. We find that the combined
effect of potential anharmonicity and interactions results in the frequency shift and final lifetime of
the Kohn mode. All other excited modes of sloshing oscillations thermalize with the parametrically
faster rate. Our results are significant for the interpretation of recent experiments with trapped
Fermi gases observed weak violation of the Kohn theorem.

PACS numbers: 67.10.Jn, 72.15.Lh, 72.15.Nj

I. INTRODUCTION

Properties of quantum liquids in one-dimension (1D),
as realized experimentally in nanoscale semiconducting
wires, carbon nanotubes, laser traps of cold atoms, and
edge channels of the quantum Hall effect, continue to at-
tract tremendous attention in the physics research (see
Refs.1–3 for recent reviews and references herein). With
increasing sophistication in high precision measurements
and techniques these systems provide serious tests for the
existing theoretical models, such as Luttinger liquid the-
ory4–7, and ultimately challenge their completeness. For
example, the powerful approach of the Luttinger liquid
formalism allows to account for the interaction effects
nonperturbatively. However, this model does not ade-
quately describe relaxation phenomena due to built-in
approximation of the linearized quasiparticle dispersion,
which by virtue of the kinematic constraints effectively
closes the phase space available for inelastic scattering.
In certain special cases, the lack of relaxation may be a
generic property of the many-body system because of its
complete integrability8,9. Alternatively, vanishing relax-
ation rates may happen because of the reasons prescribed
by the Kohn theorem10,11.

Motivated by recent experiments12–15 we study re-
laxation of collective excitations in interacting two-
dimensional (2D) systems confined along one of the two
spatial dimensions. These systems interpolate between
strictly one-dimensional limit of Luttinger liquids and
the two-dimensional Fermi liquids. The geometrical con-
finement in such systems splits the single band spectrum
into multiple one-dimensional subbands. The convenient
and practically justified model idealization is the inter-
acting particles confined by a harmonic potential. In this
case the one-dimensional subbands are equidistantly sep-
arated by a frequency of oscillations ω⊥ across the chan-
nel. Similar to the spectrum linearization in the strictly
one-dimensional liquids, harmonic approximation in the

quasi-one-dimensional case on one hand simplifies the dy-
namics, and at the same time does not allow for proper
description of thermalization processes. One necessarily
has to account for the confinement anharmonicity, which
thermalizes the motion across the channel in much the
same way as the spectrum nonlinearity causes the relax-
ation of charge and spin excitations in one-dimensional
quantum wires16–20.

Despite the similarity with 1D, the relaxation of
transversal excitations has a few distinct features setting
these two problems apart. The kinematical constrains of
momentum and energy conservations operational in 1D
are less restrictive in quasi-1D. In contrast to the 1D
case, which require three-particle scattering processes,
the two-body collisions do cause the relaxation via the
inter-subband transitions. Thermalization in quasi-1D
may nevertheless be prohibited due to the Kohn theo-
rem rather than kinematical restrictions.

This theorem states that the motion of the system as
a whole is unaffected by interactions. Classically, it fol-
lows as the translationally invariant interaction energy is
insensitive to the system displacement as a whole. For
the same reason, quantum mechanically, the interaction
drops out of the center of mass Heisenberg equation of
motion11,21. In a quantum Fermi liquid the Kohn theo-
rem follows from the solution of the kinetic equation on
the quasi-particle distribution function22.

In all of the above cases the Kohn theorem states that if
the confining potential is harmonic the collective sloshing
oscillations proceed without decay. The frequency of the
Kohn, or so called sloshing mode, ω⊥, is insensitive to
interaction, temperature and particle statistics11,21,22.

This fact makes the observation of the Kohn mode pos-
sible in a wide variety of systems. In semiconductor quan-
tum wires the Kohn mode is observed in optical trans-
mission at far infrared23,24. In trapped ultracold Fermi
gas of 6Li the Kohn mode of a half KHz frequency was
excited by sudden displacement of the trap and detected
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FIG. 1. (color online) The definition of the displacement
field φ(z, t) in Lagrangian formulation. At the time, shown
as vertical axis, t = 0 the fluid is contained in the interval
|z| < a. As time progresses the particles of a fluid move as
indicated by narrow arrows pointing upward. The particle
located at z at t = 0 is shifted to the new position z+φ(z, t).
A fluid volume shown as a narrow (red) horizontal rectan-
gle occupies a segment [z, z + dz] at time t = 0. At a later
time t > 0 this volume is displaced and occupies the segment
[z + φ(z, t), z + dz + φ(z + dz, t)]. The fluid volume expands
(shrinks) if ∂φ(z, t)/∂z > (<)0. The expansion (shrinkage)
translates in the decrease (increase) in the density respec-
tively.

by absorption imaging of a released cloud14,25.
The weak violation of the Kohn theorem due to an-

harmonicity observed in the above three classes of sys-
tems plays a key role in the data interpretation. In
the case of the semiconductor quantum wires it controls
the line broadening and the higher harmonics of light
transmission23. The observed sloshing frequency of an
atomic cloud in the optical trap shows systematic devi-
ations from the Kohn theorem prediction26. Such devi-
ations grow with heating as the expanding atomic cloud
senses a progressively less parabolic confining potential.
Here we concentrate on two fundamental aspects of Kohn
theorem violation: (i) frequency shift of the sloshing fre-
quency, and (ii) final lifetime of sloshing oscillations. We
approach this problem based on a very general grounds
of hydrodynamic theory, which accurately describes most
liquids at length scales long compared to the particle-
particle mean-free path.

II. HYDRODYNAMIC THEORY

A hydrodynamic description is based on the existence
of slow variables associated with locally conserved quan-
tities such as number of particles, momentum and en-
ergy. The motion of the liquid is described by the Navier-
Stokes equations which in Eulerian continuous field co-
ordinates can be put in the form27

∂t(ρvj) = −∂iΠij − ρ∂jU, (1)

that guaranties the momentum conservation, which holds
in ideal and nonideal liquids alike in the absence of con-
fining potential U . The stress tensor of a two-dimensional

fluid giving rise to the Navier-Stokes equation is27

Πij = δijP + ρvivj − ζδij∂kvk − η(∂ivj + ∂jvi− δij∂kvk).
(2)

Here η, ζ are the first (shear) and second (bulk) viscosi-
ties, and P is pressure. In the following we focus on a
one-dimensional flow in z-direction of a two-dimensional
liquid occupying the strip |z| < a, so that velocity vector
field can be taken in the form v = v(z, t)ez and Eq. (1)
simplifies to

ρ(∂tv + v∂zv) = −∂zP − ρ∂zU + ∂z(η∂zv). (3)

When writing this equation we made use of the con-
tinuity equation ∂tρ + ∂z(ρv) = 0 and employed stan-
dard assumption η � ζ. For the purpose of our study
it will be convenient to use a particle description of
Navier-Stokes equation. In this approach the coordinate
z labels an equilibrium position of a fluid particle, and
its location at later time t is the z + φ(z, t) such that
φ is the displacement field. By definition, the density
is ρ(z + φ(z, t), t) = ρ0(z)/(1 + ∂zφ(z, t)), the velocity
v(z + φ(z, t)) = ∂tφ(z, t). The linearization of Eq. (3) is
equivalent to the linearization in φ. To the leading order,

ρ = ρ0 + δρ , δρ = −(ρ0φ)′ , v = φ̇ , (4)

where ρ0 is a stationary equilibrium density distribution,
the notations f ′ = ∂f/∂z and ḟ = ∂f/∂t are introduced
and the pair of arguments (z, t) common to all the func-
tions is omitted. The parametrization (4) of δρ and v by
a single displacement field automatically satisfies the lin-
earized continuity equation, δρ̇+(ρ0φ̇)′ = 0. The concept
of the displacement field is further illustrated in Fig. 1.
For the solutions of the form φ(z, t) = eiωtχ′(z) the equa-
tion (3) in the parameterization, (4) reads, (see App. A):

ω2χ = −v2
sχ
′′ + U ′χ′ − iω

∫ z

z0

dz

ρ0
(νρ0χ

′′)′, (5)

where ν(z) = η(z)/ρ0(z) is the kinematic viscosity, and

vs =
√
∂P/∂ρ0 (6)

has a meaning of a local speed of sound that depends on
z only through the equilibrium density ρ0. We show that
the results are independent on arbitrary z0.

The spectrum of collective excitations and their decay
rates as given by Eq. (5) depend on the details of the
confining potential and dependence of the viscosity on
density. Here for definiteness we consider the confining
potential per unit mass with a weak quartic anharmonic-
ity,

U =
ω2
⊥z

2

2
+
εz4

4m
+ δU, (7)

where m is the mass of an individual particles, and the
constant δU ∝ ε is added in such a way that the spatial
extent of the liquid stays the same as for ε = 0. In other
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words δU + εa4/4m = 0. This choice is not obligatory,
yet convenient in the further calculations. The anhar-
monic part ∝ ε of U not only modifies the second term
in the right-hand-side of Eq. (5) but also the first one. In-
deed, in the parabolic confinement the sound velocity is
v2
s(z) = 2πρ(z)/m3 = ω2

⊥(a2−z2)/2, which acquires now
a correction δv2

s(z) = −ε(z4 − a4)/4m. With these ob-
servations in mind we multiply Eq. (5) by 2/ω2

⊥, rescale
coordinates z → z/a and introduce λ2

ω = 2ω2/ω2
⊥ to find

λ2
ωχ+ (1− z2)χ′′ − 2zχ′ + Vε + Vν = 0. (8)

The perturbation term due to anharmonicity can be cast
in the form

Vε = − εa2

2mω2
⊥

[(z4 − 1)χ′]′. (9)

This formula can be generalized to any confining poten-
tial after the change [(z4 − 1)χ′]′ → [(U(z) − U(a))χ′]′.
Consequently, our results for the frequency shift are
straightforward to modify for arbitrary confinements. We
emphasize that Vε is Hermitian. This property guar-
anties that the anharmonicity alone causes only the fre-
quency shift but no dissipation. We argue below that
only the combination of the anharmonicity and viscosity
leads to the dissipation of the Kohn mode. The exact z-
dependence of the viscosity ν(z) is specific to the model.
This however only influences the numerical prefactors in
the final results and we take the expression for the vis-
cosity from the theory of Fermi liquids, η ∝ vF ρ`, where
mean fee path is ` ∝ vFEF /T

2 with vF and EF being
Fermi velocity and energy, respectively. For this case
ν(z) = Cρ2(z)/m5T 2 where C is the numerical factor of
the order of unity28. In the above specified dimensionless
notations this results in

Vν = −iλωB
∫ z

z0

dz

1− z2
[(1− z2)3χ′′]′, (10)

where we have introduced B =
√

2ν0/a
2ω⊥ with ν0 =

ν(z = 0). We proceed with the analysis of Eq. (8).

III. RESULTS

As the first step let us discuss the eigenmodes of an
ideal fluid confined to a harmonic trap. For that pur-
pose we neglect anharmonicity and interaction effects
implicit in the viscosity term of Eq. (8), i.e. we set
Vε = Vη = 0. What remains is familiar Legendre equa-
tion and we therefore immediately read off its solutions
λ2
ωn

= 2ω2
n/ω⊥ = n(n + 1) with n = 0, 1, 2, . . . so that

the eigenfrequencies are

ωn = ω⊥

√
n(n+ 1)

2
. (11)

The n = 0 gives an equilibrium since χn=0 = const
this velocity is identically zero. The n = 1 is a Kohn

mode ω1 = ω⊥. We thus found the whole hierarchy of
eigenoscillations, they are Legendre polynomials

χn(z) =

√
2n+ 1

2
Pn(z) (12)

and the related velocity fields are vn(z) = ∂zPn. Remark-
ably, the same spectrum of collective modes as (11) was
obtained recently for the longitudinal oscillations of the
one-dimensional Coulomb chains29. In this systems the
collective behavior sets in due to the long range Coulomb
forces rather than collisions.

Next we discuss the significance of perturbation terms
on the spectrum of collective modes. Let us first consider
anharmonicity alone, i.e. we set Vη = 0 and Vε 6= 0 in
Eq. (8). As Vε is Hermitian the spectrum remains real.
As a result all the eigenmodes remain undamped as ex-
pected in the absence of collisions. To find the frequency
shift of the Kohn mode, δ(1)ω1 to the leading order in ε
we write λ2

ω1
= 2 + δ(1)λ2

ω1
, where the correction term is

found from the first order perturbation theory

δ(1)λ2
ω1

=
3εa2

4mω2
⊥
〈P1(z)|(z4 − 1)∂2

z + 4z3∂z|P1(z)〉. (13)

The matrix element gives a factor of 8/5 which even-
tually translates into the correction to the Kohn mode
frequency

δ(1)ω1 =
3εa2

10mω⊥
. (14)

We have checked that the result (14) agrees with the
result obtained by the method of moments suggested
in Ref.25. We note however that the result for the de-
polarization shift in the collisioneless regime differ from
Eq. (14) by a nonuniversal numerical prefactor. For in-
stance, for the contact interaction we obtain by direct
perturbation theory in Fermions δ(1)ω1 = 3εa2/5mω⊥,30.
Corrections to all other eigenfrequencies can be com-
puted in the same fashion, which will have the same form
as above but with the different numerical coefficients.

Before considering the generic case, it is instructive
to verify the Kohn’s theorem within our hydrodynamic
approach. It amounts to the statement that χ1(z) ∝ z
remains the solution of Eq. (8) with the frequency ω1 =
ω⊥ even for Vη 6= 0 provided only Vε = 0. This in turn
will be proven once we show that for any non-negative
n, 〈P1|Vη|Pn〉 = 〈Pn|Vη|P1〉 = 0. Clearly Vη|P1〉 = 0 as
[P1(z)]′′ = 0. On the other hand from Eq. (5) it follows
that

〈P1|Vν |Pn〉∝
∫ 1

−1

dz̄P1(z̄)

∫ z̄

z0

dz

ρ0(z)
{ν(z)ρ0(z)[Pn(z)]′}′. (15)

Realizing that P1(z̄) = −∂zρ0(z̄)/2 and integrating by
parts one concludes that 〈P1|Vν |Pn〉 = 0 for all n thus
proving the Kohn theorem in the present context.

It follows that the Kohn mode may acquire a finite life-
time only when the anharmonicity is included. Yet the
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perturbation Vε is Hermitian and by itself is insufficient.
We therefore consider both perturbations, and look for
the corrections that are first order in each of the two. In
the second order perturbation theory such a correction is
of the form

δ(2)λ2
ω1

= −iλωB
∞∑
n=1

√
3/2
√

(2n+ 1)/2

2− n(n+ 1)

[〈P1|Vν |Pn〉〈Pn|Vε|P1〉+ 〈P1|Vε|Pn〉〈Pn|Vν |P1〉]. (16)

As we saw above both terms in this equation are zero as
the Kohn mode does not couple to any other mode by a
viscosity term Vη, and δ(2)λ2

ω1
= 0.

Inevitably we have to consider the third order correc-
tions to λω1

. The third order correction to the energy El
of a state |l〉 is

δ(3)El =
∑
k,m 6=l

〈l|V |m〉〈m|V |k〉〈k|V |l〉
(Em − El)(Ek − El)

−〈l|V |l〉
∑
m6=l

〈l|V |m〉〈m|V |l〉
(Em − El)2

. (17)

To apply this expression to our problem we identify
|l〉 = P1 as a Kohn mode and V = Vε + Vν . We ob-
serve that for the perturbation terms given by Eqs. (9)
and (10) the following properties of matrix elements hold
〈P1|Vν |Pn〉 = 〈Pn|Vν |P1〉 = 〈P1|Vε|P1〉 = 0 for all n. Fur-
thermore, for the quartic anharmonicity under consider-
ation the only nonzero off-diagonal matrix elements are
〈P1|Vε|P3〉 = 〈P3|Vε|P1〉 with the rest of matrix elements
〈Pn|Vε|P1〉 = 0 for n 6= 1, 3. We thus have, accounting
for all the normalization factors of eigenoscillation modes
(12)

δ(3)λ2
1 =

147

8(λ2
1 − λ2

3)2
〈P1|Vε|P3〉〈P3|Vν |P3〉〈P3|Vε|P1〉.

(18)
Using the explicit expressions (9) and (10) we find for
the matrix elements∫ 1

−1

dz̄P3(z̄)

∫ z̄

z0

dz

1− z2
∂z[(1− z2)3∂2

zP3] = −40

21
, (19)∫ 1

−1

dzP1(z)∂z[(z
4 − 1)∂zP3(z)] =

8

5
, (20)

and eventually

δ(3)λ2
1 = iλω

28
√

2

125

ν0

a2ω⊥

(
εa2

mω2
⊥

)2

. (21)

This result enables us to find imaginary part of the Kohn
mode ω1 = ω⊥ + δω1 + iτ−1

1 , which corresponds to its
attenuation with the rate

τ−1
1 ' ν0ε

2a2

m2ω4
⊥
'
(
δω1

ω⊥

)2
ν0

a2
, (22)

where we omitted numerical factors of order unity for
brevity. This expression constitutes the main result of

our work and has straightforward interpretation. The
higher excitations modes not protected by the Kohn the-
orem decay with the rate ∼ ν0/a

2. As ν0 has dimensions
of the diffusion coefficient, this is the typical rate of the
momentum relaxation. The ratio (δω1/ω⊥)2 is the prob-
ability of finding the system in higher modes.

IV. DISCUSSIONS

Hydrodynamic description requires short equilibration
length `. Thus validity of our theory is limited by
the condition ` � a, which imposes certain restric-
tion on temperature. Specifically, for the Fermi liquids
` = vF τee is determined by collisions with the typical rate
τ−1
ee ∼ T 2/EF . Since ω⊥ ∼ vF /a, hydrodynamic regime

is realized at temperatures T > Th above the crossover
scale Th ∼

√
ω⊥EF ∼ EF /

√
N , where N is the number

of occupied sub-bands of the transversal quantization. It
also follows that with necessity hydrodynamics requires
T � ω⊥. While this inequality is reasonably satisfied for
the cold gases that are confined by a very shallow po-
tential, it obviously breaks in the ultra-cold limit where
collisionless regime prevails. In the latter case attenua-
tion coefficient of the Kohn mode is expected to follow
quadratic temperature dependence τ−1

1 ∝ αT 2/EF based
on the Pauli principle and phase space restrictions argu-
ment, whereas in the hydrodynamic regime τ−1

1 ∝ 1/T 2

in accordance with Eq. (22). The nonmonotonic temper-
ature dependence of the decay rate has been observed
experimentally26.

Our hydrodynamic approach has interesting paral-
lels with the Luttinger liquid description of collective
modes in confined inhomogeneous one-dimensional gases
31. The eigenvalue equation for the normal eigenmodes
in that case, analogous to our Eq. (5), is given by

−ω2
nχn(z) = v(z)K(z)∂z

(
v(z)

K(z)
∂zχn(z)

)
(23)

where Luttinger liquid interaction parameter satisfies the
relation v(z)K(z) = πρ(z)/m2. This equation is supple-
mented by the boundary condition χn(±a) = 0 and nor-
malization condition

∫ a
−a dzχj(z)χj(z)/v(z)K(z) = δij .

For the particular choice of v(z) = v0

√
1− z2/a2 and

K(z) = K0(1− x2/a2)γ the solutions χn(z) are obtained
in terms of Gegenbauer polynomials with the spectrum
of excitations ω2

n = (v0/a)2(n + 1)(n + 2γ + 1)31–33. In
the model of γ = 2, the problem simplifies to the case of
Legendre polynomials34 with the spectrum of excitations
analogous to our result (11). Another interesting limit
is γ = 0, which corresponds to the case of the Tonks-
Girardeau gas, where the Gegenbauer polynomials re-
duce to Chebyshev polynomials. Inclusion of dissipative
terms into Eq. (23) requires consideration of corrections
to Luttinger liquid model which account for the inelastic
scattering of bosons and ultimately describe equilibra-
tion processes. As recently shown such generalization is
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possible both in the limit of weak35 and strong36 inter-
actions and application of this formalism to the problem
of decay of collective modes is an interesting problem for
future research. Along this rout one may hope to find a
unified description, which interpolates between the quan-
tum36 and classical37 hydrodynamic regimes of Luttinger
liquids, and which is broadly applicable for arbitrarily
strong interactions.

Note. After the submission of this article for the review
we became aware of the related study38 where decay of
the Kohn mode has been studied in the context of the
famous Quantum Newton’s Cradle experiment39.
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Appendix A: Displacement field parametrization of
the linearized Navier-Stokes equations

In the parametrization (4), the left hand side of Eq. (3)
takes the form,

ρ(∂tv + v∂zv) ≈ ρ0φ̈ . (A1)

To linearize the right hand side of Eq. (3) we note that
the pressure is fixed by the density via the equation of

state such that

P (z, t) = P [ρ(z, t)] ≈ P [ρ0(z)]− v2
s [ρ0(z)](ρ0φ)′ , (A2)

where the velocity vs is defined in Eq. (6). At equilib-
rium, Eq. (3) yields

v2
sρ
′
0 = −ρ0U

′ . (A3)

We have therefore,

−P ′ − ρU ′ ≈ [v2
s(ρ0φ)′]′ + (ρ0φ)′U ′ . (A4)

Writing (ρ0φ)′U ′ = [ρ0φU
′]′ − ρ0φU

′′ and using (A3) we
obtain,

−P ′ − ρU ′ ≈ [v2
sρ0φ

′]′ − (ρ0φ)U ′′ . (A5)

Writing

[v2
sρ0φ

′]′ = ρ0[v2
sφ
′]′ + ρ′0[v2

sφ
′] (A6)

and using (A3) again we obtain

−P ′ − ρU ′ ≈ ρ0[v2
sφ
′]′ − ρ0φ

′U ′ − ρ0φU
′′ . (A7)

The third, viscosity term on the right hand side of Eq. (3)
reads

∂z(η∂zv) = [ηφ̇′]′ . (A8)

Substituting Eqs. (A1), (A7) and (A8) in Eq. (3) we ob-
tain

φ̈ = [v2
sφ
′]′ − φ′U ′ − φU ′′ + ρ−1

0 [ηφ̇′]′ . (A9)

For the solutions of the form φ(z, t) = eiωtχ′(z) we obtain
the equation,

−ω2χ′ = [v2
sχ
′′]′ − χ′′U ′ − χ′U ′′ + (−iω)ρ−1

0 [ηχ′′]′ .
(A10)

Integration of Eq. (A10) over z yields Eq. (5).
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