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Abstract: When wave effects of thermal photons become significant, thermal emitters could 
exhibit intriguing coherent effects. Here, we show that the superradiant emission, which was 
originally found in quantum emitters, can be realized in resonant thermal emitters. Similar to the 
superradiance in quantum emitters, the in-phase oscillation of resonant emitters reduces the 
lifetime of thermal photons in the emitters. Unlike the atomic superradiance, one remarkable 
consequence of the thermal superradiance is the anomalous power scaling, where the emission 
power could scale inversely with the number of thermal emitters. More thermal emitters generate 
less power due to the coherent interference of thermal photons. 
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Nanophotonic control of thermal emission [1,2] has attracted significant recent interests because 
of potential applications in areas such as thermophotovoltaics [3–8], lighting [9], and radiative 
cooling [10,11]. From a fundamental physics perspective, with the capability to tailor light-
matter interactions, nanophotonic structures can enable thermal emission behaviors that are 
drastically different from those of conventional bulk emitters [12–23]. For example, while 
blackbody emitters are typically considered to be incoherent with a total emission power limited 
by the Stephan-Boltzman law, nanophotonic emitters can be highly coherent [6,20,22] or have 
emission beyond the blackbody limit [4,19].  

In this Letter, we consider thermal emission from resonant nanophotonic emitters, placed in 
close proximity with the spacing between the emitters at deep sub-wavelength scale. We show 
that such emitters can exhibit counter-intuitive thermal radiation behaviors. In particular, while 
the conventional wisdom would have predicted that the total power from N identical thermal 
emitters increases linearly with N. Here we show that the coherent interaction can result in 
anomalous scaling with respect to N. Under the right condition, the power in fact can scale as 
1/N. We identify this effect associated with the 1/N scaling as the thermal analogue of the 
superradiance effect (Fig. 1).  

The superradiance effect was discovered in the study of spontaneous emission for N identical 
two-level quantum emitters. In 1954, Dicke discovered the superradiance [24] effect: the 
intensity of the total emission scales as N2 when N emitters are placed together in a 
subwavelength volume, rather than N as one may expect with the emitters being treated as 
independent. Superradiance is a direct consequence of the wave effect uniquely found in 
subwavelength dimensions. When placed in a sub-wavelength volume, the emission process 
results from a collective in-phase oscillation of the resonant transitions, which reduces the 
radiative lifetime of the excited state of the quantum emitters. Shorter radiative lifetime directly 
leads to more intense emission during the transient process of the decay of the excited state. The 
superradiance has been an active field in atomic physics for decades [25–27]. Recently, it has 
also been studied in classical optics in the context of electromagnetically induced 
transparency [28,29], Fano interference [30–32] and in complex radiation environments [33–36].  
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Figure 1. (a) Schematic of non-resonant thermal emitters. The total power from N emitters is N times that of a single 
emitter alone. (b) Schematic of superradiant resonant thermal emitters. The total power scales as 1/N at the resonant 
frequency. (c) The emission power of N-emitters, normalized by the power of a single emitter alone. The solid line 
is for non-resonant thermal emitters, indicating a linear scaling ~ N; the dashed line ~ 1/N is for superradiant 
resonant emitters. Lines are from analytical theory while markers are simulation results obtained from full-wave 
Maxwell’s equations.  

The analog of superradiance has never been considered to be present in thermal emitters, which 
is vaguely justified since the underlying process of thermal radiation is an incoherent process. At 
first glance, this observed thermal superradiance effect in this paper, which results in a 
suppression of emission as the number of emitter increases, appears significantly different from 
the enhancement effect observed in the superradiance of quantum emitters. We will show that 
such different scaling with respect to the number of emitters originates from the same underlying 
physics, i.e. the in-phase superposition of the resonant decay. The requirements to observe the 
thermal superradiance are closely related to the requirements for observing quantum 
superradiance: The thermal emitters must support optical resonance; and these resonant emitters 
must be placed in a deep sub-wavelength dimension as shown in Fig. 1b. For the organization of 
the paper, we will first use direct numerical simulations to provide concrete examples of the 
thermal superradiance. Then, we will develop analytical theory to illustrate the physical 
mechanism.  

 
Figure 2. (a) The structure of a non-resonant emitter: a block of emissive materials. Random positioned current 
sources (black dots) with random phases are used to simulate the thermal emission. (b) and (c) Intensity distribution 
of the emission at wavelength of 9.9 µm for 1 and 5 non-resonant emitters, respectively.  (d) The structure of 
resonant emitters consisting of a slit in a PEC slab. The length and width of the slit are 1.4 μm and 0.5 nm, 
respectively. It is filled with an emissive material with a dielectric constant of  ߳ ൌ 12.5  0.00001݅. The resonator 
is in the over-coupling region. (e) Spectra of emission cross section for 1 resonant emitter. The emission cross 
section is calculated by integrating the absorption cross section over all angles and also by considering the reciprocal 
relation between the absorption and the emission. (f) and (g) Distribution for 1 and 5 emitters, respectively. 
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Simulation is performed for transverse magnetic (TM) modes since the non-resonant transverse electric (TE) 
polarization has negligible contribution. (h) Spectra of emission cross section for 5 resonant emitters. 

We start with the simulation of thermal emission of ordinary non-resonant emitters, such as a 
block of emissive material in the free space as shown in Fig. 2a. A finite-element method is used 
to solve the frequency-domain Maxwell’s equations in a two-dimensional (2D) space. Electric 
current sources of random phases, represented by black dots, are randomly placed in the emitters 
to simulate the emission process (see the Supplemental Material for further details [37]). Figure 
2b and c, which use the same color map, show the intensity distribution of the emission from 1 
and 5 emitters, respectively. The emission power simply grows by 5 times for 5 emitters.  

In order to observe the superradiant thermal emission, we place several resonant emitters in a 
sub-wavelength dimension. This requirement is difficult to satisfy for most dielectric resonators 
since their sizes are comparable to the wavelength. To overcome the size limitation, our 
numerical example is based on ultra-compact electromagnetic resonance found in deep sub-
wavelength slits as shown in Fig. 2d. The slit is created in a slab of perfect electric conductor 
(PEC). The reflection at the openings of the slit creates a Fabry-Perot (FP) cavity. The optical 
fields are tightly confined in the slit. When filled with absorptive dielectric materials, the slit 
becomes a resonant thermal emitter. More details of the resonator are presented in the 
Supplemental Material.  

The emission of a single slit has a characteristic Lorentz line shape as shown by the emission 
cross section plotted in Fig. 2e. The spatial profile of the emission at the resonant frequency is 
shown in Fig. 2f. When 5 slits are closely placed together, the emission power reduces by 5 times, 
which can be clearly seen in both the spatial profile (Fig. 2g) and the spectrum of emission cross 
section (Fig. 2h).  We simulate the emission power for N = 1, 2, 3, 4, 5, and 10 emitters for both 
non-resonant and resonant thermal emitters. As shown in Fig. 1c, the total emission power of 
non-resonant emitters (square markers) increases linearly with N while that of the resonant 
emitters falls nicely on a 1/N relation (triangular markers). Such anomalous power scaling is a 
direct consequence of the in-phase oscillation, which shares the same physical mechanism as the 
superradiance of quantum emitters. 

Next, we develop an analytical theory to describe the collective thermal emission from N-
emitters, as observed in the aforementioned simulations. Based on the coupled mode theory [38], 
we represent the amplitudes of thermal electromagnetic fields stored in the resonant emitters as ܉ ൌ ሺaଵ, aଶ, … aேሻ்; a is normalized such that |a|ଶ is the energy stored in the ith emitter. The 
amplitude of each resonant emitter may decay through two pathways. The first pathway is to 
escape to the far field as emission, which is described by the coupling rate ߛ (Fig. 2d). The 
second is to get absorbed by the absorptive material inside the slit, which is described by the 
absorption rate ߛ  (Fig. 2d). In the framework of fluctuation-dissipation theorem, such 
absorption process is balanced by a random thermal excitation source. With all these 
considerations, the amplitudes are governed by the following equation: 
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ݐ݀݀  ܉ ൌ ቆቀ݆߱ െ 2ߛ െ 2ߛ ቁ ࡵ െ ቇࢣ ܉  ඥߛܖ 
(1)

where I is a ܰ ൈ ܰ identity matrix, ߱ is the resonant frequency (here we assume all resonant 
emitters have the same resonant frequency), ݆ ൌ √െ1 . The thermal excitation source n 
satisfies [39] 
ۄሺ߱ሻnሺ߱ᇱሻכnۃ  ൌ ߨ12 ߱݁ఠ/ಳ் െ 1 ሺ߱ߜ െ ߱ᇱሻߜ, 

(2)

where  and ݇ are the reduced Plank constant and Boltzmann constant, respectively. ߱ and ߱ᇱ 
are the angular frequencies. T is the temperature, and ߜ is the delta function. i, j represent sources 
in the emitters i and j, respectively. 

 

 
Figure 3. Schematic of the orthogonal radiation channels. An emitter is located within two boundaries where 
periodic boundary condition (PBC) is applied. The infinite non-periodic case will be obtained by taking the period ܮ ՜ ∞.  

What enables the superradiant effect is the indirect interaction among resonant emitters 
represented by ࢣ. Resonant emitters separated by deep-subwavelength spacing, emits with the 
same far-field radiation pattern, and hence the emission can interfere with each other, result in 
the indirection interaction [38]. It is completely different from the direct interaction created by 
the overlapping near-fields [40], which cause the hybridization of resonators [41]. To obtain the 
explicit form of ࢣ, we need to quantify the coupling between resonators and the free-space far 
fields. For this purpose, we model the free space with a set of orthogonal radiation channels S. 
Here we focus on a 2D space. Each channel represents a plane wave propagating in a distinct 
direction in the angle ߠ  (Fig. 3). It is normalized such that each element |S|ଶ represents the 
power flux carried by the channel. There are infinite directions in the free space. To treat this 
infinity, we start with a space that is finite in the x-direction with a length L, and impose a 
periodic boundary condition at the edge of such space. We then take the ܮ ՜ ∞ limit  to recover 
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the infinite case. The ݅௧ channel is characterized by a wave vector with a parallel component ݇צ ൌ ߣ݉/݅ߨ2 , where ߣ  is the resonant wavelength and index i = –m, …, 0, …, m, and ݉ ൌ   The resonators emit to the channels according to .(Fig. 3) ۂߣ/ܮہ
܁  ൌ ቀ ቁ࢝ࡰ࢛ࡰ ܉ ൌ (3) ܉ࡰ

where Dup , Dlow are ሺ2݉  1ሻ ൈ ܰ matrices, responsible for channels in the upper and the lower 
half-spaces, respectively. ܦ, represents the coupling rate from the jth emitter to the ith channel. 
Since emitters are spaced by a distance much smaller than the wavelength, the couplings to the 
channels are identical  [42,43]. We further assume an isotropic emission profile for each emitter. 
Then we can write the elements of Dup and Dlow  as 

࢛,ࡰ  ൌ ࢝,ࡰ ൌ ඨ  ߠݏܿߨ2݉ߛ
(4)

where ߠ ൌ arcsin ሺ݅/݉ሻ. 

By applying the energy conservation [38] (see the Supplemental Material for further details), we 
can obtain the specific form of  ߁  ࢣ, ൌ 12 ሺ1ߛ െ  ,ሻߜ

The form of ࢣ shows that an isotropic indirect interaction is induced among all resonant emitters 
with equal strength. Such indirect interaction only exists when emitters are placed in a deep sub 
wavelength dimension. When the spacing increases, a phase delay has to be introduced, resulting 
in non-isotropic indirect interaction and weakened superradiance [40]. 

With ࢣ, we can explicitly calculate ܉ሺ߱ሻ in the frequency domain   

ሺ߱ሻ܉  ൌ ቀሺ݆ሺ߱ െ ߱ሻ  2ߛ  2ߛ ሻࡵ  ቁିଵࢣ ඥߛ  ሺ߱ሻܖ
(5)

The power spectral density of the emission ܲሺ߱,  ሺ߱ሻ by (see the Supplemental܉ ሻ is related toߠ
Material for detailed derivation)  

 ܲሺ߱, ሻߠ ൌ   න ߠݏܿߨ2݉ߛ ݁ି൫ఠିఠᇲ൯௧ஶ
 ᇱே߱݀ۄሺ߱ሻaሺ߱ᇱሻכaۃ

ୀଵ
ே

ୀଵ  
(6)

Combining Eq. 5 - 6 and Eq. 2, we obtain the power spectral density as [44] 

 ܲሺ߱, ሻߠ ൌ ߨ12 ߱݁ఠ/ಳ் െ 1 ሺ߱ߛߛܰ െ ߱ሻଶ  ቀܰߛ  2ߛ ቁଶ  ߠݏܿߨ12݉
(7)

This equation involves the number of channels m, which becomes infinite at L՜ ∞ . To cancel m, 
we consider the emission cross section ߪሺ߱,  :ሻߠ
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,ሺ߱ߪ  ሻߠ ൌ ܲሺ߱, ߠݏܿܮߨሻ12ߠ ߱݁ ఠಳ் െ 1 

                             ൌ ߨ2ߣ ሺ߱ߛߛܰ െ ߱ሻଶ  ቀܰߛ  2ߛ ቁଶ 

 
 
 

(8)

The normalization factor ߱/ሺ2ߠݏܿܮߨሺ݁ఠ/ಳ் െ 1ሻሻ is the power flux density in a single 
channel [45]. The emission cross-section has a Lorentz line shape, which agrees with the 
simulation.  

The total emission power can be obtained by multiplying the angle-integrated cross section by 
the blackbody spectral density: ܲሺ߱ሻ ൌ ଶܿߨ4߱ ߱݁ఠ/ಳ் െ 1 න ,ሺ߱ߪ  ߠሻ݀ߠ

       ൌ ߨ12 ߱݁ఠ/ಳ் െ 1 ሺ߱ߛߛܰ െ ߱ሻଶ  ቀܰߛ  2ߛ ቁଶ 
(9)

Here c is the speed of light in vacuum. Eq. 9 is the main result of the theory. When N = 1, Eq. 9 
reproduces the emission of a single resonant emitter derived in [39]. It is straightforward to 
recover the results of ordinary non-resonant emitters by taking the frequency far away from the 
resonance, i.e. |߱ െ  ߱| ب ߛܰ  ߛ . As expected, the emission power ܲሺ߱ሻ ൎ ଵଶగ ఠഘ/ೖಳିଵ ఊఊೌሺఠି ఠబሻమ ܰ scales linearly with N.  

The superradiant effect is most prominent when the coupling rate is much larger than the 
absorption rate, i.e. ߛ ب ߛ . In this case, each thermally generated photon spreads equally 
among N emitters with the same phase because of the strong isotropic indirect interaction ߁. For 
a direct visualization, Fig. 4a shows the simulated amplitude distribution of the electromagnetic 
field generated by a single point source placed in one of the slits. The field is evenly distributed 
among all slits with an identical phase. More importantly, the uniform phase distribution occurs 
regardless of the location of the source. Because any thermal photon evenly occupies all slits, the 
effective coupling rate to the far field increases by N times and thermal photons decay much 
faster. Consequently, the emission power is suppressed:  

 ேܲሺ߱ሻ ൎ 2߱ߨሺ݁ఠబ/ಳ் െ 1ሻ ߛߛ 1ܰ
 

(10)

which scales inversely with N.   

The superradiant effect disappears when the coupling rate is much smaller than the absorption 
rate, i.e. ߛ ا  . In this case, the thermal photon is mostly confined in the emitter where itsߛ
source is located. Here, we increase the imaginary part of the dielectric constant of the lossy 
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material in the slit such that ߛ ൌ  . Fig. 4b shows the simulated amplitude distribution ofߛ100
the electromagnetic field generated by a single point source placed in one of the slits. In contrast 
to Fig. 4a, in this case the amplitude of the field is mostly confined only in the slit where the 
source is located. Consequently, the presence of other slits does not have any effect on the 
emission of the source. Therefore, when filled with very lossy materials, the slits emit 
independently. The total emission power is a simple linear addition. This is again supported by 
the theory. We take ߛ ب    in Eq. 9 and obtainߛ

 ேܲሺ߱ሻ ൎ 2߱ߨሺ݁ఠబ/ಳ் െ 1ሻ ߛߛ ܰ 
(11)

which scales linearly with N. Fig. 4c shows the spectra of the emission cross section for very 
lossy materials where 5 emitters (dashed red line) simply emit 5 times more power than the 
single emitter (black solid line). The insets show the intensity distribution of emission for a 
single (left) and 5 emitters (right). These results are in great contrast to the superradiant power 
scaling shown in Fig. 2e-f despite the fact that both cases are resonant emitters.  

 
Figure 4. (a) When the absorption rate is low, a point source excites photons with equal amplitudes and phases in all 
emitters. Color shows the snapshot of the amplitude of the electric field. (b) When the absorption is high, excited 
amplitude is localized in the slit with the source. (c) Quench of the superradiance effect in the high-loss regime. 
Spectra of the emission cross section of a single (black solid line) and 5 (red dashed line) resonant emitters. Insets 
are the intensity distribution of the emission. (d) The emission power as a function of distance between emitters in 
the low-loss regime. It is normalized by the power generated a single emitter alone. The superradiance effect is 
weakened as the inter-emitter distance increases. 

The superradiant effect also gradually disappears as the inter-emitter distance increases. In the 
coupled mode theory, when inter-emitter distance is above the resonant wavelength, the indirect 
interaction ࢣ greatly decreases [43] because emitters start to radiate to different far field modes. 
In this case, the emission power scales linearly with the number of emitter N. In the simulations, 
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we calculate the emission power of 5 resonant slits with an increasing inter-emitter distance 
shown in Fig. 4d. The superradiant suppression of emission is only observed when the distance is 
in the deep subwavelength regime. When the distance gradually increases to a few micrometers, 
the emission power approaches 5 times that of a single emitter. Also consistent with the 
characteristic feature of the linear power scaling, the field distribution for a thermal photon 
becomes more and more confined in individual slit when the distance increases (not shown in 
Fig 4d). 

Next, we illustrate the connection and difference between the superradiance of thermal and 
quantum emitters. The power suppression in thermal superradiance seems to contradict the 
enhanced emission intensity observed in the spontaneous superradiance of quantum emitters. To 
understand the difference, it is important note that the spontaneous emission of quantum emitters 
is measured in the time-domain. For N excited two-level system (for simplicity, suppose there is 
no non-radiative recombination) arranged in a superradiant configuration, the total number of 
photons emitted cannot be enhanced, and it is always N.  The superradiance makes the emitters 
decay N-time faster. Therefore emitters look brighter in the transient decay process. But the 
emission lasts for a shorter period of time and it is darker than the single emitter alone after the 
initial period of the decay as shown in Fig. 5a.  

 
Figure 5. (a) The emitted number of photons flux from quantum emitters as a function of time in the transient decay 
process. The lifetime of photons is assumes to be 1 s. A single quantum emitter is shown as black solid line. When 3 
such quantum emitters are placed together (dashed red), the total number of photons is tripled, and the lifetime of 
photons is reduced to 1/3 s. As a result of more photons and faster decay, the initial intensity from the emitters is 
enhanced at t = 0 and drops faster below the black line at a later time. (b) Emitted thermal photons as a function of 
time for single (black line) and three (red dashed line) resonant thermal emitters. For 3 resonant thermal emitters in a 
superradiant configuration, the decay rate increases 3 times. The thermal emission increases 9 times at t = 0, which 
is the same as the case of quantum emitters.  

On the other hand, the thermal emission is always measured in the steady-state frequency 
domain where the emitter is maintained at a constant temperature T. The shorter decay time 
caused by the superradiant in-phase oscillation does not lead to the apparent enhancement of the 
emission intensity. Instead, the signature of superradiance, i.e., the faster decay, is manifested as 
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the N-time broadened bandwidth, which is clearly shown in Fig. 2e & 2h, and Eq. 9. If the 
thermal emission were to be measured in the time domain, we would also observe the same N2 

enhancement in the transient process. To show this enhancement, we consider a thought 
experiment. At time t = 0, a resonant thermal emitter is prepared at temperature T in a vacuum 
space filled with zero-temperature radiation fields. Let us further assume that emitters have 
infinitesimally small heat capacity so that when thermal photons leave, the emitter’s temperature 
drops instantaneously. This setting helps to observe the transient process. The time-dependent 
emission of a single emitter is shown by the black line in Fig. 5b. The number of thermal photons 
starts from 1/ሺexpሺ߱/݇ܶሻ െ 1ሻ  and exponentially decays to zero. If we prepare 3 such 
thermal emitters separately and then bring them together in a superradiant configuration, they 
decay 3 times faster. Further assisted by a factor of 3 due to more available thermal photons, the 
transient emission intensity increases by 9 times (red line in Fig. 5b). Here the time-domain 
calculation based on the coupled mode theory shows that the enhancement of transient emission 
of thermal emitters indeed is the same as quantum emitters.  

 
Figure 6. (a) Intensity distribution of the emission from a single emitter. (b) and (c) Intensity distribution of the 
emission from 5 emitters at the subradiant mode (b) and the superradiant mode (c), respectively. (d) The spectrum of 
the emission power for 5 emitters, normalized by the peak power of a single emitter. (e) and (f) The amplitude of the 
electric field excited by a point source in one of the slit for the subradiant mode (e) and the superradiant mode (f), 
respectively. 

Lastly, instead of the 1/N scaling behavior as we have discussed in most of the paper, with 
proper design we can also achieve other scaling behaviors as well. For example, we can design a 
system in which the total emission power scales super-linearly as a function of N. When the 
thermal photons have opposite phases in different emitters, the decay of the thermal photons to 
the free space can be made slower. These modes have narrower bandwidth than a single emitter. 
The emission power can be significantly enhanced.  



11 
 

To create opposite phase distribution, we rely on the near-field interaction, which hybridizes the 
eigenmodes [40,41]. The near-field interaction can be introduced by using wider slits where 
optical fields are less confined locally (Fig. 6a). The spectrum of emission cross section of 5 
resonant emitters are shown in Fig. 6d in the log scale. The main broad peak remains the 
superradiant state with 5-times suppressed emission as shown by peak B in Fig. 6d and Fig. 6c. 
Additionally, there are a few sharp emission peaks far away from the main resonant frequency 
because the hybridization shifts the frequencies of these states. For the peak A in Fig. 6d, the 
emission power is enhanced by 18 times and its emission distribution is shown in Fig 6b. These 
power calculation is indeed consistent with the prediction based on the phase configuration of the 
mode. For peak A, the phases of thermal photons are opposite as shown in Fig. 6e, which is in 
great contrast to the superradiant in-phase oscillation shown in Fig. 6f. These novel emission 
properties could be useful for engineering thermal radiation for efficient energy conversion 
devices. 

In conclusion, we theoretically demonstrated that superradiance exists in thermal emitters and 
verified it by numerical simulation. The superradiant effect in thermal emitters leads to abnormal 
power scaling, i.e. the radiation power is inversely proportional to the number of emitters, which 
is in great contrast to the quadratic power scaling in superradiant quantum emitters.  Such novel 
emission behavior provides more understanding of thermal emission at nano scale, and could be 
useful for engineering thermal radiation for efficient energy conversion devices. 
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