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We present an automated scheme to systematically sample energy landscapes of crystalline solids, based on
the ideas of metadynamics and evolutionary algorithms. Phase transitions are driven by the evolution of the
order parameter (in this case, 6-dimensional cell vectors) and aided by atomic displacements corresponding
to both zero and non-zero wave vectors, enabling cell size to spontaneously change during simulation. Our
technique can be used for efficient prediction of stable crystal structures, and is particularly powerful for mining
numerous low-energy configurations and phase transition pathways. By applying this method to boron, we
find numerous energetically competitive configurations, based on various packings of B2 icosahedra. We also
observed a low-energy metastable structure of Si(T32) which is likely to be a product of decompression on Si-II.
T32 is calculated to have a quasidirect band gap of 1.28 eV, making it promising for photovoltaic applications.

INTRODUCTION

In the last decade, major advances in the field of crystal
structure prediction (CSP) took place, both for organic and in-
organic crystals [1, 2]. Most of the advances in this field are
devoted to search for the global energy minimum (most sta-
ble structure), however, attempts to explore all the low-energy
metastable minima, are rather limited so far. Metastable
phases, although not thermodynamic equilibrium states, are
very common and of great importance in materials science.
For instance, carbon can exist in many distinct forms, ranging
from superhard insulating diamond to ultrasoft semimetallic
graphite, and many other allotropes (e.g. fullerenes, carbon
nanotubes, M -carbon [3]]), of which graphite is the only ther-
modynamic ground state at ordinary temperature and pressure
conditions [4]. Graphite itself exists in two polytypic forms,
rhombohedral and hexagonal, which only differ in the stack-
ing sequence of the graphene layers. Rich polymorphism and
polytypism are indeed common among both complex com-
pounds and simple elements. For example, lithium at low
temperatures is found to undergo a martensitic transformation
from bcc to a complex close-packed rhombohedral structure
(Li-9R) [5]. Metastable structures can be easily missed in an
ordinary CSP calculation, if the search is only targeted to iden-
tify the ground state. If metastable states are of interest, atten-
tion should be paid to reconstructing the whole low-energy
part of the landscape, instead of locating just the global mini-
mum.

GENERALLIZED EVOLUTIONARY METADYNAMICS

Laio and Parrinello originally proposed the metadynamics
method to explore the free energy surface (FES) [6]. They
expressed the Gibbs energy as a function of a few collective

variables (CVs) o, by means of coarse-grained dynamics.
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Here, the second term is a Gaussian potential, which intro-
duces a time-dependent bias to discourage the already sam-
pled configuration from being visited again. With proper
parametrization of the Gaussian height (W) and width (do),
metadynamics efficiently reaches and crosses the transition
state, thus solving an intrinsic problem of molecular dynam-
ics (MD) simulations. This technique has been successfully
applied to many problems [7]. It was found that cell shape
is a good choice of CVs set for the study of solid-solid phase
transitions [8|]. Therefore, the total dimensionality, 3N+3 for
a system with [NV atoms, is split into 6 dimensions handled by
metadynamics, and the remaining 3V-3 variables explored by
MD. Although it has found great success in CSP, the original
version of metadynamics has challenges, in cases where MD
cannot equilibrate the system at given cell shape, and where
the transformation is not well described by the cell shape
change (i.e. where 3N+3 — 6 reduction of dimensionality is
not adequate). In principle, one can also use high temperature
MD to allow the large displacements on the atomic positions.
However, the calculation will usually end up with very disor-
dered systems.

Indeed, the 3/N-3 variables describing atomic positions can
be transformed into a set of mutually orthonormal modes
that possess valuable properties and are often used to de-
scribe transitions between crystal structures. If a structure
is not dynamically stable (i.e. has phonons with imaginary
frequencies), a more stable structure is obtained by follow-
ing the eigenvector of the soft vibrational mode. For struc-
tures without soft modes, there is a statistically valid Bell-
Evans-Polanyi principle that states that low-energy structures
are usually connected by low activation barriers [9]]. Low bar-
riers are, in turn, usually related to the direction of the lowest
curvature of the FES - or eigenvector of the softest vibrational
mode [[10]].



Following this philosophy, we recently developed a hy-
brid technique, evolutionary metadynamics [11], where large
displacements(di,ax) along softest mode eigenvectors are
used to equilibrate the system (i.e. find the lowest-energy con-
figuration) at each cell shape. The idea of using large phonon
displacements was borrowed from the softmutation operator
[12] of our evolutionary structure prediction method USPEX
[13]. Furthermore, unlike the original version of metadynam-
ics, essential elements of an evolutionary algorithm were in-
corporated - evolutionary metadynamics deals with a popula-
tion of structures (rather than a single evolving structure) and
involves a selection step, where at each cell shape the lowest-
energy configuration is selected and used for making the next
population of structures (each corresponding to a particular
phonon displacement pattern). In Ref. [11], just like in the
original metadynamics technique [[7, 8], only transitions be-
tween structures having the same number of atoms in the cell
were allowed. The use of the dynamical matrix gives a natural
recipe to overcome this limitation. To find softest modes and
their eigendisplacements, we compute the dynamical matrix
D at each wave vector q:

DY5(q) = 1 e zl:q)gﬁ(()?l)e"p[iq(rj(l) — (0},
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where m; and m; are masses of the ¢-th and j-th atoms, the
sum runs over all [-th unit cells, and @Zjﬁ(o,l) are force con-
stants between the atom ¢ in the reference cell (/=0) and atom
7 in the [-th cell, whose positions are described by vectors
r;(1) and r;(0):

q)"‘ﬁ(l’l )= Oua (1) Ougi (1) ®)
where u,,*(l) denotes a displacement of an i-th atom in the
[-th unit cell along the a-th coordinate axis.

Solving the secular equation with the dynamical matrix
given by eq. (2) yields both eigenvectors and frequencies of
all phonon modes corresponding to the wave vector q. In our
original work [[L1]] only the case q=0 was studied, i.e. the sys-
tem size (number of atoms in the simulation cell) was kept
constant throughout the simulation, just like in normal meta-
dynamics. By considering those non-zero q vectors, it allows
a simple way to consider structural modulations and complex
phase transition mechanisms that involve system size varia-
tions. The extension results in the Generalized Evolution-
ary Metadynamics (GEM) technique, which we present be-
low. However, several computational problems need to be ad-
dressed.

First, the computation of the dynamical matrix () is
very expensive at the ab initio level. We have simplified
it [[L1} 12} [14]] by taking bond hardness coefficients [15] as
force constants (3). Bond hardness coefficients are computed
from interatomic distances in a relaxed structure, and from the
tabulated covalent radii and electronegativities of the atoms

[[12} [15]. Then, in our dynamical matrix calculation, we have
set atomic masses to unity, as here we are only interested in
potential energy curvatures (which do not depend on masses)
rather than frequencies (which depend on them).

Second, considering many q-vectors proportionally in-
creases the number of phonon modes, and each mode corre-
sponds to two structures (because displacements in both pos-
itive and negative directions might produce different struc-
tures). Thus, if there are N atoms in the unit cell and m
wave vectors are being sampled, there will be 6m N structures
(e.g., for a moderate-size calculation with N=30 and m=8, at
each metastep one will have to sample 1440 structures). We
found a recipe to considerably, by 1-2 orders of magnitude,
reduce the number of needed phonon displacements without
sacrificing the predictive power of the method. This is done
through several ways - (1) only inequivalent q-vectors are con-
sidered. Even for lowest-symmetry crystals this introduces a
twofold saving of computational effort due to time-reversal
symmetry; (2) Aufbau principle: each new added mode is
chosen from a new q-vector, in order of increasing magni-
tude of the real-space modulation vector. This allows an eco-
nomical sampling of all relevant wave vectors; (3) at each
q-vector we consider only the lowest-frequency modes, typ-
ically not more than 1/3 of the total number. Among these,
we exclude acoustic modes, and remove all (nearly) degener-
ate modes and displacement directions. With this scheme, for
a system with N=30 and m=8, it is sufficient to use 50-100
phonon displacements, and we checked that further increas-
ing this number does not bring any practical improvements.
These selected displacements typically result in distinct new
structures, most of which have very low energies, indicating a
remarkable efficiency of finding low-energy structures.

Comparing with original metadynamics [8]], here we obtain
at least one order of magnitude more low-energy structures at
a similar computational cost, with the possibility of sampling
cells of different sizes. At each metastep, we compare normal-
ized energies (e.g. energies per atom) and choose the lowest-
energy structure as the parent of the new generation. For this
structure we compute the stress tensor at its current cell shape
H(t), and apply transformation to drive the evolution of the
cell shape. Since now different structures correspond to dif-
ferent supercells of the original basic cell h(t), we keep track
of the supercell indices S(t)= [i,j,k] and apply deformation to
the basic cell as follows,
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h(t) = H(t) - [T]TE]/’ (4a)
h(t+1) = h(t) + Sh|fIV/3S @ f-h(t),  (4b)
Ht+1)=h(t+1)-[ijk], (4c)

where S is the elastic compliance tensor corresponding to
an elastically isotropic medium with a typical Poisson ratio
0.26, which is the border between brittle and ductile materials
[16]. &h is a stepping parameter, while the driving force f has
two components according to eq. , D frea = V[h"H(P—p)]
is defined as the derivative of the energy with respect to h,



II) fGaussian comes from the added Gaussian.

Finally, the scheme described above can only lead to in-
creasingly larger supercells, which is not only computation-
ally expensive, but also prevents many transformation paths
after a supercell structure took over. To avoid this problem,
every several metasteps we add an extra population generated
from the original structure (after relaxation) put in the current
basic cell. In addition, for every structure we check trans-
lational symmetry and transform to a smaller cell whenever
possible. This enables structural transformations with both
increasing and decreasing supercell sizes.

APPLICATIONS

When applied to CSP, metadynamics requires a reasonable
initial configuration, and then samples the phase transitions on
the FES as a function of cell shape [8]. While GEM does not
rely only on the choice of collective variables (cell shape), but
also samples the atomic displacements over different q vec-
tors. Thus it allows one to perform structure prediction by
using rather simple structural types as an initial guess. For
instance, we successfully identified a-Ga, graphite, and dia-
mond structures as the ground states for Group III-IVA ele-
ments, by starting from a bcc structure. This differentiates our
method from the original metadynamics [8]]. And this success
encourages us to apply GEM to more complex systems.

In our studies, the structure relaxations are done based on
density functional theory (DFT) within the Perdew-Burke-
Ernzerhof (PBE) generalized gradient approximation (GGA)
[17] as implemented in the VASP code [18]. We used the
all-electron projector-augmented wave (PAW) method and the
plane wave basis set with the 600 eV kinetic energy cutoff; the
Brillouin zone was sampled by uniform I'-centered meshes
with the reciprocal space resolution 2 x 0.06 A=, To en-
sure that the obtained structures are dynamically stable, we
calculated phonon frequencies throughout the Brillouin zone
using the finite-displacement approach [19].

Close Packing Motifs of Boron

Here we first report the results on boron, an element fa-
mous for its structural complexity. The most striking feature
in all the discovered boron allotropes is that boron atoms form
icosahedral clusters[20, |21]]. Such clusters are also found in
boron-rich solids [21]. The simplest structure containning
icosahedron is a-boron, which is based on a distorted cubic
packing of icosahedra. The resulting crystal structure has rho-
mohedral symmetry (space group R3m). All Bi» units in the
structure follow the ‘ABC’ stacking sequence along [0001]
direction. It is well know that ABC stacking (or fcc) has
four equivalent close-packed planes. One may wonder about
the possibility of other close-packed arrangement of the B1o
icosahedra.

TABLE I. Crystallographic data of various boron allotropes at zero
pressure

20. C'mca. a=4.884, b=8.851A, c=8.065A
Atomic coordinates

B 33 0.0000 0.2361 0.5683
B 8f 0.0000 0.4373 0.5756
B 8g 0.6817 0.0051 0.2500
B 8g 0.3229 0.3327 0.2500
B 16h 0.7032 0.3313 0.6391
40. Cmca. a=4.892, b=8.841A, c=16.098A
Atomic coordinates
B 8f 0.0000 0.3909 0.9143
B 8f 0.0000 0.0625 0.6591
B 8f 0.0000 0.5928 0.5927
B 8f 0.5000 0.7646 0.6621
B 8g 0.8235 0.9939 0.7500
B 8g 0.6812 0.8218 0.7500
B 16h 0.8214 0.6642 0.5030
B 16h 0.2040 0.0024 0.4446
B 16h 0.7961 0.6580 0.8054

9M. C2/m. a=8.846A, b=4.891A, c=12.459A, B=104.2°
Atomic coordinates

B 4i 0.2796 0.0000 0.0451
B 4 0.0697 0.0000 0.3859
B 4i 0.1608 0.0000 0.2842
B 4 0.3637 0.0000 0.2876
B 4 0.8646 0.0000 0.3764
B 4 0.4198 0.5000 0.9495
B 8] 0.9371 0.1814 0.8329
B 8j 0.2992 0.2035 0.9074
B 8j 0.3906 0.1768 0.1665
B 8] 0.7521 0.2037 0.2404
B 8j 0.8344 0.1786 0.4959
B 8] 0.9769 0.2961 0.4262
P3521. a=5.041 A, c=12.031A
Atomic coordinates
B 6¢c 0.3259 0.1062 0.1095
B 6¢c 0.9858 0.4827 0.4102
B 6¢ 0.6678 0.4401 0.3256
B 6¢ 0.8059 0.6909 0.2071
B 6¢ 0.2063 0.8752 0.9922
B 6¢ 0.9291 0.9232 0.0712
P2i/c. a=4.354 A, b=4.9654, c=8.734A, 5=119.1°
Atomic coordinates
B de 0.3247 0.6714 0.6139
B 4e 0.1836 0.8377 0.3949
B de 0.3755 0.1649 0.4619
B 4e 0.5541 0.3368 0.6835
B de 0.2485 0.3327 0.2573
B de 0.1058 0.3329 0.5408

Using the GEM technique, we performed a simulation start-
ing from a 12-atom primitive cell of a boron phase. Fig. [[[(a)
shows the evolution of the enthalpy. «-B persists until 25th
generation. Then upon sufficient cell deformation and aided
by low-energy modes, it undergoes a transition to a C'mca
phase. The structure has been proposed by Pickard [22]] and
discussed by He [23], who, however, failed to notice that
this is a closed-packed polytype of a-B. As we mentioned,
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(a) GEM simulations starting from the primitive cell of a-B (the supercell size of each structure is indicated by different marker

symbols); (b) illustration of two close packed planes (0001) and (1111) in o-B based on hexagonal lattice setting; low energy configurations
are identified as a pseudo close packing behavior in different stacking sequences of (c) ABC (a-B), (d) AB (space group: C'mca), (¢) ABAC

(space group: C'mca), (f) ABABCBCAC (space group: C2/m).

an important feature of (G)EM is that the sampling space at
each metastep is much more global than traditional MD, and
typically yields many structures. By a close examination of
the results, we found a series of low-energy configurations.
Clearly, all the low energy structures are based on the packing
of B12 icosahedra. More interestingly, we find the most ener-
getically competitive structures have various close packings
(ABC, AB, ABAC, ABABCBCAC), as shown in Fig. Ek—
f. Those include two different structures with space group
Cmca with AB and ABAC stackings, another C2/m struc-
ture with ABABCBCAC stacking. However, polytypism in-
volves shifting of (1111) layers in a-boron, rather than (0001).
Therefore, we name the new structures as 20 for AB stacking,
40 for ABAC stacking, 9M for ABABCBCAC stacking. For
the same reason, a-boron can be denoted as 3R. Obviously,
there can be an infinite series of energetically close polytypes
constructed in this way.

In addition to those structures of boron shown in Fig. |1} we
found a lot of low-energy structures are not closed-packed, but
still based on the packing of B2 icosahedra, and one represen-
tative (P3521) is shown in Fig. @1 this structure has higher
energy (94.2meV/atom relative to o-B) than the close-packed
counterparts. The other one, P2;/c structure (Fig. |2)) repre-
sents another group of structures which do not contain B,
units, and it has much higher energy (136.3 meV/atom) than
that of a-B. We note that the structure shares similarity with

FIG. 2. Additional representative low-energy structures (a) P3221
structure, (b) P2;/c structure.

the planar a-sheet structure that has been widely investigated
by theoretical calculations [24]].

All the presented structures are dynamically stable [25], in-
dicating that these allotropes can exist long at ambient condi-
tions. Transitions between close-packing structures have been
observed and extensively studied for metals and are known
to have low activation barriers - however, covalent bonding in
boron will make the barriers very high. Twinning and stacking
faults commonly observed in chemical vapor deposited films
are due to the random occurrence of hexagonal stacking in a
cubic stacking sequence [26]. It remains to be seen whether



the newly predicted boron stackings can be produced in this
way. One can also expect the formation of these new stackings
at twin boundaries in a-boron.

Decompression on Si-I1

Silicon is another element which have been substantially
investigated. It is well known that silicon exhibits very rich
polymorphism under pressure. Upon increase of pressure,
silicon undergoes a series of phase transitions: I(cubic di-
amond) — II(5-Sn) — XI(Imma) — V(simple hexagonal)
— VI(Cmca) — VII(hcp) — X(fcc). A recent metady-
namics simulation by employing a high dimensional neural
network potential has successfully reproduced this sequence
[27]. However, the above transitions are not fully reversible
upon decompression [28, [29]. The Si-II phase transforms to
an exotic semimetallic phase R8 (Si-XII) at 9.3 GPa, and fur-
ther to another metastable cubic form BC8 (Si-III) that per-
sists until ambient conditions. The transition mechanism upon
decompression has not been fully understood. It has been
also found that both BC8 and R8 can coexist in the inden-
tations produced by a nanoindenters on a single-crystalline
silicon wafer as a result of the residual compressive stresses
[30]. Such irreversibility indicates a chance to synthesize new
metastable forms by high-pressure modification. Quest for
new forms of silicon is surged by photovoltaic application
[31H33]. In order to achieve a better absorption in the visi-
ble light, the ideal material should have a direct band gap of
1-1.5 eV, and strong absorption within the solar spectrum.

Several GEM simulations at different pressure conditions
were performed by starting from the Si-II structure which has
been fully relaxed at 10 GPa. By varying the Gaussian param-
eters and d,,,x, we observed different products such as cu-
bic diamond, hexagonal diamond, and many other metastable
structures based on the modification of diamond which has
been by other groups [33}134].

However, we are interested in those forms which have been
observed in experiments. Therefore, we intentionally de-
creased dp,.x and starting from 2x2x 1 supercell, in which
we were able to obtain the transition path from Si-II to Si-III
(BC8). We rerun this calculation by using a larger population
size (120 for 64 atoms system). The phase transitions can be
understood via two stages as follows.

At the beginning, Si-II undergoes lattice expansion nearly
uniformly, as the initial configuration is relaxed at 10 GPa.
After a few generations, the expansions on a,b directions were
compensated by Gaussian force, while the lattice still increase
along c direction. As shown in Fig. [3 the (021) stacking
layers are deformed and undergo a reconstruction due to this
uneven strain distribution, which leads to the occurrence of
spiral chains at Step 4.

We found that further deformation at the next step can eas-
ily lead to reconstructions in many ways, by using different
vibrational modes. As shown in Fig. 4] we observed that the
softmutated structures can be characterized by the arrange-

i)

FIG. 3. The first stage of phase transition observed in GEM simula-
tion. The arrows on the cells represent the direction of stress on each
a,b,c vector. d is the interlayer distance perpendicular to the (201)
planes.

Je]

FIG. 4. The 2nd stage of phase transition observed in GEM simula-
tion. The arrows on the cells represent the stresses on each a, b direc-
tion. (a) and (b) represent two intermediate structures shown in the
simulation; (c) 2x2x 1 supercell of R8 structure; (d) 2x2x 1 super-
cell of BCS structure; (e) 2x2x 1 supercell of T32 structure (space
group P42,c, a=9.416 A, ¢=6.639 A, Sil(0.479, 0.375, 0.231),
Si2(0.124, 0.523, 0.221), Si3(0.229, 0.620, 0.521), Si4(0.372, 0.728,
0.976)). The tetragonal spiral chains are highlighted in cyan.

ments of the tetragonal spiral chains. After full relaxation of
(c) and (d), we successfully obtained R8 and another phase
in tetragonal form. Although the best survival in this genera-
tion is not dynamically stable, we found BCS structure as the
best survival in the later generation (from (b) to (e) in Fig. f).
Interestingly, all structures (T32, R8 and BC8) can be charac-
terized by the arrangement of tetragonal spiral chains.

All the three structures have very close energetics, which
are 160 meV/atom (BCS8), 161 meV/atom (R8) and 164
meV/atom (T32) higher than Si-I at ambient pressure. Al-
though closely associated in both topology and energetics,
they exhibit different electronic properties. Both BC8 and R8
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FIG. 6. The calculated imaginary part of dielectric functions and
optical absorption coefficient for Si-T32. The results for Si diamond
phase are also shown for comparison.

are semi-metallic [35]], while T32 is calculated to be a semi-
conductor within the PBE functional. Standard DFT is well
known to underestimate the band gaps, while HSE06 func-
tional is considered to be very accurate for silicon [32,133,136].
As shown in Fig. E], the valence band maximum (VBM) is lo-
cated at (0, 0, 1/6), but is only 0.03 eV higher than I' point.
The conduction band minimal (CBM) is right at I" point, thus
make T32 a semiconductor with a quasi-direct band gap of
1.28 eV at I point. The imaginary part of the dielectric func-
tion for T32 within HSEO6 functional is also shown in Fig. [6]
Compared with Si-I, the optical absorption in T32 starts from
a much lower energy (~1.28 eV), which makes T32 very at-
tractive for solar cell applications.

Different from the previously proposed Si alltropes [32-
34], T32 shares many similarities with BC8 and R8. Thus it is
very likely to be synthesized from Si-II as well, by using the
same experimental protocols such as diamond anvil cell [28]],
nanoindentation [30]], and perhaps elastic strain engineering
[37]. We provide the comparison of simulated X-ray diffrac-
tion pattern for BC8, R8 and T32 structures as shown in Fig.
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FIG. 7. Comparison of simulated x-ray diffraction patterns for a)

BCS8, b) RS, and c¢) T32 under ambient conditions, respectively. The
patterns were simulated using Mercury with a x-ray wavelength of
1.54056 A.

Although all three structures share the same peaks with
strongest intensity, the diffraction patterns are clearly differ-
ent from each other, especially at the low angle region, which
can be used to distinguish them in future experiment.

CONCLUSIONS

In summary, we have developed and used a specially de-
signed GEM technique to explore energy landscapes. This
method allows us to identify a number of low-energy configu-
rations through complex transition mechanisms, even by start-
ing from a rather simple structure. We illustrated the power
by applying it to study elemental boron and silicon. These
newly predicted allotropes are energetically competitive and
topologically related to some know phases, thus likely to be
synthesized by experiments. The GEM technique can be gen-
erally used to systematic search for metastable structures in
other systems.
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