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Direction-dependent anisotropic exchange is a common feature of magnetic systems with strong
spin-orbit coupling. Here we study the effect of such exchange upon macroscopic magnetic anisotropy
for a face-centered-cubic model. By several theoretical techniques, we show that, both in the para-
magnetic and ordered phases, the magnetic anisotropy is induced by fluctuations. Moreover, the
magnetic anisotropy differs in the paramagnetic and ordered phases: in the paramagnetic phase
the susceptibility is maximum along the 〈111〉 directions, while the magnetic moments orient along
〈110〉 or 〈100〉 in the ordered phase. We suggest that such “anisotropy switching” can be a common
feature of strongly spin-orbit coupled magnets.
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Insulating magnetic compounds with heavy elements,
such as 4d and 5d transition metal ions, are of consid-
erable interest in the study of quantum magnetism. In
these materials, strong electron correlation and spin-orbit
coupling often lift the orbital degrees of freedom, realiz-
ing “pure” spin systems with effective pseudo-spins com-
prised of by entangled microscopic spins and orbitals.
Generically, such strong spin-orbit coupling gives rise
to direction-dependent exchange interactions. The pres-
ence of such interactions potentially affects the magnetic
properties in a significant way, possibly stabilizing ex-
otic phases, such as spin-liquid states.1,2 Experimentally,
several iridates3–11 and double perovskites12–19 have been
studied in these contexts.

In this paper, we theoretically study a model of an an-
tiferromagnet on a face-centered cubic (fcc) lattice with
direction-dependent interactions. This model may apply
directly to cubic double perovskites,20,21 but also serves
as a representative example of the general class of frus-
trated systems with directional couplings. We observe
that, at low temperature, the primary role of the direc-
tional interactions is to partially lift the ground state
degeneracy of the isotropic problem, selecting a particu-
lar subset of ground states. In addition to this “direct”
lifting of the ground state manifold, quantum fluctua-
tions also affect the ground state selection – a phenomena
known as “order by disorder”.22,23

At the same time, the directional couplings and fluctu-
ations also affect the magnetism in the high temperature
paramagnetic phase, and in particular the magnetic sus-
ceptibility and anisotropy. Importantly, the nature of
fluctuations in the high temperature phase is different
from those in the ordered phase at low temperature. In
the high temperature phase, since the spins are strongly
disordered, correlations between nearby spins are domi-
nant. On the contrary, long wavelength fluctuations tend
to be more important in ordered phases. Hence, the con-
tribution of fluctuations in these two regimes may result
in qualitatively different behavior.

We show that this is indeed the case in fcc antifer-

romagnets. By a combination of the Luttinger-Tisza
method, spin wave theory, and the high-temperature
expansion, we show that the magnetic anisotropy
“switches” between the paramagnetic and the ordered
phases. Specifically, at low temperature in the ordered
phase, either the 〈100〉 or 〈110〉 directions are favored, de-
pending on the sign of the directional exchange coupling,
while in the paramagnetic phase, the 〈111〉 direction is
favored. We show that quantum fluctuations dominate
in selecting the ground state, while thermal fluctuations
drive the magnetic anisotropy in the paramagnetic phase.
The model we consider consists of spins on the fcc lat-

tice with direction-dependent nearest-neighbor (NN) ex-
change and isotropic second-neighbor Heisenberg inter-
action,

H = H0 +Hh (1)

with

H0 = J1
∑

〈i,j〉

Si · Sj − J2
∑

[i,j]

Si · Sj

+2J3
∑

〈i,j〉

(Si · δij)(Sj · δij) (2)

Hh = −h ·
∑

i

Si. (3)

Here, Si = (Sx
i , S

y
i , S

z
i ) is the spin operator for the local-

ized spin at ith site and δij is the vector connecting ith
and jth sites. We choose the standard convention so that
the conventional unit cell of the fcc cube has unit length.
The first and the third sum in Eq. (2) is taken over all
the NN sites and the second one is for second-neighbor
sites. J1 and J2 are the NN and second-neighbor Heisen-
berg interaction, and J3 is the direction dependent in-
teraction. Hh is the coupling of uniform magnetic field
h = (hx, hy, hz) to the spins. In the following, we focus
on the case J1, J2 > 0.
Classical ground states: We first consider the magnetic

ground states at h = 0. When J3 = 0, the classical
ground state of the model in Eq. (1) is given by a four
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(a) (b) (c)

FIG. 1. Schematic picture of the classical ground state for the model in Eq. 1 with (a) J3 > 0, and (b) double-q and (c) triple-q
magnetic ground states for J3 < 0. The dark colored spins indicate magnetic unit cell and the numbers are sublattice indices.
The polar coordinate of the magnetic moments on ith sublattice, ωi = (θi, φi) is given in Tab. I.

Fig. 1(a) Fig. 1(b) Fig. 1(c)
S1 (θ, φ) (θ, φ) (θ, φ)
S2 (θ, φ+ π) (π − θ, φ) (π − θ,−φ)
S3 (π − θ, π − φ) (π − θ, φ+ π) (θ, φ+ π)
S4 (π − θ,−φ) (θ, φ+ π) (π − θ, π − φ)

TABLE I. Polar coordinate of the moments on different sub-
lattice for the magnetic orders in Fig. 1(a)-(c).

sublattice configuration with the simple cubic magnetic
unit cell and zero net magnetization. In Fourier space,
these states are given by a linear combination of plane
waves with wave numbers in the set Q = {qx,qy,qz},
with qx = (2π, 0, 0), qy = (0, 2π, 0), and qz = (0, 0, 2π)
(Ref. 24). To investigate the effect of J3, we studied the
classical ground state by using Luttinger-Tisza method.25

In the Luttinger-Tisza method, the ground state is de-
termined by the minimum eigenvalue of

J(q) =
∑

i

Ji0e
−iq·ri0 , (4)

where Jij is the 3× 3 matrix that represents interaction
between ith and jth spins. The spins are determined by
a superposition

Si =
∑

a=x,y,z

Aae
iqa·ri , (5)

where a is sum over qa ∈ Q, and the vector coefficients
Aa must be further constrained. When J3 = 0, J(q) is
diagonal for arbitrary q, with the minimum located at
q ∈ Q.
When J3 > 0, the the coefficients must be chosen so

that Aa is parallel to qa. The magnetic ground state is
given by an arbitrary combination of these 3 modes that
satisfies local constraint |Si| = 1. An example is shown
in Fig. 1(a). Defining polar coordinates θ and φ as shown
in Fig. 1(a), arbitrary θ ∈ [0, π] and φ ∈ [−π, π] define
the ground state manifold. It reduces to a two sublattice
collinear structure for θ = 0, π/2 and φ = nπ/2 (n =
0, · · · , 3), while in general it has four distinct sublattices

for other sets of (θ, φ). The direction of each spin Si in
polar coordinates is given in Tab. I.
For small J3 < 0, it is instead required that Aa is

normal to qa. The magnetic ground state is given by
an arbitrary combination of these 6 modes that satisfies
local constraint |Si| = 1. The solution consists of two
manifolds of states as shown in Fig. 1(b) and 1(c): a
double-q state in which two out of the three components
Aa are finite [Fig. 1(b)], and a triple-q state which all
three components are finite [Fig. 1(c)].
The double-q state consists of two vector components,

q1 and q2, which are elements of Q. Figure 1(b) shows
an example with q1 = qz and q2 = qx. In this phase,
the spin axis A2 is fixed parallel/antiparallel to q1, while
A1 may be in an arbitrary direction. The explicit direc-
tions of spins in the double-q state is given in Table I,
and an example indicated in Fig. 1(b). In the (θ, φ)
notation, the special values θ = 0, π/2 reduce to a single-
q two-sublattice configuration, while other values with
θ ∈ (0, π/2) gives a four-sublattice double q state.
Figure 1(c) shows an example of the triple-q state. In

this state, the coefficients Aa are orthogonal to one an-
other. The four sublattice spin pattern collapses to a
double-q one for θ = 0, π/2, and a single-q state for
φ = nπ/2 (n = 0, · · · , 3). We note that with increas-
ing J3 < 0, the four-sublattice orders eventually become
unstable. The condition that the above solution is the
energy minimum gives J2 > |J3|/8. Hence, if |J3| is suf-
ficiently small, the above-mentioned phases are expected
to be stable.
Quantum order by disorder: We next study how the

quantum fluctuations lift the remaining degeneracy of
the classical ground state manifold. We calculated the
quantum correction to the classical ground state energy
by spin wave analysis. Here, the unit of energy is taken
as J1S, where S is the size of spin. The calculation were
done numerically with Ns = 163 magnetic supercells.
Figure 2 shows the quantum correction to the ground

state energy for J3 = 1 and J2 = 0.2. θ and φ are defined
as in Fig. 1(a) and Table I. We find that single-q collinear
antiferromagnetic (AFM) states [θ = 0 or (θ, φ) = (π2 , 0)]
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FIG. 2. Quantum correction to the ground state energy for
different ground states at J1 = 1, J2 = 0.2, J3 = 1. θ and φ
are defined as in Fig. 1(a).

FIG. 3. Quantum correction to the ground state energy for
different ground states calculated by the spin wave analysis at
J1 = 1, J2 = 0.2, and J3 = −1: (a) double-q and (b) triple-q
magnetic ground states. θ and φ in (a) and (b) are defined as
in Figs. 1(b) and 1(c), respectively. The inset in (a) shows φ
dependence of δE/J1S at θ = π/2.

are favored over multi-q states. Specifically, the stag-
gered magnetization in each quantum ground state is ori-
ented along a 〈100〉 axis. This is a natural result as the
fluctuations tend to favor collinear orders.
A similar behavior is also found for J3 < 0. Figure 3(a)

shows the result for the double-q state [Fig. 1(b)]. The
results indicate that single-q collinear AFM states (θ =
0, π/2) are favored over double-q orders. Furthermore,
fluctuations lift the U(1) degeneracy of the single-q state
at θ = π/2. The inset in Fig. 3(a) shows the quan-
tum correction at θ = π/2; the transverse axis is φ/π.
Here, φ = 0 corresponds to the collinear state with the

spins pointing along the 〈100〉 direction, while they point
along 〈110〉 for φ = π/4. The minimum is located at
(θ, φ) = (π/2, π/4), indicating the single-q state with
q = (0, 0, 2π) is favored by quantum fluctuations; the
moments point along (110) direction.
Estimation of the quantum correction for the triple-

q ground states are shown in Fig. 3(b). Similarly, the
results indicate that, in the triple-q manifold, collinear
states at θ = 0 and (θ, φ) = (π/2, π/4) have the lowest
ground state energy. This is the 〈100〉 collinear AFM
state mentioned above. However, all of the states have
higher energy than the 〈110〉 collinear phase. Hence,
quantum fluctuations select 〈110〉 collinear order.
The favoring of the 〈110〉 direction for J3 < 0 is a

highly quantum effect. It is very different from conven-
tional magnetic anisotropy induced by crystal field ef-
fects. In the latter case, a Landau theory analysis in
powers of the (staggered) magnetization generally ap-
plies, and the leading effect occurs at fourth order. These
terms favor either 〈100〉 or 〈111〉, depending on the sign,
but not 〈110〉.
The above discussion pertains to the direction of the

staggered magnetization, but we may also ask about
the uniform susceptibility χ(n) (n = h/|h|) with the
four-sublattice magnetic structure. Expanding the en-
ergy in small deviations from the ground state, we find
that χ(n) for a given configuration is given by χ(n) =
∑

i,α m2
iα/εiα, where εiα,jβ = ∂2ε/∂µiα∂µjβ and miα =

∂m/∂µiα with ε and m being ground state energy and
magnetization along n, respectively. Here, µiα gives the
small deviation of the ith moment along the orthogonal
direction α = 1, 2. Here, we defined the basis of µiα so
that εiα,jβ become orthogonal, i.e., εiα,jβ = εiαδi,jδα,β .
Using this formula, χ(n) for the collinear states are given
by χ(n) = sin2 θn/(4+J3), as expected for collinear mag-
netic orders. Here, θn is the angle between the collinear
moments and n. This indicates that, for J3 > 0, the
maximum of susceptibility will not be along 〈111〉.

To recapitulate the order by disorder analysis, we
found that, within linear spin wave theory, quantum fluc-
tuations select collinear ground states of the frustrated
fcc antiferromagnet, and in these states the local mo-
ments are oriented along the 〈100〉 or 〈110〉 axis, depend-
ing upon parameters. The magnetic susceptibility, on the
other hand, is maximal in {100} planes for J3 > 0. As
we will see, this behavior contrasts that of the magnetic
response in the paramagnetic phase, which is favors the
〈111〉 directions.

Paramagnetic response: We next study the magnetic
anisotropy in the paramagnetic phase. For this purpose,
we evaluate the free energy per spin f in an external mag-
netic field. We carry out a high temperature expansion
of energy f in powers of βJi, where β is the inverse tem-
perature and i = 1, 2, 3. The expansion of the partition
function gives

Z = Zh

〈

exp

{

−βH0 −
β2

2
[H0, Hh] +O[(βJi)

3]

}〉

h

(6)
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where Zh = Tr exp(−βHh) and 〈Ô〉h =

Z−1
h Tr Ô exp(−βHh). As the contribution to Z from the

commutator in Eq. 6 is in the order of O[(βJi)
3], up to

the second order in the expansion, we can ignore this
term. Hence, Z is approximated by

Z = Zh

{

1− β〈H0〉h +
β2

2
〈H2

0 〉h +O[(βJi)
3]

}

. (7)

The second order correction to the free energy is given
by

βf (2)(βh) = (βJ1)
2f

(2)
0 (J2/J1, βh)

+(βJ3)
2

{

f
(2)
3 (βh) + g

(2)
3 (βh)

∑

α

ĥ4
α

}

, (8)

where, h = |h| is the strength of external field, and ĥα =
hα/h is the direction of external field. The contribution

to the anisotropic term g
(2)
3 (βh) of the free energy comes

only from 〈[βJ3
∑

〈i,j〉(Si · δij)(Sj · δij)]
2〉. The explicit

form of g
(2)
3 (βh) is given by

g
(2)
3 (βh) =

1

16

{

S(S + 1)− 3〈Sz2〉h + 2〈Sz〉h
2
}2

. (9)

Here, 〈Sz〉h and 〈Sz2〉h are the thermal averages of Sz

and Sz2, respectively, which are functions of the external

field βh and the spin size S. Because g
(2)
3 (βh) ≥ 0, the

result indicates that free energy is minimized when the
external field is applied along 〈111〉. Hence, we obtain
〈111〉 easy axis magnetic anisotropy regardless of the sign
of J3. We note that this anisotropy is present even for
S = 1/2. In this case, Eq. (9) becomes

g
(2)
3 (βh)

∣

∣

∣

S=1/2
=

1

64
tanh4(βh/2). (10)

Hence, for the model in Eq. (1), spins favor the 〈111〉
axis in high temperature. On the other hand, for J3 > 0
(J3 < 0), the ground state is a collinear antiferromagnet
with spins oriented along the 〈100〉 (〈110〉) axes. The
distinct difference of the preferred axes at low and high
temperatures constrasts with the common behavior of
magnetic anisotropy, which is consistent at all tempera-
tures. This can be understood as a consequence of the
nature of fluctuations that dominate in different temper-
ature regions. When T ≪ J1, long wave-length fluctua-
tions dominate, lifting the accidental degeneracy of the
ground states. On the other hand, in the high temper-
ature limit, the spins are strongly disordered, and the
spin correlation is limited to short range. Hence, in this
regime, short range correlations between nearby spins is
most important. Due to the difference in the nature of
dominant fluctuations, the consequent phenomena can
be different in the two regimes.
This understanding also indicates that the information

on direction-dependent spin interactions is reflected in
the high temperature paramagnetic phase in an unusual
way. Hence, this anisotropy-switching phenomena is po-
tentially useful as a probe to experimentally narrow down
the effective model for heavy element magnets, where var-
ious unconventional interactions can appear due to strong
spin-orbit interactions.
Experimentally, a promising candidate to observe

anisotropy switching is the family of double-perovskite
compounds with heavy element ions.12–19 In these ma-
terials, strong spin-orbit coupling can induce strongly
anisotropic interactions. Another favorable aspect is the
suppression of magnetic ordering by geometrical frustra-
tion. As the magnetic anisotropy in the paramagnetic
phase arises only at higher order in the inverse temper-
ature, a low transition temperature should be favorable
to enhance these higher order effects.
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