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Abstract
Phase transformations in metallic grain boundaries (GBs) present significant fundamental in-

terest in the context of thermodynamics of low-dimensional physical systems. We report on

atomistic computer simulations of the Cu-Ag system that provide direct evidence that GB phase

transformations in a single-component GB can continue to exist in a binary alloy. This gives rise

to segregation-induced phase transformations with varying chemical composition at a fixed tem-

perature. Furthermore, for such transformations we propose an approach to calculations of free

energy differences between different GB phases by thermodynamic integration along a segregation

isotherm. This opens the possibility of developing quantitative thermodynamics of GB phases,

their transformations to each other, and critical phenomena in the future.
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I. INTRODUCTION

Motivation. – Recent years have seen a rising interest in phase transformations in two-

dimensional systems such as grain boundaries (GBs) and other interfaces. Experimen-

tally, a number GB phases with discrete thickness (single layer, bilayer, etc.) have been

found in binary and multi-component metallic systems.1–3 Different GB phases have also

been observed in ceramic materials, where they are referred to as intergranular thin films

or “complexions”.3–5 Recently, a methodology has been developed for identification and

structural characterization of GB phases in single-component metallic systems by atomistic

computer simulations.6,7 Applying this methodology, several different phases and reversible

temperature-induced transformations between them were discovered in symmetrical tilt

Σ5(210)[001] and Σ5(310)[001] GBs in face centered cubic metals, Σ being the reciprocal

density of coincidence sites, [001] the tilt axis, and (210) and (310) the GB planes. For

the Σ5(310)[001] GB in Cu, Ag GB diffusion coefficients computed separately for two GB

phases7 accurately reproduced the break in the temperature dependence of Ag GB dif-

fusion coefficients measured experimentally by the radio-tracer method.8 This agreement

provided a convincing experimental evidence for the existence of phase transformations in

metallic GBs. Furthermore, such transformations have been shown to have a strong effect

on shear-coupled GB motion and shear strength.9

When studying Ag impurity diffusion in the Cu Σ5(310)[001] GB,7 it was found that two

GB phases stable at low and high temperatures displayed different segregation patterns,

namely, a single layer and bilayer, respectively. However, the effect of segregation on the GB

transformation temperature has not been studied either in Ref. 7 or in any previous work.

Furthermore, while the proposed methodology6,7 enables direct observation of GB phase

transformations by atomistic simulations, there have been no experimental or theoretical

quantitative estimates of free energy differences between different GB phases.

The goal of this paper is to report on atomistic simulations of a segregation-induced GB

phase transformation in the Cu-Ag system, and to demonstrate an approach to calculations

of free energy differences between GB phases. Although we were able to detect segregation-

induced transitions in both Σ5 GBs mentioned above, in this paper we focus the attention

on the Σ5(210)[001] GB, which is different from the boundary studied earlier.7 This choice

was dictated by the higher transformation temperature in this boundary, permitting equi-

libration of its structure on shorted time scales. However, the proposed approach can be

readily extended to other GBs in the future.

Methodology. – Our main simulation methods are molecular dynamics (MD) and semi-

grand canonical Monte Carlo (MC) simulations with Cu-Ag interactions described by an

embedded-atom potential.10 The MD simulations utilized the LAMMPS code11, while for

the MC simulations we used the parallel MC algorithm developed by Sadigh et al.12 The

latter alternates MC switches of atomic species (swaps) with MD runs implemented in
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LAMMPS. In this work, the fraction of swapped atoms was chosen to be 0.3 and the

MD runs between the MC swaps comprised 1,000 integration steps 0.2 fs each. In the

MC simulations, the temperature T and diffusion potential M of Ag relative to Cu are

fixed while the distribution of Ag atoms over the system can vary to reach thermodynamic

equilibrium. Typical simulation times were between 100 and 280 ns measured by the total

number of MD steps. Images of the GB structures were produced with the visualization

tool AtomEye.13

Two types of simulation block were created. For finding the GB phase transformation

point, the block contained a GB terminated at two free surfaces normal the [120] direction

z. In the x and y directions aligned with the [001] and [210] axes, respectively, the boundary

conditions were periodic. (Due to the periodic condition in y, the block effectively contained

two GBs.) The system contained 101,031 atoms and had the dimensions of 5.1×16.5×150

nm3. The open surfaces serve as sinks and sources of atoms that can penetrate in and out of

the boundary to adjust its local atomic density to reach equilibrium. It has been previously

shown6 that this simulation setup permits observation of GB phase transformations in

elemental systems. In this work, this simulation approach is extended to segregation-

induced phase transformations in binary systems.

For computing the amount of GB segregation, two smaller blocks were created by carving

rectangular regions out of the larger system. Each of the smaller blocks contained a single

GB phase and had periodic boundary conditions in all three directions. The numbers of

atoms in the blocks containing the split kite and filled kite phases were, respectively, 33,677

and 33,576. Because this construction isolated the GB phases from sinks and sources of

atoms, the GB was unable to vary its local density and thus maintained its phase during

the subsequent simulations. This enabled us to study thermodynamic properties of the two

phases individually over a range of compositions.

Results. – During the Monte Carlo simulations with open surfaces at given T and M , it

was found that after a long run the GB always reaches equilibrium with a structure of one

of the two phases. The two phases exhibit different segregation patterns: while in the filled

kite phase the Ag atoms segregate to the GB plane as a single (but not complete) layer, in

the split-kite structure they form a bilayer. The two segregation patterns are illustrated in

Fig. 1.

When M changes at a fixed temperature, the GB either re-equilibrates to a new state

of the same phase or transforms to another phase. As an example, Fig. 2 illustrates a

phase transformation at the temperature of 900 K. The initial state of the boundary is

split kites created by a previous MD run. The diffusion potential is then switched to

M = 0.48 eV and a new run is started. During this run, the filled kite phase nucleates at

the GB/surface junction and begins to grow into the boundary converting its structure to

filled kites. The boundary between the two GB phases is a line defect that can be considered

to be a two-dimensional analog of inter-phase boundaries in bulk thermodynamics. This
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two-dimensional inter-phase boundary penetrates into the GB, and after a 100 ns long

simulation reaches the opposing surface, converting the entire boundary into the filled kite

phase.

To find the equilibrium state between the two GB phases, simulations were performed for

a set of diffusion potentials starting with a GB containing both phases [e.g., Fig. 2(b)]. It

was determined that in all simulations with M > M∗ = 0.33 eV, the inter-phase boundary

moved in one direction and the GB ended up in the split kite phase. In simulations with

M < M∗, the inter-phase boundary moved in the opposite direction converted the GB to

the filled kite phase. It was, thus, concluded that at this particular temperature, the two

GB phases coexist at M = M∗. In simulations with exactly this value of the diffusion

potential, both GB structures continued to coexist during a 280 ns long simulation run,

the longest that we could afford with available computational resources. The obtained

equilibrium value of M corresponds to the grain composition of c = 0.02 at.%Ag. Since the

two phases are in equilibrium at this composition, their GB free energies are equal:

γSK = γFK ≡ γ∗. (1)

GB segregation in individual GB phases was computed in periodic simulation blocks

containing a single phase. As in previous work,14 the amount of segregation was defined as

the excess number NAg of Ag atoms per unit GB area relative to a perfect lattice region

with the same composition as the grains and containing the same total number N of atoms

as the bicrystal. This type of segregation is denoted [NAg]N and measured in Å
−2

. It was

computed by averaging over 250 snapshots saved after every ten MC swaps.

Fig. 3 presents the segregation isotherms computed for individual phases at 900 K.

Each curve stops at a point where the GB structure becomes too disordered to identify it

unambiguously with a particular phase. Note that segregation in the filled kite phase is

systematically higher than in the split kite phase, even though the former exhibits a bilayer

segregation while the latter a single-layer segregations. Thus, caution should be exercised in

the interpretation of experimental images of segregated GBs: a bilayer segregation pattern

is not necessarily an indication of stronger segregation. In the zoomed view of this plot

displayed in Fig. 3(b), the filled circles represent grain compositions for which the GB

transformed to split kites. Likewise, the filled triangles represent grain compositions for

which the GB transformed to filled kites. The composition of c = 0.02 at.%Ag marked by

the dashed line separates the intervals of thermodynamic stability of the two phases and is

identified with the point of GB phase coexistence. At this point, the amount of segregation

jumps discontinuously from [NAg]N = 0.0014 Å
−2

to [NAg]N = 0.0031 Å
−2

.

The obtained isotherms (Fig. 3) contain all information needed for calculations of free

energies of the GB phases at this temperature. Indeed, for each phase, the GB free energy

γ follows the adsorption equation14

dγ = −[S]NdT − [NAg]NdM +
∑

i,j=1,2

(τij − γ)deij, (2)
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where [S]N is the excess entropy defined the same way as the segregation, τij is the GB

stress, and eij is the lateral strain tensor parallel to the GB plane. Eq. (2) is a particular

case of a more general adsorption equation derived in the previous work.14 For the present

case, this equation has been simplified due to the absence of applied mechanical stresses.

Furthermore, given the narrow composition interval around the phase transformation, the

lateral strain is extremely small and the last term in Eq. (2) can be neglected. As a result,

Eq. (2) can be integrated with respect to M at a fixed temperature to obtain the free energy

of each GB phase relative to their common value γ∗:

γ − γ∗ = −
M̂

M∗

[NAg]NdM. (3)

This free energy is a function of M but can be readily converted to a function of c.

The function M(c) is known from MC simulations of the perfect lattice. For perform

the integration, this function was fitted by the expression M(c) = a0 +a1c+a2c
2 +a3log(c)

with adjustable coefficients ai. Likewise, the segregation isotherms (Fig. 3) were fitted

by [NAg]N(c) = b1c + b2c
2 with adjustable coefficients bi for each phase. After this, the

integration was executed analytically on either side of the equilibrium point, including

extrapolation to pure Cu (c = 0). The obtained GB free energies, γSK−γ∗ and γFK−γ∗, are

plotted in Fig. 4(a) as functions of grain composition. The striking observation is that the

free energy difference between the two phases is very small. Even in the pure Cu limit, this

difference is as small as 2.2 mJ/m2 (compare with the 0 K energy of this boundary, 0.951

J/m2).6 Near the phase equilibrium point (c = 0.02 at.%Ag), the phase transformation

can still be reliably detected when γSK − γFK is less than 0.1 mJ/m2! These numbers

demonstrate that using the proposed simulation methods, thermodynamic properties of

GB phases can be characterized with a high precision, including accurate location of phase

transformation points.

For pure Cu, the energy difference between the two GB phases at 0 K is γFK −γSK = 17

mJ/m2.6 The respective free energy difference at 900 K is 2.2 mJ/m2, i.e., a factor of seven

less. This is consistent with the proximity of temperature-induced phase transformation in

this GB, which was previously found to occur around 1050 K.6

Conclusions. – We have demonstrated that the temperature-induced GB phase trans-

formations found in previous work6 continue to exist in the presence of segregating solute

atoms, giving rise to segregation-induced GB phase transformations. Such transformations

are accompanied by a discontinuous jump in the amount of segregation and a change in the

segregation pattern from a single layer to a bilayer. We have studied this transformation at

a single temperature of 900 K. However, considering the small solute concentration causing

this transformation, it is likely to be a point on a phase transformation line that can be con-

veniently shown in coordinates temperature-composition [Fig. 4(b)]. This line terminates

at the temperature axis at around T = 1050 K. Another segregation-induced structural
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transformation was previously found in a twist GB in the Ni-Pt system.15 However, by

contrast to the present work, there was no evidence that a similar transformation occurs

in the pure Ni boundary. Most likely, that transformation represents an isolated region

on the temperature-composition phase diagram that is not connected to the temperature

axis. These two cases suggests that future atomistic simulations may reveal a rich variety

of congruent16 GB phase transformations, which can be presented as T -c phase diagrams

by analogy with bulk systems.

The thermodynamic integration scheme proposed in this work enables free energy cal-

culations for individual GB phases (relative to their common value at equilibrium) and

construction of GB phase diagrams. In particular, the entire phase transformation line

shown schematically in Fig. 3(b) can be calculated by the same method. This line could

be tested against predictions of interface thermodynamics. Because Eq. (1) must remain

valid along this line, we can use the adsorption equation (2) for each phase to derive the

following equation for the slope of the equilibrium line:

dT

dc
= − ∆[NAg]N (∂M/∂c)T T

∆[U ]N −M∆[NAg]N + ∆[NAg]N (∂M/∂T )c T
, (4)

where [U ]N is the excess internal energy of the GB and symbol ∆ denotes differences

between properties of the two phases. The quantities appearing in the right-hand side can

be computed separately to compare the right-hand side with the actual slope of the line.

The proposed method can be applied for calculations of not only phase equilibrium lines

but also spinodal lines and critical points. For example, the obtained segregation isotherms

[Fig. 3(a)] terminate at points of GB disorder. While investigation of the nature of this

disordering transition is beyond the scope of this paper, it is possible that these points

signify transformations to new phases that are yet to be discovered. Investigation of critical

phenomena in two-dimensional GB phases may present significant fundamental interest.
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(a)

(b)

Figure 1. Ag GB segregation patterns in the (a) split kite phase and (b) filled kite phase of the Cu

Σ5(210)[001]. The tilt axis [001] is normal to the page. The smaller blue and larger red spheres

represent Cu and Ag atoms, respectively. The segregation formed at the temperature of T = 900

K and diffusion potential M = 0.9 eV. The images are shown after a short MD run at T = 10 K

to remove thermal noise.
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Figure 2. GB phase transformation at T = 900 K and M = 0.48 eV. (a) Initial GB phase is split

kites (b) Nucleation of the filled kite phase at the surface. (c) The GB has completely transformed

to the filled kite phase.
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Figure 3. Ag GB segregation isotherms for the split kite (circles) and filled kite (triangle) phases

at the temperature of 900 K. The GB excess of Ag atoms per unit area is plotted as a function of

Ag concentration in the grains. (a) Summary of all results. The curves end when the GB phase

undergoes a disordering transition. (b) Zoomed view of the composition range near the GB phase

transformation at c = 0.02 at.%Ag. The filled and open symbols represent data for the stable and

metastable states, respectively.
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Figure 4. (a) Free energies of two GB phases, γSK and γFK , relative to their coexistence value

γ∗ as functions of Ag concentration in the grains. The phase transformation occurs at c = 0.02

at.%Ag. The results were obtained by thermodynamic integration at 900 K. (b) Schematic phase

diagram of GB phase transformations with the open circle showing the result of this work.
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