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Using a self-consistent Bogoliubov-de Gennes approach, we theoretically study the proximity-induced den-
sity of states (DOS) in clean SFF spin-valves with noncollinear exchange fields. Our results clearly demon-
strate a direct correlation between the presence of a zero energy peak (ZEP) in the DOS spectrum and the
persistence of spin-1 triplet pair correlations. By systematically varying the geometrical and material param-
eters governing the spin-valve, we point out to experimentally optimal system configurations where the ZEPs
are most pronounced, and which can be effectively probed via scanning tunneling microscopy. We complement
these findings in the ballistic regime by employing the Usadel formalism in the full proximity limit to investigate
their diffusive SFF counterparts. We determine the optimal normalized ferromagnetic layer thicknesses which
result in the largest ZEPs. Our results can serve as guidelines in designing samples for future experiments.

PACS numbers: 74.50.+r, 74.25.Ha, 74.78.Na, 74.50.+r, 74.45.+c, 74.78.FK, 72.80.Vp, 68.65.Pq, 81.05.ue

I. INTRODUCTION

The interplay of ferromagnetism and superconductivity in
hybrid superconductor (S) ferromagnet (F ) structures (S/F
structures) constitutes a controllable system in which to study
fundamental physics, including prominently that of compet-
ing multiple broken symmetries.1,2 The proximity of a con-
ventional s-wave superconductor with non-aligned ferromag-
netic layers, or a textured ferromagnet, induces both spin-
singlet and odd frequency3 (or equivalently odd-time4) spin-
triplet correlations with 0 and ±1 spin projections along a
spin quantization axis. These triplet pairs stem from bro-
ken time reversal and translations1,2 symmetries. This kind
of spin-triplet pairings originally suggested as a possible pair-
ing mechanism in 3He,3 has reportedly been observed in in-
termetallic compounds such as Sr2RuO4.5,6 SF heterostruc-
tures are particularly simple and feasible experimental sys-
tems which allow for direct studies of the intrinsic behavior of
differing superconducting pairings. Unlike the opposite-spin
correlations, spin-1 pairing correlations are rather insensitive
to the pair-breaking effects of ferromagnetic exchange split-
ting, and hence to the thickness of the magnetic layers, tem-
perature, and magnetic scattering impurities. The amplitudes
of the opposite-spin correlations pervading the adjacent fer-
romagnet, undergo damped oscillations as a function of po-
sition which reveals itself in 0-π transitions of the supercur-
rent.1,7–10 Since about a decade ago, several proposals have
been put forth to achieve attainable and practical platforms
that isolate and utilize the proximity-induced3,4 superconduct-
ing triplet correlations in SF hybrids.1,2

The signatures of the proximity-induced electronic den-
sity of states (DOS) in the F layers of these hybrid struc-
tures can reveal the existence and type of superconducting
correlations in the region.9–13 One promising prospect for un-
ambiguously detecting triplet correlations experimentally in-
volves tunneling spectroscopy experiments which can probe
the local single particle spectra encompassing the proximity-
induced DOS.11,12,14–29 Nonetheless, competing effects can
make analysis of the results of such a ‘direct’ probe of spin-

triplet superconducting correlations problematic. The DOS in
SNS junctions and SFS heterostructures where the magneti-
zation pattern of the F layer can be either uniform or textured
(including domain wall and nonuniform textures, such as the
spiral magnetic structure of Holmium) has been extensively
studied.11,12,20–22,30,31 It was found that the DOS in a nor-
mal metal sandwiched between two s-wave superconducting
banks shows a minigap which closes by simply tuning the su-
perconducting phase differences up to the value of π.11,12,21,22

In contrast, the DOS can exhibit anomalous behavior in in-
homogeneous magnetic layers. Namely, upon modulating the
superconducting phase difference11,12,23 a peak arises at zero
energy, at the center of what was a minigap. It was also shown
that the zero energy peak (ZEP) in the DOS for a simple
textured SFS junction can be maximized at a π bias.11,12,23

The minigap-to-peak behavior of the DOS at zero energy is
an important signature of the emergence of triplet correla-
tions.11,12,32 Recently it was theoretically proposed that the
minigap-to-peak phenomenon be leveraged for functionality
in device platforms such as SQUIDs, to enhance their per-
formance and as ultrasensitive switching devices, including a
singlet-triplet superconducting quantum magnetometer.23

An important spectroscopic tool for investigating proxim-
ity effects on an atomic scale with sub-meV energy resolu-
tion is the scanning tunneling microscope (STM). As shown
in Fig. 1, an SFF spin valve structure can be probed exper-
imentally by positioning a nonmagnetic STM tip at the edge
of the sample to measure the tunneling current (I) and volt-
age (V ) characteristics. This technique yields a direct probe
of the available electronic states with energy eV near the tip.
Therefore, the differential conductance dI(V )/dV over the
energy range of interest is proportional to the local DOS. Nu-
merous experiments have reported signatures of the energy
spectra in this manner.14,15,17–19,24–26,28 When ferromagnetic
elements are present, the superconducting proximity-induced
DOS reveals a number of peculiarities due to the additional
spin degree of freedom that arises from the magnetic layers.
However, the experimental signatures of the odd-frequency
spin-triplet correlations can be washed out by more dominate
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singlet correlations. When the exchange splitting h of the
magnetic layers is large (∼εF , i.e. close to the half metal-
lic limit), the characteristic length scale ξF that describes the
propagation length of opposite-spin pairs in the ferromagnets
is extremely small. These types of proximity-induced correla-
tions can thus only be experimentally observed in weak mag-
netic alloys h� εF (such as CuxNiy) or thin F layers so that
dF /ξF is sufficiently large to allow the opposite-spin super-
conducting correlations to propagate in the ferromagnet with-
out being completely suppressed.14,16,27 Since spin-1 triplet
pairs are not destroyed by the ferromagnetic exchange field
in strong magnets, there should exist certain system parame-
ters, e.g., ferromagnet widths and exchange fields, that result
in regions whereby equal-spin pairs are the only pair correla-
tions present. This scenario was explored in a S/Ho bilayer29,
where phase-periodic conductance oscillations were observed
in Ho wires connected to an ordinary s-wave superconductor.
This behavior was qualitatively explained in terms of the long-
range penetration of proximity-induced spin-1 triplet pairings
due to the helical structure of the magnetization.33 In prac-
tice however, simpler structures involving SF hybrids with
uniform exchange fields are often preferable from both an ex-
perimental and theoretical perspective.14,16,17,24–29 Therefore,
the primary aim of this work is the determination of experi-
mentally optimal parameters for probing odd-frequency spin-
1 triplet correlations with DOS signatures in nanoscale SFF
spin valves.

Nearly all of the past theoretical works on SFF struc-
tures have considered the diffusive case,34–38 where impurities
strongly scatter the quasiparticles. The clean regime has been
studied, using a self-consistent solution of the Bogoliubov-
de Gennes (BdG)39 equations, in Ref. 40. That work, how-
ever, focused largely on the transition temperature oscilla-
tions. The results for these oscillations were found41 to agree
with experiment and to be consistent with other experimen-
tally established42–49 results. In the present work, we use
the same general methods used there to study a simple SFF
structure with noncollinear exchange fields in the ballistic
regime, but we focus on a very different quantity which is
readily accessible experimentally, namely the local DOS and
its detailed low-energy structure. We strongly emphasize the
relation between the ZEP and the triplet pairing amplitudes. In
particular, given the assertion41 that variations in the transition
temperature in these valve structures are quantitatively related
to the average triplet pair amplitudes in the outer F layer, we
will search for, (and, as will be seen, find) correlations be-
tween the ZEP and these averages. This BdG study is com-
plemented with a briefer investigation of the corresponding
diffusive case. By considering both regimes, we will be able
to provide some general guidelines for future experiments.

The structure we study is schematically depicted in Fig. 1,
where the STM tip is positioned at the outermost F layer,
near the vacuum boundary. In the ballistic regime, we employ
the full microscopic BdG equations within a self-consistent
framework. From the solutions, we calculate the local DOS
over a broad range of experimentally relevant parameters, and
study its behavior at low energies. For the diffusive regime,
we make use of the quasiclassical Usadel50 approach to study

the diffusive SFF counterparts in the full proximity limit.
Our systematic investigations thus provide a comprehensive
guide into such spin valves. Utilizing experimentally realis-
tic parameters, we determine favorable thicknesses for the F
layers to induce maximal ZEPs, which occurs when the pop-
ulation of triplet correlations in the outer layer, dominates the
singlets.

The paper is organized as follows. In Sec. II we outline
the theoretical approaches used. In Sec. III, we present our
results in two subsections, pertaining to the ballistic and dif-
fusive regimes. In the ballistic case, we study the local DOS
for differing exchange field misalignments, exchange field in-
tensities, and interface scattering strengths. We also investi-
gate the singlet and triplet pairing correlations for similar pa-
rameters to determine how ZEPs in the DOS correlate with
the triplet correlations. In the diffusive case, we present two-
dimensional maps of the ZEP at different exchange field mis-
alignments, and SF interface opacity. Finally, we summarize
with concluding remarks in Sec. IV.

II. METHODS AND THEORETICAL TECHNIQUES

In this section, we first discuss the theoretical framework
used to study clean samples. We then outline the Usadel tech-
nique in the full proximity regime, which properly describes
dirty samples.

FIG. 1. (Color online) Schematic of the SFF spin-valve structure.
The ferromagnetic layers have uniform exchange fields located in
the yz plane. The exchange field of each layer is defined by ~h1,2 =
h0(0, sinβ1,2, cosβ1,2) in which β1,2 are the angle of the exchange
fields with respect to the z direction. The ferromagnets (F1, F2)
and superconductor (S) are stacked in the x direction with thickness
dF1, dF2, and dS , respectively. The STM tip is located at edge of
the SFF spin-valve.
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A. Microscopic approach: Bogoliubov-de Gennes equation

For the ballistic regime, we use the microscopic BdG equa-
tions to study SFF spin valve nanostructures. We solve these
equations in a fully self-consistent40,51 manner. A schematic
of the spin valve configuration is depicted in Fig. 1. The gen-
eral spin-dependent BdG equations for the quasiparticle ener-
gies, εn, and quasiparticle amplitudes, unσ , vnσ is written: H0 − hz −hx + ihy 0 ∆
−hx − ihy H0 + hz ∆ 0

0 ∆∗ −(H0 − hz) −hx − ihy
∆∗ 0 −hx + ihy −(H0 + hz)


un↑un↓
vn↑
vn↓



= εn

un↑un↓
vn↑
vn↓

 , (1)

where the pair potential, ∆(x), is calculated self-consistently
as explained below. This quasi one-dimensional system is de-
scribed by the single particle HamiltonianH0(x) as,

H0(x) ≡ 1

2m

(
−∂2x + k2y + k2z

)
− EF + U(x), (2)

where EF is the Fermi energy, and U(x) is the spin-
independent interface scattering potential which we take to
be of the form U(x) = H[δ(x− dF1) + δ(x− dF1 − dF2)].
The in-plane wavevector components, ky and kz , arise from
the translational invariance in the y and z directions. The sys-
tem is finite in the x direction, with widths of each F and S
layer shown in the schematic. Our method permits arbitrary
orientations and magnitudes of the magnetic exchange fields,
~hi (i = 1, 2), in each of the ferromagnet regions. Specifically,
we fix the exchange field in F2 to be aligned in the z direction,
while in F1, its orientation is described by the angle β1:

~h =

{
~h1 = h0(0, sinβ1, cosβ1), in F1

~h2 = h0ẑ, in F2,
(3)

where we consider the experimentally appropriate situation of
an in-plane Stoner-type exchange field interaction.

The spin-splitting effects of the exchange field coupled with
the pairing interaction in the S regions, results in a nontrivial
spatial dependence of the pair potential ∆(x). In general, it
is necessary to calculate the pair potential in a self consistent
manner by an appropriate sum over states:

∆(x) =
g(x)

2

∑
n

[un↑(x)v∗n↓(x) + un↓(x)v∗n↑(x)] tanh
( εn

2T

)
,

(4)

where g(x) is the attractive interaction that exists solely inside
the superconducting region and the sum is restricted to those
quantum states with positive energies below an energy cutoff,
ωD.

We now discuss the appropriate quantities that characterize
the induced triplet correlations. We define4,52 the following

triplet pair amplitude functions in terms of the field operators
in the Heisenberg picture,

f0(x, t) =
1

2
[〈ψ↑(x, t)ψ↓(x, 0)〉+ 〈ψ↓(x, t)ψ↑(x, 0)〉] ,

(5a)

f1(x, t) =
1

2
[〈ψ↑(x, t)ψ↑(x, 0)〉 − 〈ψ↓(x, t)ψ↓(x, 0)〉] ,

(5b)

where t is the relative time. With the quantization axis aligned
along the z direction, the time-dependent triplet amplitudes,
f0(x, t) and f1(x, t), can be written in terms of the quasipar-
ticle amplitudes:4,52

f0(x, t) =
1

2

∑
n

(
f↑↓n (x)− f↓↑n (x)

)
ζn(t), (6)

f1(x, t) =
1

2

∑
n

(
f↑↑n (x) + f↓↓n (x)

)
ζn(t), (7)

where we define fσσ
′

n (x) = unσ(x)v∗nσ′(x), and the time fac-
tor ζn(t) is written,

ζn(t) = cos(εnt)− i sin(εnt) tanh
( εn

2T

)
. (8)

Experimentally accessible information regarding the quasi-
particle spectra is contained in the local density of one particle
excitations in the system. This includes the zero-energy sig-
natures in the density of states (DOS), which present a pos-
sible experimental avenue in which to detect the emergence
of equal-spin triplet correlations within the outer ferromag-
net. The total DOS, N(x, ε), is the sum N↑(x, ε) + N↓(x, ε),
involving the spin-resolved local density of states (DOS), Nσ ,
which are written,

Nσ(x, ε) = −
∑
n

{
[uσn(x)]2f ′(ε−εn)+[vσn(x)]2f ′(ε+εn)

}
,

(9)
where σ denotes the spin (=↑, ↓), and f ′(ε) = ∂f/∂ε is the
derivative of the Fermi function.

B. Quasiclassical approach: Usadel equation

When the system contains a strong impurity concentration,
then for sufficiently small energy scales, the superconducting
correlations are governed by the Usadel equation. Following
Ref. 12, the Usadel equation50 compactly reads:

D
[
∂,G(r, ε)

[
∂,G(r, ε)

]]
+

i
[
ερ3 + diag

[
h(r) · σ,

(
h(r) · σ

)T ]
, G(r, ε)

]
= 0, (10)

in which ρ3 andσ =
(
σx, σy, σz

)
are 4×4 and 2×2 Pauli ma-

trices, respectively, and D represents the diffusive constant of
the magnetic region. The quasiclassical approach employed
in this section supports ferromagnets with arbitrary exchange
field directions; h(r) =

(
hx(r), hy(r), hz(r)

)
. In Eq. (10),
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G represents the total Green’s function which is made of Ad-
vanced (A), Retarded (R), and Keldysh (K) blocks. There-
fore, the total Green’s function can be expressed by:

G(r, ε) =

(
GR GK

0 GA

)
, GR(r, ε) =

(
G F
−F∗ −G∗

)
.

(11)

In the presence of ferromagnetism, the components of ad-
vanced block,GA(r), of total Green’s functionG can be writ-
ten as:

F(r, ε) =

(
f� f↑↓
f↓↑ f�

)
, G(r, ε) =

(
g� g↑↓
g↓↑ g�

)
. (12)

In this paper, however, we assume stationary conditions for
our systems under consideration, and hence the three blocks
comprising the total Green’s function are related to each other
in the following way: GA(r, ε) = −

[
ρ3G

R(r, ε)ρ3
]†

, and
GK(r, ε) = tanh(βε)

[
GR(r, ε) − GA(r, ε)

]
, where β ≡

kBT/2.
The SF interface controls the proximity effect. There-

fore, appropriate boundary conditions should be considered
to properly model the system. In our work, we consider
the Kupriyanov-Lukichev boundary conditions at the SF
interface53 which controls the induced proximity correlations
using a parameter ζ as the barrier resistance:

ζG(r, ε)∂G(r, ε) = [GBCS(θ, ε), G(r, ε)]. (13)

The solution for a bulk even-frequency s-wave superconduc-
tor GRBCS reads,33

ĜRBCS(θ, ε) =

(
1 coshϑ(ε) iσy sinhϑ(ε)
iσy sinhϑ(ε) −1 coshϑ(ε)

)
, (14)

where ϑ(ε) = arctanh(| ∆ | /ε).
The system local density of states, N (r, ε), can be ex-

pressed by the following equation:

N (r, ε) =
N0

2
Re
[
Tr
{
G(r, ε)

}]
, (15)

in which N0 is the density of state normal state.

III. RESULTS AND DISCUSSION

In this section, we describe our results. We start with those
for a ballistic SFF structure and then present the predictions
of Usadel formalism for diffusive samples.

A. Ballistic Regime

In this subsection we present the self-consistent results for
the ballistic regime. The numerical method used here to itera-
tively solve in a self consistent way Eqs. (1) and (4) has been
extensively described elsewhere,40,51 and details need not be
repeated here. In the calculations, the temperature T is held

constant at T = 0.05Tc, where Tc is the transition tempera-
ture of a pure bulk S sample. All length scales are normalized
by the Fermi wavevector, so that the coordinate x is written
X = kFx, and the F1 and F2 widths (chosen in the experi-
mentally relevant range of nanometers to tens of nanometers)
are written DFi ≡ kF dFi, for i = 1, 2. The ferromagnet F2

and superconductor thicknesses are set to fixed values, cor-
responding to DF2 = 400, and DS = 600, respectively. We
also assume a coherence length corresponding to kF ξ0 = 100.
One of our main objectives in this paper is to study the triplet
correlations, which are odd in time.4 To accomplish this, we
employ the expressions in Eqs. (6) and (7), which describe
the spatial and temporal behavior of the triplet amplitudes.
At t = 0 the triplet correlations vanish because of the Pauli
exclusion principle. At finite t, the triplet correlations gener-
ated near the S/F interface tend to increase in amplitude and
spread throughout the structure. We normalize the time t ac-
cording to τ = ωDt, and we set it to a representative40 value
of τ = 4. We can then study the behavior of the triplet ampli-
tudes f0 and f1 throughout the junction. To explore the prox-
imity induced signatures in the single-particle states, which
is the main purpose of this work, we then present a system-
atic investigation of the experimentally relevant local DOS.
All DOS results presented are local values taken at a fixed po-
sition near the edge of the sample in the F2 region. We char-
acterize interface scattering, when present, by delta functions
of strength H , which we write in terms of the dimensionless
parameter HB ≡ H/vF . Finally, we use natural units, e.g.,
~ = kB = 1 throughout.

Triplet and singlet pair correlations

Here we present results for both the triplet and singlet cor-
relations, calculated using Eqs. (6)-(7). For the cases shown
below, the absolute value of the singlet and triplet complex
quantities are averaged over the region of interest, which in
this case is the experimentally probed F2 region. An impor-
tant reason for focusing on those spatially averaged (over the
outer magnet) quantities, rather than the spatial profiles dis-
cussed in Ref. 40, is that it was experimentally shown41 that
these triplet averages perfectly anticorrelate with the transi-
tion temperatures, i.e. the spin valve effect. We also normal-
ize all pair correlations to the value of the bulk singlet pair
amplitude. We begin by showing, in Fig. 2, the spatially aver-
aged absolute value of the complex triplet amplitudes |f0,avg|
(with spin projection m = 0), and |f1,avg| (with spin pro-
jection m = ±1) along with the singlet |f3,avg|, (note that
f3(x) ≡ ∆(x)/g(x)) as functions of DF1. Each row of pan-
els corresponds to a different exchange field value: from top to
bottom rows, we have h/εF = 0.5, 0.1, and 0.05. Examining
the opposite spin correlations, f0 and f3, damped oscillatory
behavior with DF1 is evident: this is related to the spatial os-
cillation of the Cooper pair amplitudes (characterized by the
wavevector difference between spin-up and spin-down parti-
cles) due to their acquiring a center of mass momentum when
entering the magnet.54 Therefore, the wavelength of these os-
cillations varies inversely with the exchange field in F2 (this
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FIG. 2. (Color online) The absolute value of the normalized triplet
and singlet pair correlations, averaged over the F2 region, as a func-
tion of DF1. The exchange field strengths are (from top to bottom):
h/εF = 0.5, 0.1, 0.05. The relative exchange field orientations are
orthogonal, with β1 = π/2, and β2 = 0.

is why the DF1 range for the weaker exchange fields is ex-
tended). Quantum interference effects generate peaks in f0
and f3 that occur approximately when dF1/ξF = nπ, (i.e.
DF1 = nπ(h/εF )−1). In the ballistic regime, the length scale
that characterizes the damped oscillations is ξF = vF /(2h),
where vF is the Fermi velocity. The equal-spin amplitudes
f1, are seen to behave oppositely, with a phase offset of ap-
proximately π/2. Their magnitude declines more rapidly with
DF1, compared to the behaviors of f0 and f3. This is consis-
tent with f1 triplet generation being optimal for highly asym-
metric ferromagnetic layer widths.33 It is notable that the pe-
riodic occurrence of peaks in f1 when varying DF1, evolves
into a single maximum as h is reduced further.

One of the strengths of the microscopic BdG formalism
is having the ability to properly include the full microscopic
range of length and energy scales inherent to the problem.
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FIG. 3. (Color online) The spatially averaged (in F2) normalized
triplet and singlet pair correlations as a function of h/εF . As in
Fig. 2, the magnitude of each quantity is taken and averaged over
the F2 region. Each row of panels corresponds to a different F1

width, with DF1 = 15 (top row), DF1 = 10 (middle row), and
DF1 = 5 (bottom row). The relative exchange field orientations are
orthogonal, with β1 = π/2, and β2 = 0.

This includes the exchange energy h, which in our BdG
framework can span the limits from a nonmagnetic normal
metal (h/εF = 0) to a half-metallic ferromagnet (h/εF = 1).
It is particularly useful to consider the behavior of the sin-
glet and triplet correlations over this broad range of strengths
of h/εF . Thus, in Fig. 3, we show the same quantities as
Fig. 2, plotted now as a function h/εF . Again, we have or-
thogonal relative exchange field orientations, with β1 = π/2,
and β2 = 0. Each three-panel row corresponds to a differ-
ent F1 width: DF1 = 15, 10, and 5 (from top to bottom).
The central column reveals that the averaged equal spin am-
plitudes |f1,avg| displays regularly occurring prominent peaks,
the number of which varies with the length of the F1 region.
For the exchange fields and F1 widths considered in Fig. 2,
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FIG. 4. (Color online) Plots of the averaged singlet and triplet com-
ponents as a function of magnetic orientation β1. Here DF1 = 10,
and results for several magnetic strengths are shown, ranging from
weak to half-metallic.

the triplet f1 was generally weaker than either the singlet f3
or triplet f0. For the system parameters used in Fig. 3 how-
ever, we find that for narrow widthsDF1 and sufficiently large
exchange fields, the equal-spin triplet component f1 can dom-
inate the other pair correlations. In particular, for strong ferro-
magnets with h/εF ≈ 0.8, and thin F1 layers with DF1 = 5,
panels (g) and (i) illustrate that the f0 and f3 amplitudes con-
sisting of opposite spin pairs, are negligible due to the pair
breaking effects of the strong magnet. On the other hand, the
equal-spin pairs shown in panel (h) are seen to survive in this
limit. This has important consequences for isolating and mea-
suring this triplet component in experiments.

Having seen how the magnitude of the exchange field h
affects the singlet and triplet correlations, we next investi-
gate the effects of changing its direction. Therefore, we ex-
amine in Fig. 4, the behavior of the averaged singlet and
triplet amplitudes when changing the magnetic orientation an-
gle, β1. We again consider a broad range of exchange field
strengths, as shown in the legend. One of the more obvious
features is that the maximum of |f1,avg| typically does not
occur for orthogonal relative exchange fields,38 for smaller
β1 . 90◦, especially for stronger magnets. This is in agree-
ment with previous35,38,40,41,55–57 experimental and theoretical
results. Due to the non-monotonicity of |f1,avg| with h [see
Fig. 3(e)], the h/εF = 0.35 case seen in Fig. 4(b) is larger for
all β1 than for the weaker h/εF = 0.1 case. The singlet f3
and triplet f0 amplitudes are largest for antiparallel configu-
rations (β1 = 180◦), where the opposite exchange fields are
effectively weakened, with reduced spin-splitting effects on
the opposite-spin Cooper pairs. This is a well-known result.
The results also show that the relative magnetic orientation
angles leading to the minima of these two quantities are an-
ticorrelated with the angles at which the f1 correlations are
maximal. As seen in Figs. 4(a) and (c), |f0,avg| and |f3,avg|
decay much more abruptly as the value of h in the magnets ap-
proaches the half-metallic limit: this is consistent with the dis-
cussions above. Therefore, SFF structures involving strong
ferromagnets (h ∼ εF ) with β1 at or near orthogonal ori-
entations, can host larger generated triplet pair correlations
whereby |f1| � {|f0|, |f3|}, thus allowing for direct prob-
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FIG. 5. (Color online) Local spatial profiles of the real parts of the
triplet components f0 and f1 in the F2 region for a few different F1

widths, DF1. The exchange field in the ferromagnets corresponds to
h/εF = 0.5, and the relative exchange field orientations are orthog-
onal, with β1 = π/2, and β2 = 0.

ing of the spin triplet superconducting correlations in experi-
ments.

More detailed information regarding the triplet amplitudes,
can be obtained from the spatial profiles of the local triplet
correlations within the F2 region. In Fig. 5, we present the
real parts of the normalized f0(x) and f1(x) triplet compo-
nents in terms of the dimensionless coordinate X . Results are
plotted at four different values of DF1 as indicated in the leg-
end. The exchange fields in the ferromagnets has magnitude
corresponding to h/εF = 0.5, and the directions are mutually
orthogonal, with β1 = 90◦, and β2 = 0. For the time scale
considered here, the imaginary part of f0 is typically much
smaller than its real part. As to f1, its imaginary part is usually
not negligible, but it exhibits trends that are similar to those
for the real part. Examining the top panel, it is evident that
f0 exhibits the trademark damped oscillatory spatial depen-
dence arising from the difference in the spin-up and spin-down
wavevectors of the Cooper pairs. The oscillatory wavelength
is thus governed by the quantity 2πkF ξF = 2π(h/εF )−1,
which for our parameters corresponds to 4π. The modulat-
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ing f0 has the same wavelength for each DF1, although each
curve can differ in phase. The averaged f0 amplitudes are con-
sistent with this local behavior: Fig. 2(a) demonstrated that
when DF1 ≈ 5 and DF1 ≈ 10, there is an enhancement
of the f0 component, while for DF1 ≈ 3, it is substantially
reduced. The equal-spin f1 amplitudes, are shown in the bot-
tom panel of Fig. 5. Near the interface at X = 0, the f1
correlations are created, and then they subsequently increase
in magnitude until deeper within the ferromagnet, where they
clearly exhibit a gradual long-ranged decay. The trends ob-
served here are opposite to those in the top panel, where for
instance the DF1 = 3 case leads to maximal f1 triplet gener-
ation, in agreement with Fig. 2(b).

Local density of states

After the discussion of the salient features of the singlet
and triplet pair correlations in the outer F layer, we now turn
to the main topic of the paper: the local density of states
measured in F2. This is the experimentally relevant quan-
tity that can reveal the signatures of these correlations. The
damped oscillatory behavior of the pair correlations can lead
to spectroscopic signatures in the form of DOS inversions,58

and multiple oscillations.24 In the quasiclassical approxima-
tion,35,38,55,56 a ZEP can emerge from the long-range triplet
correlations33,59 in SFF systems. However, this approxima-
tion is not appropriate for experimental conditions involving
strong magnets and clean interfaces. It would be beneficial
experimentally to characterize the ZEP relation to the singlet
and triplet correlations and see how the ZEP may be a use-
ful fingerprint in identifying the existence of the long-range
triplet component. To properly do this over the broad range of
parameters found in experimental conditions, a microscopic
self-consistent theory that can accommodate the wide rang-
ing length and energy scales is needed. In this subsection, we
therefore present an extensive microscopic study of the ZEP
as a function of parameters such as F layer thicknesses, ex-
change energy, or interface transparency. These results are
then correlated with the self-consistent singlet and triplet pair
correlations in the previous subsection. In what follows, the
DOS is normalized by the DOS at the Fermi level NF , and
plotted vs the normalized energy ε/∆0, where ∆0 is the bulk
value of the pure S material gap at zero temperature. Our em-
phasis will be on energies within the subgap region ε ≤ ∆0,
where the ZEP phenomenon arises. Since the DOS is a local
quantity that depends on position [see Eq. (9)], in our calcula-
tions we assume the location to be near the edge of the sample
just below the STM tip as shown in Fig. 1.

To correlate the triplet amplitudes in Fig. 3 with the ZEP,
we begin by studying in Fig. 6 the sensitivity of the DOS to
a broad range of exchange field strengths h. Each panel cor-
responds to a different F1 width, DF1. As in all other fig-
ures, the superconductor thickness is fixed to six correlation
lengths. The range of h considered in each panel varies since
the largest ZEP depends on the relative values of h and DF1.
The top panel (DF1 = 5) clearly shows the progression of
the ZEP with h: Beginning with the smallest exchange field,
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FIG. 6. (Color online) Normalized (see text) local DOS. The multi-
ple curves in each panel are for different values of h/εF . Each panel
corresponds to a different value of DF1 (as labeled). The ferromag-
nets have exchange fields with orthogonal relative directions.

h/εF = 0.1, a moderate peak is observed that increases to
its maximum height and narrower width when h/εF = 0.2.
Further increases in h continuously diminish the ZEP, broad-
ening its width, until eventually it is effectively washed away.
This non-monotonic behavior is consistent with the ZEP be-
ing related to the presence of the f1 triplet amplitude near the
edge of the ferromagnet. This can be seen by reexamining
the triplet amplitudes in Fig. 3(h), where the exchange field
leading to the highest ZEP occurs when |f1,avg| is largest,
at h/εF ≈ 0.2. The same consistency is found between
Figs. 2(e) and (b) and the middle and lower panels of Fig. 3,
respectively. For both the DF1 = 10, 15 cases, the average
value of |f1| is largest near h/εF = 0.1. However, the sec-
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FIG. 7. (Color online) Normalized local DOS as a function of the
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ues of the width DF1. Each panel corresponds to a different h/εF :
h/εF = 0.05, 0.1, 0.5, and we consider orthogonal relative ex-
change fields.

ondary peak structure in Fig. 2 is not clearly refected in the
DOS.

Next we study the DOS counterpart to Fig. 2. The normal-
ized DOS, and the corresponding ZEP, are shown in Fig. 7 for
a broad range of widths DF1. The parameter values here are
similar to those used in Fig. 2, where each panel corresponds
to a different exchange field. In panel (a) with h/εF = 0.05,
the most prominent ZEP occurs for DF1 = 25, coinciding
with the F1 width that yields a local maximum for the m = 0
triplet amplitude f0 (see Fig. 2(g)). By comparison, the f1
component observed in Fig. 2(h), is smaller and lacks the mul-
tiple peak structure found for f0, at this weaker exchange field.
Therefore, the largest ZEP in the case of weak exchange fields,
does not necessarily occur when the triplet f1 is maximal; as
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FIG. 8. (Color online) Variation of the normalized local DOS with
the in-plane exchange field angle β1. The exchange field is fixed
along z in F2. Also, DF1 = 10, and h/εF = 0.1.

Fig. 2(h) demonstrated, |f1,avg| peaks at DF1 = 10 before
rapidly declining. For these weaker fields, it follows from
Fig. 2 that the magnitude of f0 exceeds that of f1. It would
appear then that it is the larger triplet component which de-
termines the ZEP structure. This is consistent with the known
result41 that the total value of the triplet component is corre-
lated with Tc. The next case in panel (b) corresponds also to
a moderately weak magnet with h/εF = 0.1, or double the
exchange field considered in panel (a). Since the frequency
of the oscillations involving the opposite-spin f0 amplitudes
[see Fig. 2(d)] also doubles, the maximum ZEP at DF1 = 12,
occurs at about half the F1 width found for the maximum
ZEP in (a). The equal-spin triplet correlations f1 were seen
in Fig. 2(e) to exhibit a single peak structure, but their magni-
tude is larger than at weaker fields. This is because typically
stronger magnets in this situation lead to an enhancement of
the f1 amplitudes. Lastly, we consider (bottom panel) a rel-
atively strong ferromagnet with h/εF = 0.5. For this case,
there are additional subgap peaks flanking the main ZEP. The
larger ZEP arises at smaller widths (DF1 = 7.5, 8.5) than for
weaker exchange fields, due to an increase in the frequency of
the oscillations as a function of DF1 for the f0 and f1 com-
ponents as seen in Fig. 2(a) and (b). Thus, the ZEP tends to
exhibit a structure that dampens and widens for strong mag-
nets, while the opposite is true for weaker ones and is cor-
related with the stronger of the m = 0 and m = ±1 triplet
components present.

Having established the behavior of the ZEP for differing
h/εF , we now fix the magnitude of the exchange fields in
each magnet and investigate the effects of varying their rela-
tive orientation. Figure 8 illustrates the normalized DOS for
the specific case DF1 = 10, and h/εF = 0.1. According
to Fig. 4(b), the equal-spin triplet component f1 is greatest
when β1 ≈ 90◦. Thus we would expect the ZEP to also
be maximal at this angle. Figure 8 shows that this is indeed
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FIG. 9. (Color online) Evolution of the ZEP with scattering strength
HB : The normalized local DOS is shown as a function of the di-
mensionless energy. Each curve depicts results for a different scat-
tering strength HB (see text). The system parameters correspond to
DF1 = 10, and h/εF = 0.1. The exchange fields in the ferromag-
nets are mutually orthogonal with β1 = 90◦, and β2 = 0◦.

the case. There the normalized DOS is shown for a range of
0◦ ≤ β1 ≤ 180◦ in increments of 30◦. Clearly the orthog-
onal relative exchange field (β1 = 90◦) configuration results
in the most prominent ZEP. When β1 deviates from this angle
towards the P (β1 = 0◦) or AP (β1 = 180◦) alignments, both
the triplet amplitude f1 and the ZEP decline until β1 = 0◦ or
180◦, whereby f1 = 0, and the ZEP has vanished. There is
a very slight but visible particle-hole asymmetry in the DOS
spectrum in Figs. 7 and 8 which can be traced to the assumed
parabolic band shape. It is more noticeable when strong inter-
nal fields are present.

Finally, in Fig. 9 we examine the effects of interface scat-
tering on the self-consistent energy spectra. We assume that
each interface has the same delta function potential barrier
with dimensionless scattering strength HB . We consider a
broad range of HB , from transparent interfaces with HB = 0,
to very high interfacial scattering, with HB = 1.6. By allow-
ing HB to vary, we effectively control the proximity effects:
a small HB results in stronger proximity coupling between
the F and S regions, while a large HB results in isolation of
each segment, and weak proximity effects. This is evident in
the DOS, as seen in Fig. 9, which has its largest ZEP when
HB = 0. The width and height of the ZEP is strongly in-
fluenced by the presence of interface scattering. Increasing
HB results in the ZEP widening while gradually diminishing
in height. Eventually, when the scattering strength reaches
HB ≈ 0.7, the peak begins to split. Further increments in
HB causes the peaks to separate and eventually proximity ef-
fects are so weakened that the DOS becomes that of an iso-
lated bulk ferromagnet. The two secondary subgap peaks that
lie symmetrically about the ZEP are seen to also decline in a

monotonic fashion as HB becomes larger.

B. Diffusive Regime

In this section, we consider a diffusive SFF junction in
the full proximity limit. We employ the Usadel approach de-
scribed in Sec. II to investigate the local DOS. As remarked
earlier, the quasiclassical method is limited to energies close
to the Fermi level. Hence, our discussion here will be limited
to relatively weak ferromagnets. As in the ballistic regime,
we consider heterostructures where the magnetic layers are
made of identical materials so that the ferromagnetic coher-
ence lengths are the same, ξF1 = ξF2 ≡ ξF , and we consider
the low temperature regime where T = 0.05Tc. Prior to cal-
culating the DOS, we normalize the Usadel equation by ξF ,
which in the diffusive regime is written, ξF =

√
D/h. Us-

ing this normalization scheme, the explicit dependency on the
exchange field is removed and the Usadel equation now in-
volves terms containing the ratio dF /ξF . This approach can
lead to easier pinpointing of regions in parameter space where
the ZEP is most prominent, and it also permits a broad range
of this ratio to be studied. We assume that the magnetic orien-
tation angle is fixed at β2 = 0, or equivalently h = (0, 0, hz).

We numerically solve the Usadel equation, Eq. (10), to-
gether with the mentioned boundary conditions. To find the
total Green’s function, we substitute the solution into Eq. (10)
and obtain the DOS. To determine the optimal geometry in
which the ZEPs are most pronounced, we present in Fig. 10
the ZEP at the topmost edge of the SFF structure, corre-
sponding to the location x = dF1+dF2. The two-dimensional
color mapping depicts the strength of the DOS at zero en-
ergy (the ZEP) as a function of the normalized F thicknesses,
dF1/ξF and dF2/ξF . In the top row panels, the internal field
of the F layers have a misalignment angle of β1 = π/2,
while for the bottom row β1 = π/6. The left, middle, and
right columns are for different opacities at the SF interface:
ζ = 1.0, 2.5, and 5.0, respectively. By increasing ζ, the over-
all strength of the proximity effects is effectively weakened:
it is evident that transparent SF contacts yield stronger ZEPs,
that persist in thicker F layers. It is also apparent that the
orthogonal case β1 = π/2 has more extensive regions in the
parameter space spanned by the F thicknesses with enhanced
ZEPs, as compared to the β1 = π/6 case. An important as-
pect of the ZEP that all cases investigated in Fig. 10 share, is
that it is strongest when dF1 � dF2. This finding is fully con-
sistent with low proximity bilayer SFF hybrids.55 Therefore,
for the parameters considered here, the ZEPs are strongest for
ζ = 1, 0.5ξF . dF1 . ξF , and 1.5ξF . dF2 . 3.5ξF .
The ratio of the F thickness to the length scale ξF is an im-
portant dimensionless quantity that appears in the normalized
Usadel equations, and consequently thinner dF1 and dF2, al-
low for stronger ferromagnets when studying the DOS in the
diffusive limit.

Finally, we study the sensitivity of the ZEPs to both the ori-
entation angle β1 and interface transparency parameter ζ. We
thus show in Fig. 11 the ZEP as a function of β1 over a wide
range of ζ, as shown in the legend. The geometric parameters
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FIG. 10. (Color online) Zero energy peak
in the DOS spectrum of diffusive SFF spin
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FIG. 11. (Color online) Zero energy peak of the DOS spectrum in
diffusive SFF spin valves as a function of exchange field orientation
β1 for several values of ζ, which controls the opacity of the SF
interface. We set β2 = 0 and rotate the exchange field direction of
F1 from the parallel (β1 = 0) to antiparallel (β1 = π) orientations.
We have chosen representative values of dF1 = 0.8ξF and dF1 =
3.5ξF , in accordance with the system parameters used in Fig. 10.

correspond to dF1 = 0.85ξF and dF2 = 3.5ξF , which resides
within the range of system widths studied in Fig. 10 resulting
in the largest ZEPs. In calculating the ZEP, we again consider
the DOS at the edge of the sample (see also Fig. 1). It is seen
that the interface transparency can significantly alter the be-
havior of the ZEP as the relative exchange field angle sweeps
from the P (β2 = 0◦) to AP (β2 = 180◦) orientations. For
example, when ζ = 1.0, the maximal ZEP is offset from the
orthogonal configuration, occurring at β2 ≈ 0.6π. By increas-
ing the barrier strength, this peak shifts towards larger β2, un-
til the relative exchange fields are nearly antiparallel. There
is also a simultaneous reduction in amplitude, due to the F
and S regions becoming decoupled as the proximity effects
diminish. Interestingly, as ζ increases, there is a splitting of
the main peak: weaker secondary peaks emerge. Eventually

however, for sufficiently large ζ, the opacity of the interface
causes the low energy DOS to be insensitive to β1, and the
ZEP flattens out. The ZEPs are also observed to disappear
when the relative exchange fields are collinear, corresponding
to the situation when the triplet amplitudes vanish in both the
diffusive and ballistic regimes (see also Fig. 4).

IV. SUMMARY AND CONCLUSIONS

In summary, we have employed a microscopic self-
consistent wavefunction approach to study the low energy
proximity induced local DOS in SFF spin valves with non-
collinear exchange fields in the clean limit. Our emphasis has
been on the results of STM methods that probe the outer F
layer. To identify the physical source of the corresponding
ZEPs that occurs for such data in these systems, we also cal-
culated the absolute value of the triplet pair correlations, av-
eraged over the outer F layer. We have done so for a broad
range of experimentally relevant parameters, including the ex-
change field strength and orientation, as well as thicknesses
of the ferromagnets. Our results demonstrate a direct link
between the spin-1 triplet correlations and the appearance of
ZEPs in the local DOS spectra, and point to system parame-
ters and configurations which would support larger equal-spin
triplet superconducting correlations. These correlations could
then be probed indirectly via single-particle signatures that are
measurable using local spectroscopy techniques. Our results
are consistent with41 findings relating the average strength of
triplet correlations to the angular dependence of the transi-
tion temperature. Our findings suggest that the ZEPs arising
from the spin-1 triplet amplitudes can be effectively isolated
in SFF systems with strong ferromagntets, with the outer one
being very thin. This asymmetric geometry not only produces
greater equal-spin triplet generation, but it can also filter out
the rapidly decaying opposite-spin pairs deep within the sam-
ple. Our findings on STM techniques can be combined with
conductance spectroscopy37 studies in SFF devices. We also
considered the same valve structure in the diffusive regime
utilizing a Green function method within the full proximity
limit. Our investigations yielded a broad range of F layer
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thicknesses and relative exchange fields orientations that lead
to observable signatures in the low energy DOS, thus also giv-
ing useful guidelines for future experiments.
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