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Chiral and critical spin Liquids in spin-1/2 kagome antiferromagnet

W. Zhu, S. S. Gong, and D. N. Sheng
Department of Physics and Astronomy, California State University, Northridge, California 91330, USA

The kagome spin-1/2 systems have attracted intensive attentions in recent years as the primary candidate for

hosting different gapped spin liquids (SL). To uncover the nature of the novel quantum phase transition between

the SL states, we study a minimum XY model with the nearest neighbor (NN) (Jxy), the second and third NN

couplings (J2xy = J3xy = J ′

xy). We identify the time reversal symmetry broken chiral SL (CSL) with the turn

on of a small perturbation J ′

xy ∼ 0.06Jxy , which is fully characterized by the fractionally quantized topological

Chern number and the conformal edge spectrum as the ν = 1/2 fractional quantum Hall state. Interestingly,

the NN XY model (J ′

xy = 0) is shown to be a critical SL state adjacent to the CSL, characterized by the gapless

spin singlet and spin triplet excitations. The quantum phase transition from the CSL to the gapless critical SL is

driven by the collapsing of the neutral (spin singlet) excitation gap. The effect of the NN spin-z coupling Jz is

also studied, which leads to a quantum phase diagram with an extended regime for the gapless SL.

PACS numbers: 73.43.Nq, 75.10.Jm, 75.10.Kt

I. INTRODUCTION

The spin liquid (SL) is an exotic state of matter which
escapes from forming the conventional orders even at zero
temperature1. Different from a featureless insulator, a
gapped SL develops a topological order2–4 with fractional-
ized quasiparticles encoded in the long-range entanglement of
system5. The SL physics may play a fundamental role for un-
derstanding strongly correlated systems and unconventional
superconductivity6–21. There have been intensive studies of
SL in frustrated magnetic systems, however, the discovery of
SL has been rare in the past. A few frustrated magnetic sys-
tems on square and honeycomb lattices have been proposed
as the candidates for gapped topological SL22–25, but further
studies find that the competing plaquette valence-bond solid
may dominate the magnetic disorder region26–29.

Interestingly, the nearest neighbor (NN) dominant spin-
1/2 kagome Heisenberg model has been identified to host a
gapped SL based on the state of art density matrix renormal-
ization group (DMRG) calculations30–33, where a near quan-
tized topological entanglement entropy34,35 has been found
consistent with a Z2 SL32,33. The topological degeneracy as a
signature evidence for such a gapped topological state2,8–10,36

has not been fully established, while different methods have
been applied to tackle this problem31,37. Meanwhile, the vari-
ational studies find that the Dirac gapless SL has the lower
variational energy among different states38,39. The nature of
the SL in the kagome Heisenberg model remains not fully un-
derstood.

By introducing the second- and third- NN couplings for
the spin-1/2 kagome systems40, DMRG studies41,42 discover
the Kalmeyer-Laughlin CSL theoretically predicted more than
20 years ago43–47, which spontaneously breaks time reversal
symmetry (TRS) and is identified as the ν = 1/2 fractional
quantum Hall (FQH) state43,44,48. Interestingly, the CSL state
is also found in the spin anisotropic kagome model involving
the second and third NN xy-plane couplings49, or by intro-
ducing the TRS breaking three-spin chirality interactions50.
However, the nature of the quantum phase transition, espe-
cially how the quantum state and entanglement spectrum (ES)

evolve near such a transition have not been addressed. We do
not know what a physical mechanism can drive the quantum
phase transition in such a system, and if the emergence of the
previously identified gapped SL for the NN kagome Heisen-
berg model has close connection with the collapsing of the
CSL51. Our work is motivated to address these open ques-
tions.

Along with theoretical developments, experiments also dis-
cover different promising SL candidates in the triangular or-
ganic compounds52–54 and kagome antiferromagnets Herbert-
smithite and Kapellasite Cu3Zn(OH)6Cl2 in recent years55–60.
These materials appear to have gapless excitations as revealed
by the specific heat and neutron scattering measurements56–59.
Thus, it would be extremely interesting to also search for some
minimum spin-1/2 kagome model which can host a gapless
SL. Our calculation indicates that the kagome spin XY model
is a suitable starting point for such a purpose, as the XY-
plane interactions may help to realize the gapless vortex liquid
through the fractionalization of vortices61–63.

In this paper, we address the quantum phase diagram and
the nature of the collapsing of CSL in kagome spin system
based on DMRG and exact diagonalization (ED) calculations.
We study the spin-1/2XXZ kagome model with extended XY
interactions49, which is the promising candidate for a gapless
SL. As shown in the inset of Fig. 1(a), the spin-XY model
Hamiltonian is given as

H = (Jxy/2)
∑

〈i,j〉

(S+
i S−

j + h.c.) + Jz
∑

〈i,j〉

Sz
i S

z
j

+ (J ′
xy/2)

∑

〈i,j〉′

(S+
i S−

j + h.c.), (1)

where the summations are taken over the NN 〈i, j〉, the sec-
ond and third NN 〈i, j〉′ couplings. We set Jxy = 1 as energy
scale. We also set the equal second- and third-neighbor cou-
plings as we find interesting topological phases are stabilized
around that region64. Our main results are summarized as the
phase diagram in Fig. 1(a). First of all, for the XY model with
Jz = 0, we establish a CSL for J ′

xy & 0.06 based on the
topological features of the state which include the conformal
chiral edge spectrum in accordance with the ν = 1/2 FQH
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state and the topological quantized Chern number C = 1/2.
We also find the robust chiral long range correlation for the
CSL phase based on finite size scaling of wider systems. We
identify the physical driving force for the destruction of the
CSL as the collapsing of the singlet excitation gap with re-
ducing J ′

xy. Following the evolution of ES, we find that the
phase transition takes place through the coupling between the
low-lying entanglement states with opposite chiralities, which
naturally leads to a critical state with TRS and gapless neutral
excitations65,66. Our results represent a significant progress
in understanding the connection between different SLs49 by
identifying the mechanism of the phase transition and estab-
lishing the characteristic nature of the critical SL phase adja-
cent to the CSL.

We use DMRG67 and ED to study cylinder and torus sys-
tems with the geometry shown in the inset of Fig. 1(a). The
number of sites in cylinder (open boundary condition in the
x-direction) or torus system is N = 3 × Ly × Lx with Lx

and Ly as the numbers of unit cell in the x and y directions68.
We perform the flux insertion simulations on cylinder systems
based on the newly developed adiabatic DMRG to detect the
topological Chern number41. In DMRG studies we keep up to
8000 − 10000 states for most of the simulations for accurate
results. For the gapless SL regime, the convergence becomes
difficult, where we mainly present spin excitation gap which
is well converged as it only depends on the average local bond
energy.

The remaining of the paper is organized as following: In
Sec. II, we present the evidence of CSL in the phase diagram,
including the measurements of spin-spin correlation, chiral-
chiral correlation and characteristic edge mode counting from
entanglement spectrum. In Sec. III, we determine the phase
boundary using the fractional Hall conductance (Chern num-
ber). In Sec. IV, we study the response of of the entanglement
spectrum to a flux inserting in the cylinder geometry. In Sec.
V, we show the evolution of energy spectrum and spin gap
when tuning the parameter crossing the phase boundary. Fi-
nally, in Sec. VI, we summarize our main results and discuss
open questions.

II. CHIRAL SPIN LIQUID PHASE

CSL is a TRS-broken SL phase which can be identified
by various characteristic properties. First, CSL is a topo-
logical ordered state that hosts two-fold topological degen-
erate groundstates41. The ES for these two states, labeled by
the quantum number total Sz of the half system, and their
relative momentum quantum number along the y direction
∆ky

69,70, are shown in Figs. 1(c) and 1(d). The leading ES has
the robust degeneracy pattern {1, 1, 2, 3, 5, 7} with increas-
ing ∆ky in each Sz sector, which follows the chiral SU(2)1
Wess-Zumino-Witten conformal field theory description of
the ν = 1/2 FQH state71 as the fingerprint for the emer-
gence of the CSL72. The spectra of the vacuum and spinon
sectors are symmetric about Sz = 0 and − 1

2 respectively, in-

dicating a spin- 12 spinon at each end of cylinder in the spinon
sector. The chiral edge spectrum is robust in different system
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FIG. 1: (color online) (a) Schematic phase diagram of the spin-1/2
kagome model with Hamiltonian Eq. (1), where both the CSL and a

critical SL with gapless singlet excitations are identified. The gapped

SL31 may exist neighboring with the critical SL. (b) Log-linear plot

of chiral correlation 〈χiχj〉 versus the distance of triangles Rij along

the x direction for the ground state in the vacuum sector. (c) and (d)

are the ES of the groundstates obtained using iDMRG in the vac-

uum and spinon sectors, respectively. λi is the eigenvalue of reduced

density matrix.
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FIG. 2: (color online) (a) and (b) are the chiral correlations for the

XY model (Jz = 0) with J ′

xy = 0.1 and 0.3 on the cylinders with

Ly = 4, 5, 6. (c) and (d) are the spin correlations of the xy compo-

nent |〈Sx
i S

x
j +Sy

i S
y
j 〉| and the zz component |〈Sz

i S
z
j 〉| for the same

systems with Ly = 4 and 6.
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sizes (with the counting {1, 1, 2, 3} for the four momentum
quantum numbers in the Ly = 4 system. See Supplemental
Material68).

Second, CSL breaks TRS but preserves lattice symme-
tries, which can be detected by the chiral order parameter
χi = (Si1 × Si2) · Si3 (i1, i2, i3 ∈ △i(▽i) triangle)45. As
shown in Fig. 1(b) of the chiral correlations 〈χiχj〉 between
the up-triangles i and j as a function of distance Rij (for a
system with Lx = 24, Ly = 4), the chiral correlations are en-
hanced gradually and appear to approach finite values at large
distance for larger J ′

xy ∼ 0.3, which indicates the emerg-
ing long-range chiral order that characterizes the spontaneous
TRS breaking. We also find that the chiral correlations grow
with increasing system width for J ′

xy > 0.06. As shown in
Figs. 2(a) and 2(b), at J ′

xy = 0.1, the chiral correlations decay
exponentially to vanish at Ly = 4, while the chiral correlation
is strongly enhanced for Ly = 5 system. As we increase the
system width to Ly = 6, 〈χiχj〉 is very flat with a value near
independent of Rij at large distance. At J ′

xy = 0.3, long-
range chiral correlations are found for all system sizes. As
shown in Figs. 2(c) and 2(d), in sharp contrast to the long-
range chiral correlations, both the spin correlations of the xy
component |〈Sx

i S
x
j +Sy

i S
y
j 〉| and the zz component |〈Sz

i S
z
j 〉|

exhibit the exponential decay behavior for both system widths
Ly = 4 and 6, indicating the vanished conventional spin order.

III. FRACTIONAL QUANTIZATION OF TOPOLOGICAL

CHERN NUMBER

To reveal the full topological nature of the CSL phase, we
perform the flux insertion simulation to obtain the topolog-
ical Chern number41. By adiabatically inserting flux θ, we
find that the nonzero spin-z polarization start to build up at
both edges of cylinder. One example (θ = π/4) is shown in
Fig. 3(a). The net spin-z near boundaries grows monotoni-
cally with increasing θ as shown in Fig. 3(b), which is equiv-
alent to the spin being pumped from the left edge to the right
edge without accumulating in the bulk. As shown in Fig. 3(c),
the linear spin pump behavior for Ly = 6 cylinder leads to a
quantized net spin transfer ∆Sz|edge = 0.500 at θ = 2π and
a quantized Chern number C = 1/2, fully characterizing the
state as the ν = 1/2 FQH state41,47,73. For the system with
Ly = 4 as shown in the inset of Fig. 3(c), we find some finite
size effect as the spin pump initially is zero for small θ, which
jumps to the expected values of the linear pumping at a larger
θ for J ′

xy = 0.1, 0.2. However, the same topological quanti-
zation C = 1/2 is observed for Ly = 4 and Ly = 5 systems
for CSL demonstrating the robust of the topological phase.
The CSL is protected by the finite bulk excitation gap (shown
later in Fig. 5) and grows stronger with increasing system
width. Based on the quantized Chern number established for
Ly = 4− 6 cylinders with different geometries68 and the con-
formal edge spectra, we find the CSL phase for J ′

xy & 0.06 as
shown in the phase diagram Fig. 3(d) for Jz = 0.
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FIG. 3: (color online) (a) Spin magnetization 〈Sz
x,y〉 at Ri = (x, y)

after adiabatically inserting a flux θ = π/4. The area of the cir-

cle is proportional to the amplitude of 〈Sz
x,y〉. The blue (red) color

represents the positive (negative) 〈Sz
x,y〉. (b) Accumulated spin mag-

netization 〈Sz
x〉 =

∑
y〈S

z
x,y〉 in each column with inserting flux. (c)

Net spin transfer ∆Sz|edge as a function of θ on Ly = 6 cylinder.

The inset shows the results on Ly = 4 cylinder. (d) Phase diagram

of the XY kagome model (Jz = 0).

IV. ENTANGLEMENT SPECTRUM FLOW

The CSL and the critical state can be understood based
on the response of ES to inserted flux74,75. For a CSL at
J ′
xy = 0.1, as shown in Fig. 4, the eigenvalues of the re-

duced density matrix are degenerating about the ±Sz sectors
at θ = 0. By increasing θ, the spectrum lines in the positive
Sz sectors flow up continuously, while those in the negative
Sz sectors flow down (this is selected by the sign of Chern
number due to spontaneous TRS breaking). At θ = 2π, the
eigenvalues in the Sz = 0 and Sz = −1 sectors become de-
generate. As a result, after inserting a flux quantum, a net
spin transfer ∆S|L = 〈Sz |L〉 =

∑
i λiS

z
i = −1/2 (the

sign may change in each DMRG result due to the spontaneous
TRS breaking) is realized and the spectrum becomes symmet-
ric about Sz = −1/2. Thus the ES flow directly detects the
gapless feature in the edge spectrum through inserting flux.
By inserting 4π flux, the ES continues to flow and, it becomes
symmetric about Sz = −1 at θ = 4π, indicating two spinons
have been transferred from the left edge to the right edge while
the bulk of the system goes back to the vacuum sector. Fur-
thermore, once the phase transition takes place, the ground-
state wavefunction recovers TRS, and all the low-lying entan-
glement states become real states coming from the mixing be-
tween eigenstates with opposite chiralities. Correspondingly,
the edge states with opposite chiralities also mix and merge
into the bulk and become the low energy gapless excitations
in the bulk76.
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V. LOW-ENERGY EXCITATIONS

We first study the evolution of the low-energy singlet exci-
tations in the Sz = 0 sector as a function of J ′

xy for the XY
model (Jz = 0). As shown in Fig. 5(a) of the spectrum for
36-site torus system in k = (0, 0) sector, we find two low-
energy near degenerate groundstates separated by a finite sin-
glet gap Es from higher energy excitations in the CSL phase
at the large J ′

xy ≃ 0.2 side. With decreasing J ′
xy , Es reduces,

which collapses to the ground state at J ′
xy ∼ 0 − 0.05. Thus

the quantum phase transition from the CSL to the TRS pre-
serving state is driven by such a neutral excitation gap clos-
ing. For comparison, we also obtain the triplet gap ET in the
DMRG calculations using torus systems with N = 3× 4× 3,
3 × 4 × 4 and 3 × 4 × 8 as shown in Fig. 5(b)77. ET drops
with reducing J ′

xy and it becomes much smaller for N = 96

system when approaching J ′
xy = 0. Finite size scaling68 in-

dicates that the spin gap vanishes in the thermodynamic limit.
Thus, our results indicate that the critical state is centered near
J ′
xy = 0, with the vanishing spin singlet and triplet gaps. The

appearance of low-energy singlet excitations below the finite-
size spin gap can be understood as the gapless neutral mode
for the topological quantum phase transition65,66, which nec-
essarily exists for such a transition.

Furthermore, we examine the low energy spectra of the NN
XXZ model (J ′

xy = 0) on N = 3 × 4 × 3 torus. As shown
in Figs. 5(c-e) for Jz = 0.0, 0.5 and 1.0, we find near contin-
uous low energy excitations78 collapsing together below the
spin triplet gap, which implies the gapless singlet excitations
in the whole critical SL region. The structure of the energy
spectra remains very similar, however, the finite size spin gap
increases with the growing Jz . The finite size scaling using
different torus systems indicates that the spin gap behavior is
quite different for the NN XY model (which vanishes) and the
Heisenberg model, while in the latter the spin excitation may
remain to be gapped consistent with the gappedZ2 SL there68.
We summarize our results as the phase diagram with varying
Jz and J ′

xy in Fig. 1. While we determine the phase bound-
ary of CSL accurately, we cannot determine the precise phase
boundary of the critical SL at the smaller J ′

xy side due to the
limited system width we can access in DMRG simulations.
The gapped SL31 may exist neighboring with the critical SL
close to the NN Heisenberg model. Very recently, by using
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FIG. 5: (color online) (a) Evolution of ED low-energy spectrum in

the k = (0, 0) sector with J ′

xy for the XY model on the 3 × 3 ×
4 torus. The singlet gap between the lowest two groundstates and

higher-energy states is denoted as Es. (b) J ′

xy dependence of spin

gap ET for the XY model on 3×3×4, 3×4×4, and 3×4×8 tori.

Low-energy spectrum of the NN XXZ model (J ′

xy = 0) at k = (0, 0)
and (0, π) sectors for (c) Jz = 0.0, (d) Jz = 0.5, and (e) Jz = 1.0
on the 3 × 3 × 4 torus. The label (±1,±1) denote the quantum

numbers related to spin inversion and lattice π−rotation symmetries.

the variational Monte Carlo technique, Ref.79 found that U(1)
gapless spin liquid and critical behavior is more robust near
the XY limit, which is consistent with our DMRG calculation
here.

VI. SUMMARY AND DISCUSSIONS

We identify a TRS broken CSL phase with a small pertur-
bation J ′

xy ≃ 0.06 in the Jxy − J ′
xy XY model, while the

NN XY model is in a critical phase adjacent to the CSL with
vanishing spin singlet and triplet excitation gaps. Our CSL
extends to small J ′

xy based on finite-size scaling of wider sys-
tems, which is different from a recent work mainly based on
Ly = 4 DMRG results49. Furthermore, by studying the evo-
lution of ES crossing the quantum phase transition and spin
gap, we identify that the quantum phase transition takes place
through the coupling and mixing of the chiral states with op-
posite chiralities, which naturally lead to a critical state with
TRS and gapless neutral excitations for NN XY model. The
quantum phase transition appears to be very smooth, which
is driven by the continuous closing of the gap for spin singlet
excitations. Furthermore, the gapped Z2 SL31 may develop
on larger systems in the NN model near the Heisenberg point,
through opening the vison gap from the gapless neutral exci-
tations outside the critical SL.
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Appendix A: Infinite DMRG algorithm

We use both finite and infinite density matrix renormaliza-
tion group (iDMRG)80 to study this model. In the iDMRG
algorithm, we first start from a small system size. Then we
insert one column in the center and optimize the energy by
sweeping the inserted column. After the optimization, we ab-
sorb the new column into the original existing system and get
the new boundary Hamiltonians. We repeat the inserting, opti-
mizing and absorbing procedure until the energy convergence
is achieved. Compared with the finite DMRG simulation,
iDMRG grows the lattice by one column at each iteration and
only sweeps the inserted column, thus the computation cost is
significantly reduced. iDMRG is especially efficient to deal
with the gapped topological order system, which allows us to
obtain the ground states with well-defined anyonic flux as first
proposed in Ref.81. In our work, we have confirmed that the
iDMRG obtains the fixed-point ground state wavefunction in
the center of cylinder that is the same as that obtained from
the finite DMRG simulations (the same energy and the iden-
tical entanglement spectrum within the numerical error.). We
extensively use the iDMRG for entanglement spectrum calcu-
lations. However, for the chiral correlation function involv-
ing six spin operators, we use finite DMRG to obtain more
converged results. The topological Chern number is the total
Berry phase associated with the chirality of the system, which
is robust and easy to calculate due to the topological invari-
ant. We obtain the same results for Chern number using either
iDMRG or finite DMRG.

In our DMRG calculations, we ensure the convergence
of results by checking the truncation error, and measuring
the physical quantities such as energy, correlation functions,
Chern number, and entanglement spectrum with increasing
kept states to confirm whether the quantities are converged.
On the Ly = 6 cylinder, we find that the topological proper-
ties such as Chern number and chiral edge spectrum are eas-
ier to converge and are converged in our calculations, which
are used as our primary quantities to identify the chiral spin
liquid. Chiral correlation functions are harder to converge,
so we keep increasing optimal states to make sure the ob-
tained correlation functions are almost invariant with growing
kept states. In the parameter points near the transition, we
have worked with shorter system (Lx = 16) to keep up to
m = 14000 states for converged chiral correlations (shown in
Fig.2 of main text).

Around J ′
xy = 0 for the possible gapless regime, it is harder

(b) XC-geometry

(a) YC-geometry

FIG. 6: (color online) Kagome cylinder on (a) YC geometry and (b)

XC geometry. The cylinders are closed in the y direction and opened

in the x direction.

to reach the convergence. So we focus on the smaller torus
systems (3×3×4, 3×4×4, and 3×4×8) and our spin gap is
converged with increasing the number of states tom = 10000.

Appendix B: Entanglement spectrum on XC geometry

There are two kinds of cylinder geometries on kagome lat-
tice often being studied in DMRG as YC-geometry in Fig.
6(a) and XC-geometry in Fig. 6(b). In the main text, the
demonstrated results are all based on YC-geometry. Here we
show that the entanglement spectrum and the spectrum flow
shown on YC-geometry are robust and insensitive to the lat-
tice geometry. In Fig. 7, we demonstrate the entanglement
spectrum flow for Jz = 0, J ′

xy = 0.1 on Ly = 6 XC-
geometry. The features of the spectrum flow are consistent
with the results on YC-geometry shown in Fig. 4 of the main
text. The eigenvalues in the Sz = 1 and Sz = −1 sectors are
degenerate at θ = 0. By increasing flux θ, the eigenvalues in
Sz = 1 sector flow up while those in Sz = −1 sector flow
down continuously. At θ = 2π, the eigenvalues in the Sz = 0
and Sz = −1 sectors become degenerate, which results in
a fractionally quantized Chern number C = 1/2. Thus, the
phase diagram shown in the main text is robust for different
geometries.
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FIG. 8: (color online) (a) Entanglement spectrum for Jz =
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xy = 0.1 on Ly = 6 YC cylinder, which is obtained by keep-

ing 3000 states. The red arrow denoted as vc indicates the two low-

est values in k = 0 and 2π/Ly sectors that are used to calculate the

chiral velocity. (b) Near degenerating pattern for the low-lying en-

tanglement spectra with different relative momentum ∆ky and total

spin Sz for the same system in (a). ∆ky is in unit of 2π/6. All

results are obtained using iDMRG.

Appendix C: Chiral Velocity From Entanglement Spectrum and

its Evolution

Entanglement spectrum resembles the edge excitation spec-
trum that can be viewed as a fingerprint of topological or-
der. In the main text, we show the entanglement spectrum
at Jz = 0.0, J ′

xy = 0.3 in Fig. 1(c) and 1(d). The characteris-
tic chiral edge spectrum indicates the chiral spin liquid (CSL)
state. Here we show the spectrum at Jz = 0.0, J ′

xy = 0.1 on
YC-geometry, which is closer to the phase boundary J ′

xy ≃
0.06Jxy. As shown in Fig. 8, the entanglement spectrum also
exhibits the degeneracy pattern {1,1,2,3,5,...} consistent with
the CSL state.

Entanglement spectrum gives not only the characteristic de-
generacy pattern of the edge excitation, but also the edge-
mode velocity82. In the conformal field theory, the edge-mode
of the Laughlin state is described by a single branch of chiral
charged bosons. The velocity of the charged bosons vc is not
an universal quantity as it depends on the microscopic inter-

action and edge confinement. In the cylinder geometry, we
can define vc through the lowest values of entanglement spec-
trum with edge momentum k = 0 and k = 2π

Ly

: vc = ∆E
~∆k =

E0(k=2π/Ly)−E0(k=0)
~2π/Ly

, where E0(k) = min{−lnλ(k)} is the

lowest eigenvalue with edge momentum k. Thus, from our

results on YC-geometry, we have
vc(J

′

xy
=0.1)

vc(J′

xy
=0.3) ≈ 0.439. Al-

though the CSL state is still robust at J ′
xy = 0.1, the edge-

mode velocity is reduced compared to J ′
xy = 0.3 in the deep

CSL phase. With further decreasing J ′
xy, we find that the dif-

ference of the lowest value between the momentum sectors
k = 0 and k = 2π/Ly continuously decreases before the
quantum phase transition takes place. The reducing of chiral
velocity obtained from entanglement spectrum is related with
the drop of the bulk excitation gap with decreasing J ′

xy, which
is consistent with a very weakly first order transition or a con-
tinuous transition driven by the collapsing of the bulk gap and
the destruction of the gapless edge states at the same time.

With decreasing J ′
xy , the robust Chern number quantization

and the spectrum flow persist to J ′
xy ≃ 0.06. By following

the evolution of the ES, we find that the CSL is becoming less
strong at the smaller J ′

xy, where the chiral velocity vc dimin-
ishes with decreasing J ′

xy . As illustrated in Fig. 9(a) and (b),
we observe that the ES as a function of quantum number Sz

before and after the phase transition appear to be similar at
J ′
xy = 0.1 and 0.0. However, they are significantly different

in momentum space. The spectrum for J ′
xy = 0.1 preserves

the same robust conformal chiral edge spectrum as demon-
strated in Fig. 8 with many entanglement eigenstates carrying
nonzero ky . Once the phase transition takes place, the ground-
state wavefunction has TRS, and the low-lying entanglement
states shown in Fig. 9(b) have the momentum quantum num-
ber ky either 0 or π if they are nondegenerate, which comes
from the mixing between eigenstates with opposite chiralities.
Furthermore, these low-lying eigenstates do not respond to the
inserted flux. The mixing of entanglement states with opposite
chiralities illustrates what happens to the physical edge states.
These edge states with opposite chiralities also mix and merge
into the bulk and become the low energy gapless excitations in
the bulk. These observations are consistent with the theoret-
ical prediction for the quantum phase transition between two
states with different Chern numbers65,66. Interestingly, the ES
for the NN kagome Heisenberg model in Fig. 9(c) is similar
to the one of the NN XY model.

Appendix D: Chiral Spin Liquid phase when Jz 6= 0

In the main text, we show the entanglement spectrum of
the CSL phase in the XY model (Jz = 0). Here, to demon-
strate the CSL phase can extend from Jz = 0 to nonzero Jz ,
we show the entanglement spectrum for two more parameter
points as shown in Fig. 10. It is found that the leading ES
has the robust degeneracy pattern {1, 1, 2, 3, 5, · · · } with in-
creasing ∆ky in each Sz sector. The entanglement spectrum
signals that the characteristic edge mode counting of the CSL
phase. We also show that the entanglement spectrum has the
same characteristic feature for Ly = 4 system inside the CSL
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phase (J ′
xy = 0.3), as shown in Fig. 11. In the main text,

we determine the regime of CSL phase in the phase diagram
based on the characteristic entanglement spectrum and the ro-
bust Chern number calculations.
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Appendix E: Spin gap on torus system

From finite size scaling of the spin gap for torus system with
different geometry shown in Fig. 12, we find that the spin gap
for the NN XY model scales to zero. The spin gap reduces
with the system sites N , where we used systems of N = 12
to N = 3× 8× 4 for the NN XY model and N = 12 to N =
3× 5× 6 for the NN Heisenberg model. The spin gap in XY
case extrapolates to zero no matter if we use 2D-like cluster
or more 1D-like cluster. For the NN Heisenberg model, the
spin gap scales to a finite value, indicating the development of
a gapped SL.
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58 B. Fåk, E. Kermarrec, L. Messio, B. Bernu, C. Lhuillier, F. Bert, P.

Mendels, B. Koteswararao, F. Bouquet, J. Ollivier, A. D. Hillier,

A. Amato, R. H. Colman, and A. S. Wills, Phys. Rev. Lett. 109,

037208 (2012).
59 T. H. Han, J. S. Helton, S. Chu, D. G. Nocera, J. A. Rodriguez-

Rivera, C. Broholm, and Y. S. Lee, Nature 492, 7429 (2012).
60 L. Clark, J. C. Orain, F. Bert, M. A. De Vries, F. H. Aidoudi, R.

E. Morris, P. Lightfoot, J. S. Lord, M. T. F. Telling, P. Bonville,

J. P. Attfield, P. Mendels, and A. Harrison, Phys. Rev. Lett. 110,

207208 (2013).
61 J. Alicea, O. I. Motrunich, and M. P. A. Fisher, Phys. Rev. Lett.

95, 247203 (2005).
62 S. Ryu, O. I. Motrunich, J. Alicea, and M. P. A. Fisher, Phys. Rev.

B 75, 184406 (2007).
63 C. Wang and T. Senthil, arXiv:1407.7533.
64 S.-S. Gong, W. Zhu, L. Balents, and D. N. Sheng, Phys. Rev. B

91, 075112 (2015).
65 I. A. McDonald and F. D. M. Haldane, Phys. Rev. B 53, 15845

(1996).
66 X. G. Wen, Phys. Rev. Lett. 84, 3950 (2000).
67 S. R. White, Phys. Rev. Lett. 69, 2863 (1992).
68 See more information in Supplemental Material.
69 L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).
70 Michael P. Zaletel, Roger S. K. Mong, and Frank Pollmann, Phys.

Rev. Lett. 110, 236801 (2013).
71 P. Di Francesco, P. Mathieu, and D. Senechal, Conformal Field

Theory (Springer, New York, 1997), Chap. 15.6.
72 H. Li and F. D. M. Haldane, Phys. Rev. Lett. 101, 010504 (2008).
73 Y. Hatsugai, Phys. Rev. Lett. 71, 3697 (1993).
74 W. Zhu, S. S. Gong, and D. N. Sheng, J. Stat. Mech. 2014 (8),

P08012.
75 A. G. Grushin, J. Motruk, M. P. Zaletel, and F. Pollmann,



9

arXiv:1407.6985.
76 X. L. Qi, H. Katsura, A. W. W. Ludwig, Phys. Rev. Lett. 108,

196402 (2012).
77 While one cannot get a few low energy singlet excitations in

DMRG accurately, one can obtain the triplet gap ET by target-

ing the ground states in the different total Sz sectors separately.
78 C. Waldtmann, H. U. Everts, B. Bernu, C. Lhuillier, P. Sindzingre,

P. Lecheminant, L. Pierre, Eur. Phys. J. B 2, 501 (1998).

79 W. J. Hu, S. S. Gong, F. Becca and D. N. Sheng, arXiv.

1505.06276.
80 I. P. McCulloch, arXiv:0804.2509.
81 L. Cincio and G. Vidal, Phys. Rev. Lett. 110, 067208 (2013).
82 Z. X. Hu, E. H. Rezayi, X. Wan, and K. Yang, Phys. Rev. B 80,

235330 (2009).


