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We study how universal properties of quantum quenches across critical points are modified by
a weak coupling to a thermal bath, focusing on the paradigmatic case of the transverse field Ising
model. Beyond the standard quench-induced Kibble-Zurek defect production in the absence of the
bath, the bath contributes extra thermal defects. We show that spatial correlations in the noise
produced by the bath can play a crucial role: one obtains quantitatively different scaling regimes
depending on whether the correlation length of the noise is smaller or larger than the Kibble-Zurek
length associated with the quench speed, and the thermal length set by temperature. For the case of
spatially-correlated bath noise, additional thermal defect generation is restricted to a window that is
both quantum critical and excluded from the non-equilibrium regime surrounding the critical point.
We map the dissipative quench problem to a set of effectively independent dissipative Landau-Zener
problems. Using this mapping along with both analytic and numerical calculations allows us to find
the scaling of the excess defect density produced in the quench, and suggests a generic picture for
such dissipative quenches.

PACS numbers: 64.60.Ht, 05.30.Rt, 03.65.Yz

I. INTRODUCTION

Quantum quenches involve the explicit time-dependent
tuning of a Hamiltonian and are among the most basic
and generic of phenomena in quantum many-body dy-
namics. They have garnered considerable recent inter-
est, particularly with regards to tuning through a quan-
tum critical point (QCP), for which the quantum Kibble-
Zurek (KZ) mechanism forms a standard paradigm1–6,
analogous to the corresponding argument for classical,
thermal quenches7–10. The basic idea is that for gapped
quantum phases separated by a gapless critical point,
as one approaches the critical point, the system’s relax-
ation time (i.e. inverse gap, ∆−1) diverges. When this
relaxation time becomes comparable to the time associ-
ated with the quench speed v11, the system falls out of
equilibrium. This non-equilibrium regime dictates post-
quench behavior, such as deviations from the final ground
state and defect densities. One obtains universal scaling
behavior of such quantities, ultimately governed by the
proximity to the QCP.

Here we turn our attention to the important yet rel-
atively unstudied effect of thermal fluctuations on the
quantum Kibble-Zurek scenario. We focus on the pro-
totypical system of a quench in a transverse-field Ising
model (TFIM), where a dissipative thermal bath pro-
duces noise in the transverse field on each lattice site.
Unlike previous studies of this problem12,13, we allow for
the noise produced by the thermal bath to be correlated
over a finite length scale ξN . Such correlations are physi-
cally well motivated: in particular, any noise in the global
time-dependent field used to implement the quench will
naturally produce spatially-correlated noise. We show for
the first time that a crucial role is played by the ratio of
ξN to both the length scale of the dissipation-free Kibble

Zurek problem ξKZ ∝ 1/
√
v and to the thermal length

scale ξT ∝ 1/kBT . Patanè et al.12,13 investigated the
limit ξN ≪ ξKZ, ξT, where spatial noise correlations are
essentially irrelevant, and each lattice site is effectively
coupled to an independent bath. In contrast, we analyze
the opposite but equally important limit where the noise
correlation length, while finite, is nonetheless larger than
both ξKZ and ξT; this regime will generically be reached
at intermediate temperatures and quench speeds when-
ever the bath noise is correlated over distances greater
than the lattice constant. Then, the relatively long-
range bath noise correlations lead to strikingly different
behaviours.

In the next section we discuss thermal defect genera-
tion in a quench by employing a simple scaling ansatz
before we rigorously show our findings in the TFIM. For
this, we introduce the model of a TFIM with a global
bath in the following section. Section IV describes the
mapping to a dissipative Landau-Zener problem. Section
V presents analytical estimates as well as numerical re-
sults for the thermal defect density after a quench. In
section VI we discuss how to extend our findings to cases
with finite bath correlation length before we, finally, con-
clude.

II. SCALING ANSATZ

Our main result, applicable to this correlated noise
regime and generic form of system-bath coupling, reflects
the following general picture, as graphically depicted in
Fig. 1. Thermal fluctuations affect a quench only under
certain conditions. First, at a given time t, the bath tem-
perature needs to be large enough to be able to produce
defects, implying that one must be in the quantum crit-



2

FIG. 1: (Color online) Quench trajectories for two temper-
atures T1 and T2 at a fixed quench rate. At T1, far from
the QCP, the spectral gap ∆ is too large for thermal excita-
tions to be created. Thermal defect generation thus turns on
only once the trajectory enters the quantum critical regime
kBT > ∆. It is however suppressed again once the system
enters the non-equilibrium regime near the QCP, where the
intrinsic relaxational rate is slower than the quench rate. The
thick yellow dashed line indicates the portion of the quench
where thermal defects are produced. For low temperature
(T2), the entire quantum critical regime is subsumed within
the non-equilibrium regime near the QCP, and hence there is
no appreciable thermal defect generation.

ical regime kBT > ∆(t)14. However, this is not enough:
even if the temperature is large enough, the coherent sys-
tem dynamics needs sufficient time for the weak dissipa-
tion to also play a role. Thus, thermal defect genera-
tion is suppressed in the “non-equilibrium” Kibble-Zurek
regime close to the critical point. Thermal fluctuations
only give rise to additional defects during (at most) a
limited portion of the quench protocol.
Focusing on temperatures small enough that only long-

wavelength excitations can be produced, the above argu-
ments lead to a general prediction that a weakly-coupled
bath only gives rise to additional defect generation if the
temperature satisfies kBT > kBTmin. One can make a
physically-motivated scaling ansatz, based on the Kibble-
Zurek criterion for the cross-over scale into the non-
equilibrium regime, generalizing what has been done in
the dissipation-free case1,5,15. Technical details are given
in Appendix A. This leads to the following prediction:

kBTmin ∝ vνz/(1+νz). (1)

Here ν is the critical exponent describing the divergence
of the system correlation length near the transition, and
z is the corresponding dynamical critical exponent. For
the specific case of the transverse field Ising model (where
ν = z = 1), the excess defect density is predicted to
scale as (kBT )

3/v as long as
√
v ≪ kBT , but is strongly

suppressed for lower temperatures.
To explicitly show this scaling ansatz holds, we rig-

orously treat the dissipative TFIM by using a mapping
to an ensemble of dissipative Landau-Zener (LZ) sys-
tems16–19. Such a mapping has been extremely powerful
for the study of non-dissipative problems; its application

to the dissipative case is however non-trivial. We show
that a mapping can still be made, but only if one fo-
cuses on our limit of large ξN, and further, focuses on a
restricted class of observables. Using this mapping, we
calculate the defect production by both analytic and nu-
merical approaches, explicitly verifying Eq. (1).

III. MODEL

We consider a one-dimensional TFIM where a quench
occurs by tuning the transverse field as a function of
time. Similar to Refs.12,13, we consider the case where
the bath couples to the system in the same way as this
time-dependent control field (i.e. it acts as a noisy trans-
verse field). As a consequence, dissipation only plays a
role in the vicinity of the quantum critical point, but not
far from it; this ensures that defects produced during the
quench protocol can be measured once the quench is over.
We also mainly focus on the limit where the bath noise is
spatially uniform, like the average transverse field itself.
The net Hamiltonian takes the form Ĥ = ĤS+ĤB+ĤSB,
where

ĤS + ĤSB = −J
∑

j

σ̂x
j σ̂

x
j+1 −

(

h+ X̂
)

∑

j

σ̂z
j (2)

represents the TFIM system and system-bath coupling

Hamiltonian, HB =
∑

ν ων b̂
†
ν b̂ν is the bath Hamiltonian

and X̂ =
∑

ν λν

(

b̂ν + b̂†
)

. Here, σ̂x,z
j denote Pauli ma-

trices for the spin at site j, J is the exchange coupling,
h a Zeeman field in the z-direction. We have set ~ = 1.
Without loss of generality, we take J, h ≥ 0. The sys-
tem is in an Ising ferromagnetically ordered phase when
h < J , while for h > J the system is in a paramag-
netic phase. The two phases are separated by a QCP at
hc = J . The bath is characterized by the spectral density
J (ω) =

∑

ν λ
2
νδ(ω − ων) = γωsω1−s

c e−ω/ωc , where γ is
the dimensionless coupling strength and ωc is a cut-off
frequency. We focus on the standard case of an Ohmic
bath, where s = 1.
Employing the standard Jordan-Wigner

transformation20, we re-express the Hamiltonian in
terms of spinless fermions, ĉi = (

∏

j<i σ̂
z
j ) σ̂+

i . Working
in momentum space and setting the lattice constant
a = 1, we have:

ĤS + ĤSB =
∑

0≤k≤π

[

ĉ†k ĉ−k

]

(Hk,S +Hk,SB)

[

ĉk
ĉ†−k

]

with Hk,S =

[

ξk ∆k

∆∗
k −ξk

]

, Hk,SB =

[

X̂ 0

0 −X̂

]

, (3)

where ξk = 2h − 2J cos(k) and ∆k = 2J sin(k). The

energy dispersion of ĤS is given by ǫk =
√

ξ2k + |∆k|2.
Critical exponents ν = z = 1 can be extracted from
critical gap behavior, namely, ∆k=0 ∼ |h−hc| (near h =
hc = J) and ∆k ∼ |k| (for k → 0 when h = hc)

21.
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IV. MAPPING TO THE LANDAU-ZENER

PROBLEM

We briefly recall the standard treatment of quench
dynamics in the absence of dissipation1. Each term in
ĤS (c.f. Eq. (3)) describes an effective two-level system,
where the two states correspond to having the orbitals
(k,−k) either both empty or both occupied. The most
common quench protocol involves a linear ramp of the
form

h(t) = −vt. (4)

For concreteness, we consider a quench that starts in a
paramagnetic phase at t = −∞ and ends in the ferromag-
netic phase at t = 0. Thus, each term in ĤS describes a
Landau-Zener problem 16–19: a two level system subject
to a constant x magnetic field (∆k) and linearly time-
varying z magnetic field (ξk = −2vt − 2J cos k), which
runs through the avoided crossing at ξk = 0.

Evaluating the density of defects nKZ produced by the
quench now amounts to calculating the final population
of quasiparticles at the end of the quench. For slow
quenches (with velocity v ≪ J2), the dominant con-
tribution to this population comes from low-k fermion
modes, where the gap ∆k at the avoided crossing is
the smallest. The excitation probability of such modes
is well-described by the asymptotic, infinite-time LZ
probability2 that the two-level system (TLS) transitions
to the final excited state16–19: Pk ∼ exp (−π∆2

k/v). Us-
ing this expression and integrating over all momentum
modes, one obtains the power-law form nKZ ∼ √

v, con-
sistent with the Kibble-Zurek form2.

A. Mapping to dissipative Landau-Zener problem

Although a general dissipative TFIM quench cannot
be mapped exactly to a set of independent dissipative
Landau-Zener problems, this is possible for a restricted
class of observables if one takes the large ξN limit, where
the translational invariance of the fermionic system is
maintained (c.f. Eq. (3)). For each k > 0, we have an
effective two-level system (TLS) whose detuning has a
noisy part (due to the bath) and an average part which

is linearly ramped in time. As the bath noise X̂ , cou-
ples to every k mode, it will correlate the different ef-
fective TLS. These correlations are severely constrained
by fermionic momentum conservation: in particular, the
single-particle fermion Green functions for each momen-
tum k are completely decoupled from one another. Tech-
nical details are given in Appendix B. As a result, the
defect density can be rigorously calculated by assuming
that each effective TLS is independent, making our map-
ping to the dissipative LZ problem exact for the quantity
of interest. Such dissipative LZ problems with diagonal
noise have been well-studied in the literature22–31.

V. RESULTS

A. Analytic estimates

The above mapping enables us to invoke results22,23 for
the dissipative LZ problem, to evaluate the contribution
of thermal fluctuations towards defect production during
the quench. For modes having ∆2

k . v, the transition
through the avoided crossing is not adiabatic, and there
is a large probability for the effective TLS to be excited
even without dissipation. For such modes, dissipation (to
leading order) does not yield any additional probability
of excitation22,23.
In contrast, for modes having ∆2

k > v, the transition
through the avoided crossing is very nearly adiabatic;
without dissipation, they remain close to the ground
state. For such “slow” modes, the system spends enough
time near the avoided crossing for dissipation to give
rise to transitions to the excited state. This leads to
an additional dissipation-induced excitation probability
δPk that for weak dissipation simply adds to the LZ ex-
pression. The probability δPk was explicitly calculated
in Refs.22,23:

δPk =
2π∆k

v
J (2∆k)nB[2∆k, T ], (5)

where nB[E, T ] is a Bose-Einstein distribution evaluated
at energy E and at temperature T of the dissipative bath.
This is Fermi’s Golden Rule rate for excitation of the TLS
at the avoided crossing via absorption of a bath phonon
(Γexc = 2πJ (2∆k)nB(2∆k)), multiplied by the effective
time spent at the avoided crossing (tcross ∼ ∆k/v).
Hence, as sketched in Fig. 1, the dissipation only in-

fluences modes where ∆k is sufficiently large to yield a
near-adiabatic transition, but also small enough that the
Bose-Einstein factor in Eq. (5) is appreciable. Thus, the
only modes affected by dissipation satisfy:

(

∆KZ =
√
v
)

. ∆k . kBT. (6)

For sufficiently slow quench velocities, all the relevant
modes satisfying this condition correspond to small k,
where ∆k ∼ Jk. This justifies the general picture pro-
vided in Fig. 1. Outside the quantum critical regime,
∆ ≡ ∆k=0 > T , and there are no modes which satisfy
Eq. (6); dissipation thus has no effect here (i.e. blue re-
gion in Fig. 1). In the non-equilibrium regime (orange
in Fig. 1), ∆k=0 < ∆KZ and v is too large for dissipa-
tion to affect any of the modes. Finally, in the portion
of the quantum-critical region that lies outside the non-
equilibrium regime, we have instead ∆KZ < ∆k=0 <
kBT ; we thus have modes satisfying Eq. (6) and dissipa-
tion can create excitations. Here, we observe dynamics
different from the KZ scenario.
Integrating δPk of Eq.(5) over the range defined by

Eq. (6), and assuming kBT ≫ √
v, we find that the total

dissipation-induced excitation density obeys

nth ∼ γkBT [(kBT )
2/v], (7)
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FIG. 2: (Color online) Total excitation density ntot(v; γ, T )
versus quench speed v for various temperatures, ωc ≫ J , and
a system-bath coupling γ = 1.3 ·10−6. The red full line shows
nKZ(v), i.e. the excitation density for γ = 0.

in agreement with the scaling ansatz of Eq. (1)32. Like
the standard KZ result, it is based on analyzing long-
wavelengh modes, and hence restricted to energies ≪ J .

B. Numerics

To confirm the above picture, we perform a rigor-
ous numerical analysis of a TFIM quench within the
dissipative LZ framework. We use a weak system-
bath coupling Markovian approach33, which has been
shown to be reliable34 in comparison to numerically-exact
approaches27,28. Technical details about the methods are
given in Appendix C.
The quench is explicitly started at h(t0) = −8J and

ended at h(0) = 0, implying v = −8J/t0. We have
ensured that results do not depend on this initializa-
tion. Solving the adiabatic-Markovian master equation
for each k, we obtain the total probability P (k, v; γ, T )
for a given effective TLS to end in the excited state. The
thermal contribution Pth(k, v; γ, T ) is determined by sub-
tracting the dissipation-free probability P (k, v; γ = 0, T )
from the total one. Integrating over all k we find the
total excitation density produced during the quench,

ntot(v; γ, T ) =

∫ π

0

dk P (k, v; γ, T ) ≡ nKZ(v)+nth(v; γ, T ),

where nKZ is the defect density without dissipation, and
nth is the additional one due to thermal dissipation.
In Fig. 2 we plot the total defect density produced by

the quench as a function of quench velocity v; different
curves correspond to different bath temperatures. The
defect density for the dissipation-free case γ = 0 is also
plotted (red solid line); this curve exhibits the standard√
v Kibble Zurek scaling. For finite γ and T we observe

with decreasing v an increasing defect probability due to
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FIG. 3: (Color online) Excess thermal defect density associ-
ated with the quench, as a function of scaled temperature,
for three different quench velocities v. For

√
v . T . J ,

the data follows nth ∝ T 3/v in line with the scaling form
given in Eq. (7 (orange sold line). Inset: Plot of momentum-
resolved thermal defect density Pth(k, v; γ, T ) for quench ve-
locity v = 1.4 · 10−3J2 and three temperatures.

additional thermal defects. Thus, at a fixed temperature
a minimal total defect density is observed for an optimal
quench speed. The thermal defect density also increases
with increasing temperature.
To focus on the bath contribution to the defect pro-

duction during the quench, in Fig. 3 we now plot re-
sults for the excess thermal defect density as a function
of scaled temperature and observe data collapse. The
analytic estimate predicts a scaling nth ∼ (kBT )

3/v for√
v ≪ kBT ≪ J (see Eq. (7)) which is indeed observed

(see Fig. 3). For smaller T , we see that the thermal de-
fect density is suppressed, also in accordance with our
prediction that thermal defect production is suppressed
in the “non-equilibrium” regime 1/∆(t) > |t|.
The inset of Fig. 3 plots the momentum-resolved ther-

mal defect density Pth(k, v; γ, T ) exhibiting a clear peak.
With increasing temperature the momentum of the peak
maximum increases. For temperatures T → √

v the main
contribution is frommodes at k ≃ √

v. Note that here the
adiabatic - Markovian master equation is least reliable34

and thus the observed behaviour in the low temperature
regime in Fig. 3 cannot be taken to be conclusive.

VI. FINITE BATH CORRELATION LENGTH

While the above analysis was for noise that is corre-
lated over the entire lattice, it remains valid for situations
where the bath noise has a finite spatial correlation length
ξN, as long as this length is much longer than all other
relevant length scales. In particular, this requires ξN be
larger than both the Kibble-Zurek length ξKZ = Ja/

√
v

and the thermal length ξT = Ja/kBT . It does not how-
ever require that ξN approach the size of the system. The
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fact that the system correlation length diverges at the
QCP is not relevant; heuristically, the bath only plays a
role outside the non-equilibrium regime, and thus does
not see the full divergence of this length. A more rig-
orous justification for why our results apply whenever
ξN ≫ ξKZ, ξT (based on a Keldysh analysis) including
technical details is provided in appendix D. In the op-
posite limit of a very small correlation length ξN ≪ ξT ,
one approaches the limit of spatially-uncorrelated dissi-
pation, as studied by Patanè et al12,13, with a very differ-
ent temperature dependence of the thermal defect density
from Eq. (7). Thus, the ratios ξN/ξKZ and ξN/ξT will in
general play a crucial role in determining the influence of
dissipation on a quench.

VII. CONCLUSIONS

We have studied the general problem of how thermal
dissipation and noise give rise to defect generation in a
quantum quench beyond the amount predicted for zero
dissipation by the Kibble-Zurek scenario. We have ex-
plicitly analyzed quenches in the TFIM coupled to a
global thermal bath and shown that the excess ther-
mal defect density scales as as (kBT )

3/v as long as√
v ≪ kBT ≪ J in clear contrast to previous results

obtained for spatially-uncorrelated dissipation. These

first steps toward understanding the interplay between
quench and dissipation elicit a host of further studies,
for instance, regarding more complex systems, different
crossover regimes, general scaling laws, and effect of alter-
native bath or coupling forms. It also serves as a starting
point for a rigorous scaling analysis that requires taking
recent renormalization group analyses of non-equilibrium
quantum critical dynamics to a new regime that cou-
ples in the effect of noise. As with non-dissipative quan-
tum quenches, certain cold atomic and magnetic systems
would form the experimental testbeds for these studies.
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13 D. Patanè, L. Amico, A. Silva, R. Fazio, and G. E. Santoro,
Phys. Rev. B 80, 024302 (2009).

14 S. Sachdev, Quantum Phase Transitions (Cambridge Uni-
versity Press, 2011), 2nd ed.

15 A. Chandran, A. Erez, S. S. Gubser, and S. L. Sondhi,
Phys. Rev. B 86, 064304 (2012).

16 L. D. Landau, Phys. Z. Sowjetunion 1, 89 (1932).
17 C. Zener, Proc. Roy. Soc. London A 137, 696 (1932).
18 E. G. C. Stueckelberg, Helv. Phys. Acta 5, 369 (1932).
19 E. Majorana, Nuovo Cimento 9, 43 (1932).
20 P. Jordan and E. Wigner, Z. Phys. 47, 631 (1928).

21 We focus on the weak dissipation limit and the leading-
order contribution of the bath to the defect density; any
bath-induced modification of the critical behaviour will be
a higher order effect.

22 P. Ao and J. Rammer, Phys. Rev. Lett. 62, 3004 (1989).
23 P. Ao and J. Rammer, Phys. Rev. B 43, 5397 (1991).
24 E. Shimshoni and Y. Gefen, Ann. Phys.-New York 210, 16

(1991).
25 Y. Kayanuma and H. Nakayama, Phys. Rev. B 57, 13099

(1998).
26 M. Wubs, K. Saito, S. Kohler, P. Hänggi, and

Y. Kayanuma, Phys. Rev. Lett. 97, 200404 (2006).
27 P. Nalbach and M. Thorwart, Phys. Rev. Lett. 103, 220401

(2009).
28 P. Nalbach and M. Thorwart, Chem. Phys. 375, 234

(2010).
29 P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. A

82, 032118 (2010).
30 P. P. Orth, A. Imambekov, and K. Le Hur, Phys. Rev. B

87, 014305 (2013), URL http://link.aps.org/doi/10.

1103/PhysRevB.87.014305.
31 L. Henriet and K. Le Hur, ArXiv e-prints (2015),

1012.0653.
32 See supplementary information for further details. (2015).
33 P. Nalbach, J. Knörzer, and S. Ludwig, Phys. Rev. B 87,

165425 (2013).
34 P. Nalbach, Phys. Rev. A 90, 042112 (2014).
35 A. Kamenev, Field Theory of Non-Equilibrium Systems

(Cambridge University Press, 2011).
36 W. H. Press, S. A. Teukolsky,



6

W. T. Vetterling, and B. P. Flannery,
Numerical Recipes: The Art of Scientific Computing
(Cambridge University Press, 2007), 3rd ed.

Appendix A: Scaling arguments

We generalize the scaling arguments presented in pre-
vious works1,5,15 with regards to the universal non-
equilibrium dynamcs associated with Kibble-Zurek-type
physics. We focus on the influence of dissipation from a
weakly coupled thermal bath which produces spatially-
correlated noise. We also focus on a system-bath cou-
pling which is analogous to transverse-field noise in the
transverse-field Ising model, i.e. the system bath cou-
pling Hamiltonian commutes with the coherent system
Hamiltonian away from the critical point.
As the quench process evolves through the quantum

critical point, we expect excitations produced by cou-
pling to the thermal bath, nth, to become important
in the vicinity of the critical point where the system’s
energy gap ∆ is small compared to the bath tempera-
ture scale kBT . However, very close to the critical point,
the system’s relaxational time scale, τ , diverges and the
quench process becomes too rapid for the system to form
the coherences needed to allow bath-induced transitions.
These constraints provide the following bounds for the
regime in which thermal excitations are significant and
the following scaling forms for their behavior in terms of
characteristic energy/time scales.
Consider a quantum phase transition characterized by

a parameter α such that the quantum critical point oc-
curs at a value αc

14. Close to the critical point, the
system’s typical correlation length scale diverges as

ξ ∼ δ−ν , (A1)

where ν is the associated critical exponent and δ = |α−
αc| measures the deviation from the critical point. The
relaxational time diverges as

τ ∼ ∆−1 ∼ δ−νz, (A2)

where z is the dynamic critical exponent.
With regards to Kibble-Zurek scaling behavior1,5,15,

consider a linear quench at a characteristic rate v−1,

α(t) = αc + vt. (A3)

A given deviation δ thus occurs at a time t(δ) = δ/v;
|t(δ)| represents the time remaining until the system
reaches the critical point. Now the quench enters the
non-equilibrium regime under the condition

t(δ) < τ, (A4)

or, from Eq. (A2), δ/v < δ−νz. This cross-over criterion
establishes a scaling relationship between the quench rate
and distance to criticality, namely

δ1+νz ∼ v. (A5)

From this relationship, one can derive the scaling of stan-
dard Kibble-Zurek variables. For instance, the density
of defects produced in the non-equilibrium region scales
as nD ∼ ξ−d ∼ vνd/(1+νz). In the case of the one-
dimensional transverse Ising system, where ν = z = d =
1, one obtains the well known scaling behavior nD ∼ √

v.
With regards to the regime of interest here, namely,

that of thermal excitations, the two constraints men-
tioned above need to be satisfied. First, as discussed
previously in Ref.12,13, the bath temperature must be
greater than the gap, i.e. kBT > ∆, yielding the scaling
relationship kBT ∼ δνz . Second, the quench must fall
short of entering the non-equilibrium regime, or equiva-
lently, t(δ) > (kBT )

−1. This condition, combined with
the scaling relationship obtained from the first constraint
and with Eq. (A5) provides the following temperature
lower bound for a given quench rate:

(kBT )
(1+νz)/(νz) > v, (A6)

as presented in Eq. (1) in our main text.
In Ref.15, similar to equilibrium quantum critical scal-

ing, the effect of finite temperature has been discussed in
the context of non-equilibrium quantum critical scaling.
This is done by introducing a dimensionless parameter
that is naturally defined by the scaling relationship be-
tween temperature and quench rate in Eq. (A6). It is
interesting to note that the excess thermal density that
we predict in Eq. (8) of the main text, given that it has
dimensions of inverse volume, is consistent with the scal-
ing form hypothesized in Ref.15 for generic situations:

nth ∼ (kBT )
d/zF [(kBT )

(1+νz)v−νz], (A7)

where F is a scaling function. Specifically, in the one-
dimensional transverse Ising case, our arguments show
that thermal excitations are important in the regime
(kBT )

2 > v and that they respect the form nth ∼
kBTF [kBT/

√
v].

We emphasize however that care needs to be taken in
applying the above scaling. The situation presented by
Ref.15 presents a closed system having an initial tem-
perature kBT , and in general, unlike our case, thermal
effects need not give rise to separate additional contribu-
tions above the zero-temperature Kibble-Zurek contribu-
tions. We believe that adherence to the expected form
is tied to the weak nature of the bath coupling, as well
as the particular choice of an Ohmic bath spectral func-
tion. Considering the effects of more general bath spec-
tral functions and stronger couplings would make for an
interesting and challenging study.

Appendix B: Mapping to independent dissipative

Landau-Zener transitions

In the limiting case where each site of our TFIM cou-
ples to the same dissipative bath (a “global” system-
bath coupling), we can map our dissipative quench prob-
lem onto a set of independent dissipative Landau-Zener
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problems. One might worry that this mapping is only
approximate, as it ignores correlations between different
fermionic modes induced by the globally-coupled bath.
While such correlations will play a role for some physi-
cal observables, they play no role in determining single-
particle properties, such as the quasiparticle occupancies
which we focus on. This is a direct consequence of the
fact that the system-bath Hamiltonian of Eq. (3) in the
main text conserves the momentum of the fermionic sys-
tem.

More formally, the occupancy of a given quasparticle
mode with momentum k can be written

Pk(t) ≡ 〈ĉ†k(t)ĉk(t)〉 ≡ −iG<
k (t, t), (B1)

where we have introduced the standard lesser Keldysh
Green’s function associated with this mode35. If one
treats the coupling to the bath as a perturbation of
the coherent (dissipation-free) system, the lesser Green’s
function appearing above is completely determined by
the Keldysh self energies Σα

k (t, t
′) associated with the

system-bath interaction; here, the index α can take the
values R,A,K, corresponding to retarded, advanced and
Keldysh self-energies35. Note the self-energy must be di-
agonal in momentum, as electronic momentum is con-
served. Consider an arbitrary self energy diagram for
Σα

k (t, t
′). As fermion momentum is conserved at each

system-bath interaction vertex, all internal fermion prop-
agators in this diagram involve the same momentum k.
Heuristically, this implies that at least for single-particle
Green’s functions, a given fermion mode with momentum
k does not know about other modes having a different
momentum k′ 6= k.

It follows that we would obtain exactly the same dia-
grammatic expansion (and hence result for G<

k (t, t)) if we
had coupled each fermion mode to its own independent
bath. Formally, this means modifying the system-bath
Hamiltonian in Eq. (3) of the main text as follows:

ĤSB →
∑

0≤k≤π

[

ĉ†k ĉ−k

]

[

X̂k 0

0 −X̂k

] [

ĉk
ĉ†−k

]

,

(B2)

We now have an independent bath for each k mode, with

a corresponding noise operator X̂k =
∑

ν λk,ν(b̂k,ν+h.c.).
Each of these baths (labelled by k) has identical proper-
ties to the bath appearing in our starting Hamiltonian.
They all have the same temperature T and identical spec-
tral densities: Jk(ω) = J (ω), where J (ω) is the spectral

density of our original bath (noise operator X̂), as given
after Eq. (2) in the main text.

Thus, for computing quasiparticle occupancies, we can
exactly treat each fermion k mode as being effectively
coupled to its own independent bath. This then rigor-
ously justifies our mapping to an ensemble of uncoupled
dissipative Landau-Zener problems.

Appendix C: Adiabatic Markovian master equation

Letting |j(t)〉 (j = 1, 2) denote the eigenstates
of the instantaneous coherent Hamiltonian Hk,S(t) in
Eq. (3) (in the main text) (with eigenergies ±Ek(t) =

±
√

(ξk(t))
2 +∆2

k ), the matrix elements of the ef-

fective statistical operator ρ̂k(t) of the Landau-Zener
system after tracing out the bath degrees of free-
dom are parametrized in terms of a 3-vector ~rk(t) as
〈j(t)|ρ̂k(t)|j′(t)〉 = 1

2 (1l− ~rk · ~τ )jj′ , where ~τ is the vector
of Pauli matrices. Suppressing the k index for clarity, the
adiabatic Markovian master equation takes the form34:

∂t~r =





−γ1(t) 0 θ̇(t)
0 −γ2(t) −2E(t)

−θ̇(t) 2E(t) −γ2(t)



~r + γ1(t)~req, (C1)

where θ(t) = arctan[ξk(t)/∆k] and ~req =

(tanh[βE(t)], 0, 0). The terms proportional to θ̇
describe coherent non-adiabatic evolution, while the
time-dependent relaxation and dephasing rates are

γ1(t) = cos2 (θ(t)) S̄[2E(t)] (C2)

γ2(t) = 1
2γ1(t) + sin2 (θ(t)) S̄[0] (C3)

where S̄[ω] = 2πJ [ω] cothβω/2 is the symmetrized spec-
tral density of the bath noise.
For a given quench protocol, i.e. ξk(t), we solve the

adiabatic-Markovian master equation (C1) using a stan-
dard fourth order Runge Kutta scheme36. Thus we get
the time-dependent statistical operator for each k and,
in turn, the probability P (k, v; γ, T ) for a given effective
TLS to end up in the excited state at the end of the
quench. To obtain the total excitation density produced
during the quench, we integrate over all k using a stan-
dard Romberg scheme36.

Appendix D: Finite bath spatial correlations

As discussed in the main text, our results for a
spatially-uniform dissipative bath remain valid in the
case where the bath noise has a finite spatial correlation
length ξN , as long as this length is much larger than the
Kibble-Zurek length ξKZ; one does not need ξN to ap-
proach the size of the system. To make this precise, we
generalize the system-bath coupling so that there is a dis-
tinct bath noise operator on each site, ĤSB =

∑

j σ̂
z
j X̂j .

As usual, we take the bath to be an infinite collection of
harmonic oscillators in thermal equilibrium, and take the
X̂j to be linear in the bath creation and destruction op-
erators. We also take the bath to be in a translationally
invariant state (unlike the model presented in Ref. 13).
We consider a generic situation where (like the main text)
the on-site noise is still described by an Ohmic spectral
density J [ω], but where the noise correlation decays ex-
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ponentially with distance

〈{X̂j[ω], X̂k[ω
′]}〉

2πδ(ω + ω′)
= J [ω] coth

(

ω

2kBT

)

e−|j−k|/ξN

(D1)
The above form implies that we can express the

Fourier-transformed bath noise operators as:

X̂q ≡ 1√
N

∑

l

e−iqlX̂l = Λq

∑

ν

λν

(

b̂q,ν + b̂†−q,ν

)

(D2)

where the b̂q,ν describe Einstein phonons with en-
ergy ων [q] = ων . We use a normalization such
(1/N)

∑

q |Λq|2 = 1. The spectral function J [ω] asso-
ciated with the noise on any given site is then identical
to that used in the main text.
We next specialize to exponentially decaying spatial

correlations, with a correlation length much smaller than
the system size. This implies:

|Λq|2 =
2ξN/a

1 + q2ξ2N
(D3)

Unlike the global-bath model in the main text, the fi-
nite correlation length here means that the bath can ex-
change non-zero momentum with the system. We follow
Ref. 13, and use the weakness of the system-bath coupling
to treat the system perturbatively, using a self-consistent
Born approximation for the Keldysh self-energy of the
fermion Green functions. Within this approximation, the
Keldysh self energy for a fermion with momentum k is
given self-consistently by

Σk(t2, σ2; , t1, σ1) = (D4)

1

N

∑

q

|Λq|2 Gk+q(t2, σ2; , t1, σ1)D
0
q(t2, σ2; , t1, σ1),

where σj = ± denotes the forward and backward Keldysh
contours,Gk[t, σ; t

′σ′] is a dressed fermion Keldysh Green
function, and D0

q [t, σ; t
′σ′] is the unperturbed bosonic

(equilibrium) Keldysh Green function for the bath op-

erator X̂q/Λq. In our model (where we assume Einstein
phonons, corresponding to a frequency-independent ξN ),
this Green function is independent of q.
We are now in a position to make estimates concern-

ing the role of ξN , based on the behaviour of the imagi-
nary part of the self-energies (which control bath-induced
transitions). We will focus on transitions which are ther-
mally enhanced, i.e. which involve the absorption or emis-
sion of bath phonons having ω < kBT . For a bath-
induced scattering event taking a quasiparticle from mo-
mentum k to k+ q, energy conservation and the fermion
dispersion relation will determine the energy of the bath
phonon involved. Assuming kBT ≪ J as always, this
then naturally leads to the thermal length ξT ≡ aJ/kBT :
the only transitions that are thermally enhanced involve
momentum transfers with |q| . 1/ξT .
The simplest regime is where ξN ≪ ξT . In this

case, the only thermally-enhanced transitions have q ≪

1/ξT ≪ 1/ξN , and the q-dependence of the structure fac-
tor Λq plays no role: we can safely replace Λq by Λq=0.
In this case, the q integral in the self energy of Eq. (D4)
can be estimated as:

a

2π

∫ π/a

−π/a

|Λq|2Gk+q ≃ a

2π
|Λ0|2

∫ 1/ξT

−1/ξT

Gk+q (D5)

∝ (ξN/a)T (D6)

In this limit where Λq can be treated as a constant, we
recover the local-bath model studied in Ref. 13, where
there are no spatial correlations between bath noise op-
erators X̂j . This mapping to uncorrelated noise is valid
irrespective of the value of ξN/ξKZ, where ξKZ = aJ/

√
v

is the Kibble-Zurek length introduced in the main text.
Note the explicit factor of T that emerges from the mo-
mentum summation.
Consider next the opposite regime, where ξN ≫ ξT . In

this case, the structure factor Λq will suppress the con-
tribution of large momentum transfers in the self-energy,
as opposed to the bath temperature: the largest con-
tributing |q| will be ∼ 1/ξN . If in addition we have
ξN ≫ ξKZ, then we can also ignore the q dependence
of the fermion propagator Gk+q in Eq. (D4). To under-
stand this point, note that without dissipation, quasi-
particle modes with k ≪ 1/ξKZ will evolve diabatically
during the quench (and become excited), while modes
with k ≫ 1/ξKZ will evolve adiabatically (and hence re-
main unpopulated). Correspondingly, for small k, the
quasiparticle modes k and k + q behave almost identi-
cally when |q| ≪ 1/ξKZ, implying Gk ∼ Gk+q.
Thus, for ξN ≫ ξKZ, ξT , the q summation in the self-

energy of Eq. (D4) can be estimated as

a

2π

∫ π/a

−π/a

|Λq|2Gk+q ≃ a

2π
Gk

∫ π/a

−π/a

|Λq|2 (D7)

≃ Gk
a

2π

∫ ∞

−∞

|Λq|2 ≃ Gk (D8)

This is identical to having taken the global-coupling,
ξN → ∞ limit from the outset, i.e. having used

Λq =
2π

a
δ(q) (D9)

Thus, when ξN is the largest length scale in the problem
(i.e. ξN ≫ ξKZ, ξT), the system does not know about the
finite bath spatial correlation length ξN , and one gets
the same results as for a model where ξN → ∞. Note
that in this large ξN limit, the summation over q gives a
temperature-independent result, in contrast to the small
ξN estimate in Eq. (D6). This difference is at the heart
of why our global-coupling result for the thermal defect
density scales as a lower power of temperature than the
corresponding result found in Refs. 12,13 for a locally-
coupled bath.
Finally, there is the remaining case ξT ≪ ξN ≪ ξKZ.

In this case, the bath correlation length cuts off large
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momentum transfers (as opposed to temperature). How-
ever, this cutoff is not large enough to prevent coupling
between very different fermionic modes, i.e. adiabatic and

non-adiabatic modes. In this cross-over regime, neither
the local model studied in Ref. 12 nor global bath model
studied in the main text are appropriate.


