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The isolated one-dimensional Heisenberg model with static random magnetic fields has become paradigmatic

for the analysis of many-body localization. Here, we study the dynamics of this system initially prepared in a

highly-excited nonstationary state. Our focus is on the probability for finding the initial state later in time, the

so-called survival probability. Two distinct behaviors are identified before equilibration. At short times, the

decay is very fast and equivalent to that of clean systems. It subsequently slows down and develops a powerlaw

behavior with an exponent that coincides with the multifractal dimension of the eigenstates.

PACS numbers: 72.15.Rn, 71.30.+h, 05.30.Rt, 75.10.Pq

I. INTRODUCTION

The metal-insulator transition has been at the forefront of

physics research since Anderson’s seminal paper1. As a re-

sult of quantum interference, the wavefunctions of a disor-

dered noninteracting system can become exponentially local-

ized in configuration space. The phenomenon has been ex-

perimentally observed in different setups, more recently with

Bose-Einstein condensates2,3. A proposal for an experiment

with ultracold atoms in a two-dimensional geometry also ex-

ists4. Lattice models, such as the Anderson tight-binding and

the powerlaw random banded matrix (PRBM) models5,6, have

been extensively employed in the analysis of the Anderson

metal-insulator transition. At criticality, it was found that the

eigenstates exhibit multifractal features5.

The inverse participation ratios, IPRα
q =

∑
n |C

α
n |

2q, con-

tain information about the structure of the eigenstates |ψα〉 =∑
n C

α
n |φn〉 written in the basis vectors |φn〉 of the configu-

ration space. In particular, IPRα
2 measures the level of delo-

calization of the eigenstates in the chosen basis7. At the An-

derson transition, the probability amplitudes Cα
n display large

fluctuations and IPRα
q shows anomalous multifractal scaling

with respect to the system size5,8–12,

〈IPRα
q 〉 ∼ N−(q−1)Dq , (1)

where 〈.〉 denotes the average over an ensemble of realizations

and eigenstates, N is the dimension of the Hamiltonian ma-

trix13, and Dq represents the generalized dimension. Multi-

fractality is reflected by the nonlinear dependence of the gen-

eralized dimension on q. In contrast, Dq = d in the metal-

lic phase, where d is the system dimension, and Dq = 0
in the insulating phase. Experimentally, multifractality has

been observed in disordered conductors14 and in systems with

cold atoms15,16. Recently, new studies have led to the conclu-

sion that multifractal correlations are not exclusive to the crit-

ical point of the Anderson-transition. In disordered systems,

they are present away from criticality18 and even in extended

states19. They are also found in the ground states of clean

systems17.

Studies of the dynamics of noninteracting systems at the

metal-insulator transition have shown that the Loschmidt

echo20, the survival probability21–23, and the spreading of

wavepackets23,24 at the mobility edge exhibit a powerlaw be-

havior, where the exponent coincides with the generalized di-

mension for q = 2. The generalized dimension of the eigen-

states, D2, is extracted from Eq. (1) by performing a scaling

analysis of 〈IPRα
2 〉. However, in studies of dynamics the main

interest is on the generalized dimension associated with the

initial state |φn0
〉 and denoted by D̃2. The latter is obtained

from a scaling analysis of the level of delocalization of the

initial state with respect to the energy eigenbasis, that is the

analysis of

〈IPRn0

2 〉 ∼ N−D̃2 , (2)

where |φn0
〉 =

∑
α C

α
n0
|ψα〉 and IPRn0

2 =
∑

α |Cα
n0
|4. When

investigating localization in real space, the initial state usually

corresponds to a basis vector of the configuration space. We

also note that the two generalized dimensions above have been

shown 27 to be related through the expressionD2 = dD̃2.

A natural question following this brief summary of the

Anderson localization is what happens to the above findings

when interaction is included. It had been conjectured already

in1,28 and then confirmed with perturbative arguments29,30

and rigorously31 that localization may persist. Studies about

many-body localization (MBL) have recently boomed32–54.

The interest in the subject is in part motivated by the ac-

cess to new experimental tools, such as cold atoms in opti-

cal lattices55, that can be used to corroborate theoretical pre-

dictions. Among the latter, we find works about the loca-

tion of the critical point in disordered spin-1/2 chains33–36,

analysis of the relation between the distribution of the wave-

function coefficients and the onset of localization34, various

efforts to identify the quasi-local integrals of motion in the

MBL phase49–52, and descriptions of the evolution of the en-

tanglement entropy38,39, few-body observables41–45, and the

Loschmidt echo46.

Our goal in this work is to characterize the evolution of iso-

lated disordered systems with interaction from very short to

very long times. Since MBL is a dynamical transition, identi-

fying general features of the dynamics of interacting systems

is essential for the further developments of the field. Moti-

vated by the results for noninteracting systems, our focus is

on the decay of the survival probability and its relationship

with the onset of multifractal states.
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We consider a one-dimensional (1D) disordered spin-1/2

system and analyze the evolution at different time scales of

both the survival probability and the time-averaged survival

probability. At short times the decay is very fast and similar

to that of clean systems. Afterwards, the decay slows down

and shows an anomalous powerlaw behavior. The exponent of

this algebraic decay coincides with D̃2. At very long-times,

the decay eventually saturates to 〈IPRn0

2 〉.

II. MODEL AND BASIS

We investigate the 1D isotropic Heisenberg spin-1/2 sys-

tem with two-body nearest-neighbor interaction, L sites, and

periodic boundary conditions. The Hamiltonian is

Ĥ =

L∑

k=1

[
hkŜ

z
k + J

(
Ŝx
k Ŝ

x
k+1 + Ŝy

k Ŝ
y
k+1 + Ŝz

k Ŝ
z
k+1

)]
.

(3)

Above ~ = 1, Ŝx,y,z
k are spin operators, and J = 1 sets

the energy scale. Random static magnetic fields act on each

site k, the amplitudes hk being random numbers from a uni-

form distribution [−h, h]. The total spin in the z-direction,

Ŝz =
∑

k Ŝ
z
k , is conserved. We work with the largest sub-

space, Sz = 0, of dimension N = L!/(L/2)!2. Localization

in this symmetry sector guarantees localization in smaller sec-

tors.

The dependence on h of the level statistics and of the level

of delocalization of the eigenstates of Ĥ (3) has been studied

for at least a decade32–35,56. When h = 0, the system is ana-

lytically solvable with the Bethe ansatz. If all the trivial sym-

metries of the Hamiltonian are taken into account, one veri-

fies that the level spacing distribution of neighboring levels is

Poisson. In addition to the total spin in the z-direction, the

other symmetries of the isotropic model at Sz = 0 are: trans-

lational invariance, parity, spin reversal, and conservation of

total spin.

As h increases from zero, the level spacing distribution

eventually becomes Wigner-Dyson, indicating a transition to

the chaotic regime. The value of h at which level repulsion

becomes evident decreases as the system size increases. In

parallel, the level of delocalization of the eigenstates in real

space increases substantially. The presence of disorder breaks

the additional symmetries mentioned above and if the disorder

is weak the states can spread out significantly.

As h further increases and becomes larger than the coupling

strength, h > 1, the spreading of the eigenstates recede and

they become more localized in real space. The critical point

for the transition to the MBL phase has been identified as hc ∼=
3.5± 1.0 in33 and hc ∼= 2.7± 0.3 in34.

In any study of the structure of the eigenstates, the choice

of basis is essential. Since here the goal is to investigate lo-

calization in real space, that is the level of confinement of the

spin excitations in the lattice, the natural basis is that of the

configuration space, which we refer to as the site-basis and

is also known as computational basis. The site-basis vectors

|φn〉 correspond to states where the spin on each site either

points up or down along the z-axis, such as | ↑↓↑↓ . . .〉.

III. SURVIVAL PROBABILITY

To study the dynamics of the disordered chain (3), we take

as initial state a single site-basis vector, |Ψ(0)〉 = |φn0
〉. This

is equivalent to a quench, where the initial Hamiltonian is

the Ising part of the Hamiltonian
∑L

k=1 Ŝ
z
k Ŝ

z
k+1 and the fi-

nal Hamiltonian is Ĥ (3). To quantify how fast the initial

state changes in time, we concentrate on the behavior of the

survival probability,

F (t) =
∣∣∣〈Ψ(0)|e−iĤt|Ψ(0)〉

∣∣∣
2

=

∣∣∣∣∣
∑

α

|Cα
n0
|2e−iEαt

∣∣∣∣∣

2

, (4)

where Eα are the eigenvalues of Ĥ and Cα
n0

= 〈ψα|φn0
〉 is

the overlap of the initial state with the eigenstates |ψα〉 of Ĥ.

F (t) measures the probability for finding the system still in

|Ψ(0)〉 at time t.
The distribution in energy

ρn0
(E) =

∑

α

|Cα
n0
|2δ(E − Eα) (5)

of the components |Cα
n0
|2 of the initial state is often re-

ferred to as local density of states (LDOS). If the envelope

of this distribution is known, an analytical expression for

F (t) can be obtained from the Fourier transform, F (t) ≃∫
ρn0

(E)e−iEtdE.

For strong quenches, that is when the initial and final

Hamiltonians are very different, the envelope of ρn0
(E) is a

Gaussian with mean corresponding to the energy of the initial

state

εn0
=

∑

α

|Cα
n0
|2Eα = 〈φn0

|Ĥ |φn0
〉 (6)

and width

σ2
n0

=
∑

α

|Cα
n0
|2E2

α − ε2n0
=

∑

n6=n0

|〈φn|Ĥ |φn0
〉|2. (7)

Notice that the width depends only on the off-diagonal ele-

ments of the Hamiltonian matrix written in the site-basis and

is therefore independent of the diagonal disorder. The Gaus-

sian shape of the LDOS reflects the density of states, which

for systems with two-body interaction is also Gaussian59.

In the absence of disorder, the envelope ρn0
(E) is partic-

ularly well filled for initial states with energy εn0
near the

center of the spectrum of Ĥ57,58. Its Gaussian shape leads to

the Gaussian decay F (t) ∼ exp(−σ2
n0
t2). This behavior may

persist until saturation or be followed by an exponential (58,60

and references therein).

In Fig. 1 we analyze the survival probability and the LDOS

in the presence of disorder. The average of F (t) over different

disorder realizations and different initial states is denoted by

〈F (t)〉. For each system size and each realization, we select
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as initial states, only 10% of all the N site-basis vectors. They

are the ones with energy εn0
closest to the middle of the spec-

trum of Ĥ . Since the density of states is Gaussian, the center

of the spectrum contains the most delocalized states. Local-

ization in this region assures localization in other parts of the

spectrum. For eachL, the total number of data for the average,

including initial states and realizations, adds up to 105.
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FIG. 1: (Color online) Survival probability averaged over 105 data

for h = 0.5, 1.0, 1.5, 2.0, 2.7, 4.0 from bottom to top (a) and LDOS

for a single realization for bottom panel h = 0.5 (d), middle h = 1.5
(c), and top h = 2.7 (b); L = 16. In (a): the dashed line indicates

exp(−〈σ2

n0
〉t2) for h = 0.5 and horizontal lines correspond to the

saturation point, 〈IPR
n0

2
〉. The envelopes of the distributions in pan-

els (b), (c), and (d) are Gaussians with center εn0
[Eq. (6)] and width

σn0
[Eq. (7)].

Figure 1 (a) displays 〈F (t)〉 for different values of h. The

initial decay is very fast until t ∼ 2. For small disorder, the

initial evolution is purely Gaussian. As h increases, the inter-

val of the Gaussian decay shrinks until only the quadratic part

persists, 〈F (t)〉 ∼ 1−〈σ2
n0
〉t2. This is followed by a possible

exponential behavior, the time interval being too short for cer-

tainty. After the initial fast evolution, oscillations appear. The

time interval of these oscillations as well as their amplitudes

increase with the disorder strength.

The oscillations eventually fade away and give place to a

powerlaw decay with exponent ≤ 1. The initial state finds

new channels that give continuation to its evolution. The cou-

plings at higher order in perturbation theory become gradually

effective.

The long-time powerlaw behavior reflects the onset of mul-

tifractal states21–23. Our results indicate that multifractal

many-body states can occur even at small h. As the disorder

increases and the eigenstates become less extended, the pow-

erlaw exponent naturally decreases. For L = 16, the decay

after the oscillations is hardly noticeable for h & 4.

At very long times, the decay eventually saturates. The

saturation point is derived from the infinite time average of

Eq.(4),

〈F (t → ∞)〉 ∼

〈
∑

α

|Cα
n0
|4

〉
= 〈IPRn0

2 〉.

The value of this infinite time average naturally increases with

the disorder strength.

Figures 1 (b), (c), and (d) display representative LDOS for

three values of h. The widths of the three distributions are

equivalent, because according to Eq. (7), σn0
does not depend

on the disorder strength. This explains the indistinguishable

initial decay for all curves in Fig. 1 (a).

At small h [Fig. 1 (d)], the Gaussian envelope of the distri-

bution is still well filled, indicating a very delocalized initial

state. This is independent of the realization, provided εn0
be

near the center of the spectrum. As the disorder increases,

the multifractal structures of the eigenstates spread to larger

scales and the coefficients Cα
n0

fluctuate strongly. As a result,

the LDOS becomes more sparse [Figs. 1 (b) and (c)], justify-

ing the oscillations and subsequent powerlaw decay in Fig. 1

(a). The oscillations are due to the small number of states en-

ergetically accessible to the initial state in low order of pertur-

bation theory; a number that decreases as h increases. These

oscillations are not random fluctuations that can be averaged

out with enough realizations, as those at very long times. They

are connected with the approach to the MBL phase and the on-

set of quasi-integrals of motion49–52.

In Fig. 2, we analyze the survival probability for different

system sizes and four values of h. The strengths of the dis-

order are small in Figs. 2 (a), (b), while in Figs. 2 (c), (d),

they coincide, within errors, with the critical point obtained

in33,34. The fast evolution for t < 2 is separated from the

later powerlaw decay either by a small plateau (a) or by visi-

ble oscillations (c), (d). The scope of the powerlaw behavior

increases with system size [compare the time where satura-

tion takes place in (a) with the time in (c), for example]. This

suggests that for very large L the algebraic decay may persist

deep into the MBL phase, as put forward also in41.
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FIG. 2: (Color online) Survival probability averaged over 105 data

for h = 1.0 (a), h = 1.5 (b), h = 2.5 (c), and h = 2.7 (b) for

L = 10, 12, 14, 16 from top to bottom. Dashed lines give t−D̃2 ,

where D̃2 = 0.99 (a), 0.84 (b), 0.36 (c), 0.30 (d).

The dashed lines in Fig. 2 correspond to an algebraic de-

cay described by the generalized dimension, 〈F (t)〉 ∝ t−D̃2 .
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As shown in Fig. 3, D̃2 is extracted from the best linear fit to

ln〈IPRn0

2 〉 vs lnN for L = 8, 10, 12, 14, 16. The error bars

are standard deviations over 105 different values of IPRn0

2 for

each L. As the system approaches the MBL phase, the dis-

persion of the values of IPRn0

2 and therefore the uncertainty

in the value of D̃2 increases. At very large disorder, the error

bars decrease again.
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FIG. 3: (Color online) ln〈IPR
n0

2
〉 vs lnN (dark circle) and ln IPR

typ
2

vs lnN (light square) for h = 1 (a), h = 1.5 (b), h = 2.0 (c),

h = 2.7 (d), h = 3.2 (e), and h = 4.0 (f). Error bars are standard

deviations over 105 values of IPR
n0

2
(dark color) or of ln IPR

n0

2
(light

color).

For small disorder, h . 1, the system is still close to the

metallic phase and the decay is diffusive, D̃2 ∼ 1. In this

case, the exponent of the numerical powerlaw decay agrees

extremely well with D̃2 when the system size is large [see

Fig. 2 (a)]. As h increases, D̃2 decreases, but not as fast as the

numerical exponent. For h = 1.5 [Fig. 2 (b)], the agreement

between the numerical curve and 〈F (t)〉 ∝ t−D̃2 is not very

good anymore.

In the vicinity of the critical point, Figs. 2 (c) and (d), os-

cillations are seen approximately in the same time interval of

the algebraic decay of Fig. 2 (a). The generalized dimension

is now D̃2 < 1/2 and it agrees well with the rate of the damp-

ing of those oscillations, while the powerlaw decay appears

now latter in time. As L increases, the amplitudes of the os-

cillations decrease and the slope of the subsequent powerlaw

decay becomes more pronounced and closer to t−D̃2 . It is thus

plausible to expect that for very large system sizes, D̃2 might

be able to capture the algebraic decay also for large disorder.

This expectation is further supported by the results below for

the time-averaged survival probability.

IV. TIME-AVERAGED SURVIVAL PROBABILITY

In the analysis of the dynamics of noninteracting systems

at the mobility edge20–23, the commonly employed quantity

is the time-averaged survival probability, which smoothes the

fluctuations in 〈F (t)〉. It is defined as,

C(t) ≡
1

t

∫ t

0

〈F (τ)〉dτ. (8)

To reduce also the fluctuations in the values of IPRn0

2 , one

often deals with the so-called typical inverse participation ra-

tio, IPR
typ
2 ≡ exp(〈ln IPRn0

2 〉). The scaling analysis of IPR
typ
2

gives D̃typ
2 , as shown in Fig. 3. The error bars for IPR

typ
2 in

that figure are, of course, smaller than those for the regular

IPRn0

2 , since now we deal with the dispersions in the values

of ln IPRn0

2 .
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FIG. 4: (Color online) Time-averaged survival probability for h =
1.0 (a), h = 1.7 (b), h = 2.0 (c), and h = 2.7 (d) for L =

10, 12, 14, 16 from top to bottom. Dashed lines gives t−D̃
typ
2 , where

D̃typ
2

= 0.99 (a), 0.87 (b), 0.72 (c), and 0.42 (d).

In Fig. 4, we compare C(t) with t−D̃
typ
2 . When the system

is still close to the metallic phase, as in Fig. 4 (a), the decay

of C(t) is smooth all the way to saturation and in excellent

agreement with t−D̃
typ
2 , especially for L = 16.

As the disorder increases, the powerlaw exponent de-

creases, but the short-time dynamics does not change much.

This creates an abrupt contrast between the two time scales,

resulting in a visible elbow [see Fig. 4 (c) and (d)]. As h in-

creases, we also notice that the time interval for the agreement

between the algebraic decay of C(t) and t−D̃
typ
2 shortens and

starts later in time (compare the four panels). Yet, for a fixed

disorder, the agreement also improves with L. This indicates

that for system sizes larger than available for exact diagonal-

ization, D̃
typ
2 should be able to describe the powerlaw decay

for long times, even when the disorder is strong.
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V. POWERLAW EXPONENT AND SYSTEM SIZE

The exponent of the powerlaw decay of F (t) contains im-

portant information about the system:

(i) Because it coincides with the generalized dimension D̃2,

it indicates the level of delocalization of the initial state. Since

D̃2 ∼ D2, as suggested in27 and confirmed by us for our

model, the powerlaw exponent also manifests the level of de-

localization of the eigenstates.

(ii) It gives information about the correlations between

the components |Cα
n0
|2, because the algebraic decay implies

that22,25,26,

〈F (t)〉 =

〈
∑

α,β

|Cβ
n0
|2|Cα

n0
|2ei(Eβ−Eα)t

〉

ω=Eβ−Eα

−−−−−−−→

∫ ∞

−∞

dωeiωt|ω|D̃2−1 ∝ t−D̃2 . (9)

When the eigenstates, and consequently the initial state, are

extended and thus similar to random vectors, as it happens

in the chaotic domain (h . 1) for states close to the middle

of the spectrum, the components |Cα
n0
|2 are uncorrelated ran-

dom numbers. In this case IPRn0

2 ∝ N and the dynamics

is diffusive (D̃2 ∼ 1), as obtained also in35. As the disor-

der increases, the states become multifractal; the components

|Cα
n0
|2 show large fluctuations and become gradually more

correlated, so IPRn0

2 ∝ N D̃2 with D̃2 < 1, resulting in a

subdiffusive dynamics. The limited spreading of the initial

state quantified by D̃2 reflects, as made explicit by Eq. (9),

the level of correlations between the components |Cα
n0
|2.

Figure 5 (a) shows how D̃2 and D̃typ
2 depend on the disorder

strength. In parallel with the standard deviations in Fig. 3, the

error bars are larger for D̃2 than for D̃typ
2 . We show only the

latter to simplify the figure. Within errors, the two generalized

dimensions coincide. As h increases, the number of states that

contribute to the evolution of the initial state shrinks and the

generalized dimensions decrease. The decay is evident for

1 < h < 4 and it becomes extremely slow afterwards. We

avoid an analysis of what happens for h > 4, because for the

very small system sizesL = 8, 10we actually see an approach

to on-site localization.

Even though it is not clear at this point how to identify the

MBL critical point from Fig. 5 (a), a comparison with previ-

ous studies is instructive. The values of h for the mid-point be-

tween a metal and an insulator, that is D̃
typ
2 ∼ 1/2 (h ∼ 2.5),

and for the inflection point of the fitting curve (h ∼ 2) are not

too far from the critical points found in33,34. In addition, the

point of an almost halt in the decay of the values of the gen-

eralized dimensions, h ∼ 4, is very close to the critical point

hc ∼ 3.7 obtained in35 for states that, as in our case, live close

to the middle of the spectrum.

We expect D̃2 and D̃typ
2 to get closer for scaling analysis

performed with larger system sizes than the very few ones

now available for exact diagonalization. As L increases, they

should also better agree with the powerlaw exponent of F (t).
These claims find support already in the results for L = 14
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FIG. 5: (Color online) D̃2 (dark circle) and D̃typ
2

(light square) vs

disorder strength (a) and the distribution of ln(IPR
n0

2
/µ) for h = 2.7

and L = 8, 10, 12, 14, 16 from top to bottom (b). In (a): solid lines

are fitting curves. Only the error bars for D̃typ
2

are shown. They are

smaller than those for D̃2, in accordance with the standard deviations

in Fig. 3.

and 16. If the powerlaw behavior is indeed to be described

by the generalized dimension, then the algebraic decays for

different system sizes must coincide. In Figs. 2 and 4, the

slopes are visibly different for small L’s, but they get closer

for L = 14 and 16. This suggests that the scaling analysis

should become more accurate for sizes L > 14.

Figure 5 (b) endorses the proximity of the results for L =
14 and 16. It shows the distribution of the inverse partici-

pation ratios. IPRn0

2 fluctuates with disorder realization and

initial state. However, the validity of Eq. (2) presupposes

that D̃2 does not depend strongly on what is used on the

left side of that equation, whether it is 〈IPRn0

2 〉, IPR
typ
2 , or

the most probable value of IPRn0

2 . This implies that the dis-

tribution of IPRn0

2 normalized to its median µ must have a

scale invariant shape5,11. As seen in Fig. 5 (b), the distribution

P [ln(IPRn0

2 /µ)] broadens considerably from L = 8 to 12, but

the shapes are similar for L = 14 and 16.

In noninteracting disordered systems described by the pow-

erlaw random banded matrix, numerical evidence for the scale

invariance of P [ln IPRn0

2 ] was achieved11 already for N &
300, in contrast with the N & 3000 needed here. The exis-

tence of more correlations between the matrix elements of our

system when compared to random matrices may justify such

large difference. The number of nonrandom elements in the

Hamiltonian matrix of Eq. (3) is much larger than in noninter-

acting systems, such as those described by the tight-binding

model or the powerlaw random banded matrix.

VI. CONCLUSION

We studied the dynamics of an isolated disordered 1D

Heisenberg model as it approaches the MBL phase. The anal-

ysis was based on the entire evolution of the survival probabil-

ity F (t), from t = 0 to t→ ∞, for initial states corresponding

to site-basis vectors. F (t) is one of the simplest quantities that

can reveal the multifractality of the eigenstates. It also appears

explicitly in the evolution of observables58.

The dynamics of clean and disordered interacting systems

is comparable at short times. For both, the Gaussian decay

rate of F (t) coincides with the width of the LDOS. In the
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presence of disorder, the LDOS gets sparse, reflecting the re-

duced number of states participating in the dynamics and the

multifractality of the eigenstates. As a result, the behavior of

F (t) at long times becomes powerlaw.

The exponent of the powerlaw decay coincides with the

generalized dimension D2. This finding establishes a paral-

lel with previous works about the dynamics of noninteracting

systems at criticality and may help advance our understanding

of transport properties in interacting systems. It also implies

that from F (t), one can infer the level of delocalization of the

initial states and eigenstates, as well as the correlations of their

components. This is advantageous, since numerical methods

other than exact diagonalization are available for studying dy-

namics, which gives access to larger system sizes. The dy-

namics can also be studied experimentally with quantum sim-

ulators.
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41 M. Serbyn, Z. Papić, and D. A. Abanin, Phys. Rev. B 90, 174302

(2014).
42 Y. B. Lev and D. R. Reichman, Phys. Rev. B 89, 220201(R)

(2014).
43 Y. B. Lev, G. Cohen, and D. R. Reichman, arXiv:1407.7535.
44 K. Agarwal, S. Gopalakrishnan, M. Knap, M. Müller, and E.

Demler, arXiv:1408.3413.
45 R. Vasseur, S. A. Parameswaran, and J. E. Moore,

arXiv:1407.4476.
46 P. R. Zangara, A. D. Dente, A. Iucci, P. R. Levstein, and H. M.

Pastawski, Phys. Rev. B 88, 195106 (2013).
47 I. L. Aleiner, B. L. Altshuler, and G. V. Shlyapnikov, Nat. Phys.

6, 900 (2010).
48 D. A. Huse, R. Nandkishore, V. Oganesyan, A. Pal, and S. L.

Sondhi, Phys. Rev. B 88, 014206 (2013).
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