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We investigate what happens if an Anderson localized system is coupled to a small bath, with a
discrete spectrum, when the coupling between system and bath is specially chosen so as to never
localize the bath. We find that the effect of the bath on localization in the system is a non-monotonic
function of the coupling between system and bath. At weak couplings, the bath facilitates transport
by allowing the system to ‘borrow’ energy from the bath. But above a certain coupling the bath
produces localization, because of an orthogonality catastrophe, whereby the bath ‘dresses’ the system
and hence suppresses the hopping matrix element. We call this last regime the regime of “Zeno-
localization”, since the physics of this regime is akin to the quantum Zeno effect, where frequent
measurements of the position of a particle impede its motion. We confirm our results by numerical
exact diagonalization.

I. INTRODUCTION

Closed quantum systems can exhibit new dynami-
cal states of matter where they fail to reach thermal
equilibrium1. Recent years have seen a surge of interest
in such many-body localized states of matter2–8. Quan-
tum localized states exhibit a rich complex of properties,
including a vanishing DC conductivity in linear response,
a memory of the initial conditions that survives to infi-
nite times in local observables (breakdown of the ergodic
hypothesis), an emergent integrability9–14, a non-local re-
sponse to local perturbations15, and a stabilization of ex-
otic correlated states of matter at high temperatures16–24

(for a review of recent developments, see Ref. 25). Quan-
tum localization has been drawing intense interest both
because it represents an unexplored frontier for quan-
tum statistical mechanics, and because it holds out the
promise of a new generation of quantum devices, that are
protected against decoherence and can operate even at
high energy densities. However, much work on quantum
localization considers only the idealized (and experimen-
tally unrealizable) limit of a completely closed quantum
system, perfectly isolated from any environment.

A recent series of works (involving some of the present
authors) have studied what happens when a localized sys-
tem is coupled to a thermodynamically large bath28–31.
These works have shown that when a localized system is
weakly coupled to a large bath, the exact eigenstates of
the combined system and bath immediately become ther-
mal, while the spectral functions of local operators con-
tinue to show signatures of localization up to a crossover
coupling that is independent of the size of the bath. In
the present paper, we instead address what happens if
a localized system is exposed to a small bath, contain-
ing very few degrees of freedom. Additionally, we do
not want to restrict ourselves to the regime of weak cou-

pling. If a handful of ‘delocalized’ degrees of freedom are
exposed to a strongly disordered (localized) system, the
most likely result is that these additional degrees of free-
dom will also become localized. That is not the physics
we consider here. We want to ask: how many degrees
of freedom do we need to have in a bath that is pro-
tected against localization, in order to be able to ther-
malize a localized system? We note that baths that are
‘protected’ against localization are not unphysical. Ex-
amples include the longest wavelength Goldstone modes
(e.g. phonons) associated with the spontaneous breaking
of a continuous symmetry32, as well as extended states in
systems with a topological obstruction to the construc-
tion of fully localized Wannier orbitals33.

In this article, we will examine what happens when
a localized system is coupled (potentially strongly) to a
small bath, which is protected against localization. For
simplicity, we will restrict our attention to single-particle
localized systems. We will show that one and two di-
mensional single particle localized systems coupled to a
finite sized bath are always localized, irrespective of the
strength of the coupling. However, the localization length
and inverse participation ratios display a non-monotonic
dependence on the coupling between system and bath,
which is associated with a crossover between Anderson
localization and a regime that we dub ‘quantum Zeno
localized,’ where repeated ‘measurements’ of the particle
by the bath are responsible for localization. In three di-
mensions, a delocalized phase can arise at intermediate
couplings.

II. THE MODEL

We begin by considering as our localized system a sin-
gle particle moving on a lattice with a random potential.
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The Hamiltonian of the particle is:

H0 = −t
∑
〈ij〉

c†i cj +
∑
i

εic
†
i ci (1)

where εi is a random onsite energy taken from a dis-
tribution of width 2W (specifically, a box distribution
[−W,W ]). The lattice dimensionality is d, arbitrary,
and the most important difference is between the cases
d = 1, 2, where delocalization is impossible and d ≥ 3
where we could actually have delocalized states. When
we consider a finite lattice, it has Ld sites.

The bath in question is modeled as a quantum dot, or
a zero-dimensional system. A quantum dot is a suitable
model for the bath, because we want to couple the sys-
tem to the bath in such a way that the coupling does not
introduce any spatial disorder in the bath i.e. the system
couples uniformly to the entire bath, which means that
from the system’s point of view, the bath is zero dimen-
sional. We further assume that the bath has bandwidth
Ω, and can be in any one of N possible states, so that
the level spacing in the bath is δ ≈ Ω/N . In the limit
N → ∞ the bath can have a continuum spectrum. The
Hamiltonian of the bath may then be modeled simply
as a properly rescaled N ×N Hermitian random matrix
taken from the GOE ensemble. The GOE statistics of the
bath is representative of it being in a delocalized phase.

The Hamiltonian for the bath is taken to have the form

Hbath = ω
∑
α′,β′

Mα′,β′ |α′〉〈β′|, (2)

where for simplicity of notation we define the variable
ω = Ω/2

√
2N, and where M is a GOE matrix distributed

according to: P (M) ∝ e− 1
2 TrM2

with

〈Mα,β〉 = 0, 〈M2
α,β〉 = 1/2 for α 6= β, 〈M2

α,α〉 = 1.
(3)

The eigenvectors of the bath are labeled by
{α}α=1,...,N . The density of levels Eα is given by the
semicircle law34

ρ(E) =
8N

πΩ2

√
(Ω/2)2 − E2, (4)

and hence δ ≡ 1/ρ(0) = πω/
√

2N in the middle of the
spectrum.

The coupling between system and bath is chosen so
as to not introduce localization into the bath, but also
so that it is able to transfer energy between system and
bath. The simplest coupling that does the job is

Hcouple = λ
∑
i,α,β

M
(i)
α,β c

†
i ci ⊗ |α〉〈β| (5)

i.e. a coupling of strength λ which can scatter the bath
from any eigenstate to any other eigenstate (irrespective
of the energy transfer involved) with a random amplitude

M
(i)
α,β . For simplicity, we choose the amplitudes to form

a random GOE matrix.

TABLE I. Model’s parameters

Particle hopping and disorder t,W

Coupling between particle and bath λ

Size of the bath’s Hilbert space N

Bandwidth of the bath’s Hamiltonian Ω

Rescaled bandwidth of the bath ω = Ω/(2
√

2N)

Average gap between bath’s eigenstates δ

Line broadening of bath’s eigenstates ∆

The main parameters of the model and their mutual
relations are summarized in Table I.

We now ask what happens to the particle in the pres-
ence of this coupling to the bath. It is essential for our
present purposes that the system contains a single par-
ticle (if the system contained many particles we would
have to worry about indirect couplings through the bath.)
The hopping problem can be pictorially represented as
in Fig. 1. For every position of the particle, there is a
‘tower’ of N states, which differs only in the configura-
tion of the bath. This ‘tower’ of states has bandwidth
∼ ω
√
N and level spacing ∼ ω/

√
N . A nearest neigh-

bor hop of the particle, leaving the state of the bath
unchanged, causes an energy shift of magnitude W (in
the weak λ limit). For the rest of the paper we assume

that ω/
√
N < W < ω

√
N , so that the ‘offset’ of the

tower of states on neighboring sites is bigger than the
level spacing in the tower, but nonetheless adjacent tow-
ers do overlap. Right at the edge of the towers of states
there are Lifshitz tails - states that are not near degen-
erate with any nearby states. However, we consider the
properties of typical states well away from the edges of
the spectrum, where the towers of states all overlap.

The single particle problem will be considered in three
stages. First we consider what happens working pertur-
batively in small λ < ω/

√
N . Next we discuss the regime

of strong λ > ω. Finally, we consider the intermediate λ
regime ω/

√
N < λ < ω.

III. ANDERSON AND ZENO LOCALIZATION

A. Weak λ < ω/
√
N : the Anderson localized regime

At t = 0 = λ, the spectrum of the combined system
and bath consists of decoupled ‘bands’ of states (one band

per site), with bandwidth ω
√
N (Fig. 1) and random

offsets εi (see Fig. 1). Our assumption that W � Ω =

2ω
√

2N ensures that these bands overlap strongly.

Although the statistics of the bath alone are Wigner-
Dyson, the overall spectral statistics are Poisson. This is

because there are Ld local integrals of motion c†i ci, which
commute with the Hamiltonian, so the spectrum is the
superposition of Ld copies of Hbath spectra, shifted by
the random energies εi. Meanwhile, the eigenstates take
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FIG. 1. Figure illustrating the basic setup. There is a band
of states on every site i, with energies spanning a bandwidth
ω
√
N , and with level spacing ω/

√
N , which differ only in the

state of the bath. In the weak coupling regime λ < ω/
√
N ,

hopping between sites follows the solid red lines (with no
change in the state of the bath), and a typical nearest neigh-
bor hop changes the energy by an amount of order W . Out-
side the weak coupling regime, the states in the bath start
to get hybridized. The size of the energy window over which
states in the bath are well hybridized grows with λ, and be-
comes of order W at λ ∼

√
ωW/N1/4. The system-bath

coupling allows an effective hopping between states that are
nearly on shell (blue lines). The system is minimally local-

ized (for small t) at λ ∼
√
ωW/N1/4, with larger values of λ

leading to greater localization because of the quantum Zeno
effect.

the form

|Ψ〉 = |i〉 ⊗ |α〉, (6)

where |α〉 is an eigenstate of the bath Hamiltonian with
energy Eα.

On turning on non-zero t (but still at λ = 0), the sys-
tem becomes able to execute hopping from one site to the
next, but the hopping does not involve any change in the
state of the bath, and thus a nearest neighbor hop typi-
cally involves an energy change of order W . The eigen-
states are still ‘product states’ of system and bath. For
t < W and λ = 0 we are in the regime of strong Anderson
localization, where the localization length is less than or
of order one lattice spacing, and the ‘system’ part of the

eigenstate is just a dressed version of |i〉. In this regime
we can apply a variant of the locator expansion, a per-
turbation theory in the hopping or interaction3 recently
also used in the context of MBL12,26. For t > W the
traditional locator expansion will fail to converge, and
we will be in either a weak localization regime (in one or
two dimensions), or a delocalized regime (in three dimen-
sions). As long as the particle is localized, there remain
Ld local integrals of motion (the occupation numbers of
the localized eigenfunctions), and the spectral statistics
thus remain Poisson42.

We now move to non-zero λ. When the particle is
at position i, the effective Hamiltonian for the bath is
ωM + λM (i). The ‘bath’ eigenstates will start to mix
with each other when λ becomes comparable to the level
spacing ∼ ω/

√
N associated with the bare bath Hamilto-

nian ωM . A more careful argument along the lines of Ref.
3 and 36 interprets the above expression as the Hamil-
tonian of a fully connected graph, with connectivity N ,
random on-site energies (eigenvalues of ωM) and random

Gaussian hopping λM
(i)
α,β . This leads to a slightly more

precise criterion, stating that the eigenstates of the bath
must remain almost unperturbed for λ <∼ ω/

√
N lnN .

However, this fine distinction is of little importance for
the present analysis (we are considering small baths).

Therefore for λ < ω/
√
N , hopping between neighbor-

ing sites is not enhanced by the presence of the bath. In
fact, let us consider the O(t) correction to the localized
eigenstate

|Ψ〉 ' |i〉 ⊗ |α〉+
∑
β

Ai+1,β |i+ 1〉 ⊗ |β〉+ ... . (7)

If λ < δ, for hopping leaving the bath untouched, per-
turbation theory gives

Ai+1,α =
t

εi+1 − εi
∼ t

W
, (8)

while for hopping that changes the state of the bath β 6=
α the same ratio is at most

max
β

Ai+1,β =
t

εi+1 − εi
max
β

λ

εi − εi+1 + Eα − Eβ
∼ t

εi − εi+1

λ

δ
∼ tλ

Wδ
< Ai+1,α. (9)

So in this regime, the bath is typically not excited by the
particle traveling. This is illustrated in Fig. 1: the solid
red lines indicate the trajectory followed by a particle
hopping without changing the state of the bath.

We now consider how the criterion for breakdown of
the locator expansion (t > W for λ = 0) is altered at

non-zero λ. We recall that in the regime λ < ω/
√
N ,

the bath does not respond to the motion of the parti-
cle in the system. However, the coupling of the bath to
the system changes depending on where the particle is
(Eq. (5)). Thus, in this weak coupling regime the bath
acts as an additional source of static disorder. The par-
ticle is effectively hopping in a random potential with
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disorder strength Weff ∼
√
W 2 + λ2 ≈W (1 +λ2/2W 2).

Meanwhile, from Eqs. (8),(9) we see that the bath opens
up additional hopping channels, and increases the ef-
fective hopping from t to teff ≈ t(1 + λ2/2δ2). The
condition for the breakdown of the locator expansion is
altered to teff > Weff . Since δ < W , we see that
the opening up of new hopping channels is the dom-
inant effect, and thus coupling to a bath makes lo-
calization less stable, changing the critical hopping to
tc = W (1 − λ2/2δ2 + λ2/2W 2) (in high dimensions the
result is modified as an extra factor is needed12, to get
tc = W (1 − λ2/2δ2 + λ2/2W 2)/(d ln d)). For t < tc,
we have strong localization, and for t > tc we have ei-
ther weak localization (in one or two dimensions) or de-
localization (in three dimensions). We note too that in
the weakly coupled strong localization regime the exact
eigenstates are effectively product states of system and
bath, and the entropy of entanglement of the system with
the bath is near zero.

B. Strong λ > ω: The quantum Zeno regime

In the opposite limit of strong λ, the particle gets local-
ized again, because of the coupling to the bath. We dub
this the regime of quantum Zeno localization, because of
the resemblance to the Quantum Zeno effect37–39 : the
fact that a small system coupled with a large quantum
system, possibly a detection apparatus, does not evolve
or evolves only into a given subspace40,41, when the cou-
pling is too large.

The calculation proceeds as follows: first, we observe
that at t = 0, a λ > δ causes a hybridization of the levels
in the bath which now acquire an i index:(

ωM + λM (i)
)
|αi〉 = Eαi |αi〉. (10)

For λ� ω, the Hamiltonian of the bath is dominated
by the coupling M (i) to the particle, and the bath lev-
els are hybridized in a radically different way for each
position i of the particle. Thus we have

〈αi|βj〉 = δα,βδi,j + (1− δi,j)xij/
√
N, (11)

where the δi,j is a Kronecker delta function and xij is a
Gaussian random variable < xij >= 0 and < x2

ij >= 1.
We now turn on a small t and ask how the analysis

changes. A hop in the system changes the state in the
bath. We can describe the problem by mapping it to a
Bethe lattice problem with connectivity κ = N , effective
hopping

τ = t
1√
N
, (12)

and effective disorder

W = λ
√
N. (13)

The effective disorder W is determined from the band-
width of the local bath Hamiltonians ωM + λM (i). The
latter equals

√
2Nω2 (1 + λ2/ω2) ∼ λ

√
N for λ > ω. Us-

ing the known results on the localization on Bethe lattice
we have localized eigenstates if

t <∼ λ/ lnN. (14)

For such values of t the particle is strongly localized be-
cause of quantum Zeno physics, whereas for t > λ/ lnN
the locator expansion fails to converge. This latter
regime may be either a weak localized regime (in one or
two dimensions) or a delocalized regime (in three dimen-
sions). The localization of the particle by strong λ can
also be viewed as a result of an orthogonality catastrophe,
whereby the particle is ‘dressed’ by the bath in a different
way depending on which site it is on, and the hopping
matrix element is thus strongly suppressed. In the limit
λ → ∞ the hopping is completely ineffective, and the
exact eigenstates are simply product states |Ψ〉 = |i〉|αi〉,
which, however, are exact eigenstates of the system-bath
coupling. In this limit, the entropy of entanglement of
system and bath (in an eigenstate) is again zero, and the
particle is localized on a single site.

C. Intermediate ω/
√

2πN < λ < ω

We begin our discussion of the intermediate coupling
regime by setting t = 0, and studying the evolution of the
bath eigenstates as λ is varied. Turning on a coupling λ >
ω/
√
N causes the eigenstates of ωM within an energy

window ∆ to hybridize. The width of this energy window
may be determined by calculating the decay rate of an
eigenstate of ωM due to the perturbation V = λM (i)

using Fermi’s golden rule. Given a density of final states
δ−1 =

√
2N/πω the calculation indicates that the decay

rate is

∆ ' 2πλ2
√

2N/πω, (15)

and moreover suggests that the broadened spectral line is
a Lorentzian with width ∆. Thus, the eigenstates |α(i)〉
of ωM + λM (i) should be wave packets of eigenstates
|α(0)〉 of ωM , with

|〈α(i)|α(0)〉| =
√

δ∆/π

(Eα(i)
− Eα(0)

)2 + ∆2
. (16)

We note that as λ → ω, ∆ → 2ω
√

2N = Ω indi-
cating complete hybridization of all states, whereas as
λ → δ/

√
2π, ∆ → δ, indicating no hybridization. Thus

the Fermi’s golden rule interpolation correctly matches
on the weak and strong λ limits. The line broadening ∆
becomes comparable to W for

λc =

√
Wω

2
√

2N
. (17)
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We now turn on a small but non-zero t. Hopping is per-
turbative in t but non-perturbative in λ and the eigen-
states have the form

|Ψ〉 = |i〉|αi〉

+
∑
αi+1

t〈αi+1|αi〉
εi+1 + Eαi+1 − εi − Eαi

|i+ 1〉|αi+1〉

+ ... . (18)

A ‘direct’ hopping (blue line in Fig. 1), which stays on

shell to a precision δ ∼ ω/
√
N , is now possible, because

there is some non-zero overlap between the two states
〈αi+1| and |αi〉 at the same energy. However, since |εi −
εi+1| ∼W , these ‘direct hopping’ processes must involve
transitions between bath states with |Eαi −Eαi+1

| ∼W .
The amplitude of the overlap between bath states may
be estimated by inserting (Eαi − Eα0

) ∼ W into Eq.
(16). (Identical results may be obtained by instead using
the Golden Rule to calculate the decay rate of |αi〉 onto
eigenstates of ωM + λM (i+1)). Thus the correction to
the wave function from ‘direct hopping’ processes (blue
line in Fig. 1) is, at leading order in small t,

∼
(
t

δ

√
∆δ√

W 2 + ∆2

)
. (19)

For λ > λc, we have ∆ > W and the above expression can
be approximated by t/λ (remembering that ∆ ∼ λ2/δ).
The same result can also be obtained by reasoning that
for λ > λc, direct hopping via the blue line in Fig. 1
is ‘easy’, since bath states are hybridized over an energy
window ∆ > W . However, the matrix elements are sup-

pressed by a factor of
√
Ñ , where Ñ = ∆/δ ∼ (λ/ω)2N

is equal to the number of states involved in the hybridiza-
tion (for λ > ω, Ñ = N).

Meanwhile, for λ < λc, we have ∆ < W , and the
above expression can be approximated by tλ/Wδ. This
expression may be understood as follows: since ∆ < W ,
a ‘direct hop’ (following the blue line in Fig. 1) is for-
bidden, as the two bath states involved have vanishing
overlap. Instead, the particle first hops without chang-
ing the state of the bath, going off shell by an amount
W , and then the bath relaxes to bring the system back
on shell, to a precision δ. The matrix element for this
two step process is tλ/W .

Thus, when performing a locator expansion in small t,
the successive corrections to the wave function are sup-
pressed by powers of t/λ if λ > λc, and by powers of

tλ/Wδ if λ < λc and λ > δ/
√

2π.

D. Region of convergence of the locator expansion

The results from the previous three subsections are
summarized in Fig. 2. We find that the locator expansion

converges for

t <∼


W (1− λ2/2δ2 + λ2/2W 2) if λ < δ

Wδ/λ if δ/
√

2π < λ < λc

λ/ lnN if λ > λc.

(20)
In particular, the behavior in λ is non-monotonic. At the
smallest λ < ω/

√
N , the coupling to the bath destabi-

lizes localization by opening up new hopping channels.

For ω/
√

2πN < λ < λc =
√
ωW/(2

√
2N), the coupling

to the bath assists the particle in hopping, by allowing
it to ‘borrow’ the energy required to get on shell. For

λ > λc =
√
ωW/(2

√
2N), the coupling to the bath en-

hances the stability of localization, because of a ‘quan-
tum Zeno effect.’ This latter effect is the result of an
orthogonality catastrophe - a stronger λ suppresses the
effective hopping matrix element, because it suppresses
the overlap between bath states corresponding to the par-
ticle being on different sites.

As long as the locator expansion converges, the system
will be in a ‘strong localization’ regime, with λ driving
a crossover from ‘Anderson’ localization (at weak λ) to
‘Zeno’ localization (at strong λ). What happens when
the locator expansion fails to converge depends on di-
mensionality, and will be discussed in the following sec-
tion.

An essentially similar but more quantitatively precise
calculation of the boundary of stability of the locator
expansion is provided in the Appendix, and leads to Fig.
3. We outline here the main calculation. For a general
eigenstate, we consider the amplitude Aj,β (defined as in
Section IIIC) for the particle to be in the site j of the
lattice, with the bath being in the state |β〉.

For a state localized in the vicinity of a site i, the
amplitude to find a particle at a site j at distance n from
i is exponentially small in the distance, implying that for
some z < 1

P

(
max
β
|Aj,β | < zn

)
→ 1, (21)

as n → ∞, where P is the probability measure over the
realizations of the disorder. The minimum z for which
this condition is still true gives the localization length as
z = e−a/ξ where a is the lattice constant.

Analytic calculations, that can be done by considering
Aj,β to lowest order in t in perturbation theory (see also
Ref.s3,12,26,36) are presented in the Appendix. Being per-
formed in the lowest-order in t these give a lower bound
for the value of t where delocalization/weak-localization
occurs.

So we conclude that the boundary of convergence for a
locator expansion should look as sketched in Fig. 2 and 3.
Note that strong localization is least stable when λ ≈ λc,
and becomes more stable both for weak λ (the Anderson
localization limit), and for strong λ (the quantum Zeno
limit). The minimum value of t that can cause breakdown
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t

�

weakly localized or delocalized

ZenoAnderson

localized

p
W!

23/4N1/4

FIG. 2. Schematic phase diagram, with a ‘phase bound-
ary’ that indicates the boundary of stability of the locator
expansion. On the small t side of the ‘phase boundary,’
the system is strongly localized. Within the strong local-
ization regime there is a crossover from Anderson localiza-
tion at small λ to quantum Zeno localization at large λ.
Note that the locator expansion is maximally unstable around

λc =
√
ωW/(2

√
2N). For λ > λc, the phase boundary is ap-

proximately linear in λ, whereas for λ < λc is scales as 1/λ.
Meanwhile, the large t side of the ‘phase boundary’ is the
regime of weak localization (in one or two dimensions) or de-
localization (in three dimensions). Note that in one or two
dimensions the ‘phase boundary’ marking breakdown of the
locator expansion is really just a crossover to weak localiza-
tion. Only in three dimensions does it mark a true phase
transition to a delocalized phase.

of the locator expansion is tc(λc) =
√
ωW/(2

√
2N). So,

for any t the localization length should peak at this value
of λ. This is observed both in the numerics (Fig.4) and
in the analytic calculations (Fig. 3).

E. Numerics

One way to numerically estimate the localization prop-
erties of the particle is by using numerical exact diago-
nalization and looking at the probability distribution of
the position of the particle in the eigenstate |Ψ〉 of the
coupled system and bath

pi =

N∑
αi=1

|〈i, αi|Ψ〉|2. (22)

0 1 2 3 4

0.

0.5

1.

Λ

t c
HΛL

0 1 2 3 4

0

1

2

3

4

5

6

7

Λ

Ξ
HΛL

�ΞH
0

L

FIG. 3. Results of analytic calculations in the forward ap-
proximation detailed in the Appendix for fixed W = 3,
N = 300, ω = 4 (substitution into Eq. (17) gives λc = 0.5).
Top. The t − λ phase diagram; the dark region is the weak-
localized/delocalized region, the light region is localized. Note
the non-monotonic dependence of the boundary on λ. The
calculation assumes that states in the bath are hybridized ac-
cording to Eq. (16), and is thus not applicable at λ < δ/

√
2π.

Bottom. Localization length as a function of λ, along a hori-
zontal slice through the top diagram that stays always on the
‘strongly localized’ side of the phase boundary. Note again the
non-monotonic behavior. There is a pronounced maximum in
the localization length close to λ ≈ 0.3, which indicates that
the system is least localized at this intermediate value of λ.
Due to the nature of the approximation, t(λ) and ξ(λ) are un-
derestimated, while the ratio ξ(λ)/ξ(0) is overestimated. The
value λc ≈ 0.3 extracted from the procedure in the Appendix,
which includes additional approximations, is reasonably sim-
ilar to λc = 0.5 obtained by the simple argument detailed in
the main text.

One can then define inverse participation ratios of p as

Iq =

(∑
i

pqi

)−1

. (23)
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For example the localization length can be estimated
from the first non trivial Iq, i.e.

I2 ∼ ξd. (24)

Additional information is contained in the entropy of en-
tanglement of system with bath, which may be extracted
from the reduced density matrix ρ = Tr bath|Ψ〉〈Ψ|,
where |Ψ〉 is an exact eigenstate of the coupled system
and bath. The entanglement entropy is

S = −Tr (ρ ln ρ). (25)

For the present problem the entanglement entropy and
the inverse participation ratios are correlated, since the
less the particle is localized, the more it is entangled with
the bath.

The numerical results for a one-dimensional system are
presented in Fig. 4, and show the evolution of the in-
verse participation ratio and entanglement entropy along
horizontal slices taken through Fig. 2, some of which
go through the ‘weak localization/delocalization’ regime,
while one does not. The numerics are for t = 1, which
is kept fixed, while the disorder W varies. Note that for
W >∼ 2

√
2N/ω ≈ 12 we are entirely in the strongly local-

ized regime, for any value of λ. The first panel of Fig. 4
shows how the inverse participation ratio I2 varies for an
infinite size system coupled to a bath with coupling λ.
We have extrapolated our finite size numerics to infinite
L by using a fit of the form

Iq(L) = Iq(∞) + aI/L, (26)

which turns out to be a very good fitting form for the
data. We observe as expected a non-monotonic behavior,
with weak λ increasing the inverse participation ratio and
strong λ suppressing it.

The second panel on Fig. 4 shows the evolution of
the entanglement entropy with coupling λ, extrapolated
from the finite size system, analogously to the inverse
participation ratio, using a fit of the form

S(L) = S(∞) + aS/L. (27)

We show this finite size scaling in the inset; the results
for the finite size scaling of I2 are very similar. At weak
λ, the particle becomes more entangled with the bath as
λ is increased, but for larger λ the entanglement entropy
becomes a decreasing function of the coupling, and in
the extreme λ → ∞ limit one recovers an unentangled
product state. The entanglement entropy is maximized
at the same value of λ = λc that maximizes the inverse
participation ratio.

Fig. 5 shows how the value of λc, which maximizes
both the participation ratio and the entanglement en-
tropy, varies with W . We compare the numerical result
with our analytic estimate of Eq. (17), obtaining a good
agreement.

0 1 2 3 4
0

1

2

3

4

λ

I 2∞
(λ
)/

I 2∞
(0
)

W=1.5

W=6.

W=12.

W=15

0 1 2 3 4
0

5

10

15

λ

S
∞
(λ
)/

S
∞
(0
)

W=1.5

W=6.

W=12.

W=15

30 50 70
L

16

22

28

S(L)

FIG. 4. Results of numerics on a one dimensional system
coupled to a small bath. Exact diagonalization is performed
for about 50 states in the center of the band for the param-
eters t = 1, ω = 4, N = 300, and varying W . The values of
W are chosen so that we span the phase diagram in Fig. 2.
For W < 12, we slice through the ‘weak localization’ region,
whereas for W > 12 we stay always in the strong localiza-
tion regime. The entanglement entropy and the participation
ratios have a pronounced maximum close to the (same) hy-
bridization threshold λc. The peak is sharper when we go
through the weak localization regime. Inset. Example of
the finite size scaling of SL for a given value of λ = 0.8 and
W = 6. To extrapolate the infinite size S∞ we used (27) with
L ranging from 10 through 70, taking around 50 disorder re-
alizations for each system size.

IV. OUTSIDE THE STRONG LOCALIZATION
REGIME

We now discuss what happens when the locator expan-
sion fails to converge. What happens outside the strong
localization regime is highly sensitive to dimensional-
ity. In three dimensions this ‘strong hopping’ regime
will be delocalized, whereas in one or two dimensions
it will be (weakly) localized, with a large localization
length. This follows because even the strong hopping
problem (schematically illustrated in Fig. 1) may be
viewed as a (multi band) problem of a fermion mov-
ing in a random potential, in the orthogonal symmetry
class, and this problem always displays localization in
one and two dimensions35. Indeed, one can even use the
arguments of35 to estimate the localization length: the
number of open conduction channels (loosely identified
with the bare conductance g0), is given by the ratio of
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FIG. 5. Value of λc for t = 1 and the different disorders W .
In blue we plot the numerical data, with their errors coming
from the resolution in λ at which the plots in Fig. 4 are
computed. In dashed green we plot the analytic estimate of
Eq. (17). We note that the exact diagonalization data agree
well with the analytic prediction.

matrix element to level spacing. This parameter takes
value g0 ≈ t/W for λ < ω/

√
N , g0 ≈ tλ

√
N/Wω for

ω/
√
N < λ < λc, and t/λ for λ > λc according to the

analysis we have just developed. Meanwhile, the typical
conductance obeys the scaling relation

d ln g

d lnL
= d− 2− c

g
(28)

where c is an unknown positive constant. In d = 1, 2,
g always flows to zero, indicating localization. The lo-

calization length is simply the length scale on which g
becomes of order one. In one dimension this happens on
length scales that are only power law large in g0, whereas
in two dimensions the localization length will be expo-
nentially large in g0. In three dimensions, meanwhile,
the scaling function will flow to large g for sufficiently
large g0, indicating the existence of a delocalized phase
in the strong hopping regime. Thus, in three dimensions
the ‘phase boundary’ shown in Fig. 2 and Fig. 3, panel
1 is a true phase boundary separating localized and de-
localized phases, whereas in one and two dimensions it
merely marks a crossover from a strongly localized regime
to a regime of weak localization.

V. CONCLUSIONS

Thus, we have examined the behavior of a single par-
ticle localized system coupled to a finite sized bath that
is protected against localization. We find that the sta-
bility of localization is a non-monotonic function of the
coupling to the bath (Fig. 2). At weak coupling, the
bath weakens localization by placing hops in the sys-
tem on shell. At large coupling, the bath once again
localizes the particle, by suppressing hopping through a
mechanism akin to the quantum Zeno effect. We have
confirmed these results through detailed calculations in
the forward approximation (Appendix) and by numerical
exact diagonalization.

Our analysis has focused on a system containing a sin-
gle particle. A detailed specification and solution of the
many particle problem coupled to a small bath would be
an interesting topic for future work.

A. S. is in part supported by the NSF grant PHY-
1005429. A. S. would like to thank B. Altshuler for dis-
cussions.
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VI. APPENDIX

In this Appendix we review the main approximation
for the analytic calculations discussed in the text. We
will follow an analysis similar to that of12. In particular,
we will see how to lift the first order perturbation theory
discussed in the text to a more precise result about the
existence of localized states.

We will study the localized phase of the particle by
doing perturbation theory in the hopping t. The role of
the bath coupling λ is to open more and more channels
for the particle to change its quantum number i→ i+ 1.
This will define an effective hopping parameter τ and an
effective connectivity κ for the particle. An important
quantity will be effective disorderW, which is the energy
spread of the energies εi+Eαi of neighboring states. For
simplicity of notation, we restrict to the case of a single
particle in one dimension, and remark what has to be
adapted in case of higher dimension.

For an eigenstate |Ψ〉 localized at i = 0 for t = 0, to

lowest order in t it holds

|Ψ〉 = |0〉 ⊗ |α0〉+
∑
α1

A1,α1
|1〉 ⊗ |α1〉

+
∑
α2

A2,α2 |2〉 ⊗ |α2〉+ ...

+
∑
αn

An,αn |n〉 ⊗ |αn〉+ ... (29)

where the amplitudes An,αn are of order tn, and can
be written as

An,αn =
∑

p∈paths(α0,αn)

Ap, (30)

where

Ap =

n∏
i=1

t〈αi−1|αi〉
εi + Eαi − ε0 − Eα0

(31)

is the amplitude of one particular path from α0 → αn,
described by a particular sequence of bath states p =
(α1, α2, ..., αn).

The amplitude for the particle to be at site n equals∑
αn
An,αn . In the following, we determine the proba-

bility to have a significant amplitude at a big distance
n from the localization center i = 0 of the unperturbed
eigenstate. More precisely, we identify the region of pa-
rameters where the probability to have a big amplitude
converges to 0 for n→∞, i.e. where

P

(∣∣∣∣∣∑
αn

An,αn

∣∣∣∣∣ > zn

)
n→∞−→ 0 (32)

for some z < 1. In this regime of parameters, the loca-
tor expansion (31) converges and the system is strongly
localized. The localization length ξ is related to the min-
imum value zmin for which (32) holds by

ξ =
1

ln zmin
' 1

1− zmin
, (33)

where the second (approximate) equality is only accurate
close to the critical point, giving a mean-field exponent
ν = 1. Setting z = 1 in (32), we obtain an estimate of the
critical hopping t, which for a given value of the parame-
ters gives the breakdown of the locator expansion. Note
that by considering only the lowest order in t of An,αn we
are putting a lower bound on the critical hopping. This is
because resonances have a much larger effect on the low-
est order result than on the full result (here a ‘resonance’
is a situation where Ap is order one). Re-summation of
higher order terms in t decreases the final amplitude, so
that the lowest order in t calculation overestimates the
delocalizing effect of resonances. This was already dis-
cussed in the original paper by Anderson1 (see also Ref.
36).
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In the following, we compute the distribution of the
amplitude Ap of a particular path from the state |i =
0〉|α0〉 to the state |i = n〉|αn〉. As we shall see, for large
n the distribution is long tailed. As a consequence, both
the sums (30) and

∑
αn
An,αn are very well approximated

by their maximum term, and therefore∣∣∣∣∣∑
αn

An,αn

∣∣∣∣∣ ' |max
αn

An,αn | ' max
αn

max
p∈paths(α0,...,αn)

|Ap|,

(34)
which is effectively the maximum over all the paths of
length n emanating from α0, irrespective of the final state
of the bath αn. We call this set of paths paths∗(α0).
Since each bath state |αi〉 can be chosen among N pos-
sible states, the size of paths∗(α0) is Nn. Treating the
different paths as independent we get:

P

(
max

p∈paths∗(α0)
|Ap| < zn

)
= [1− P (|Ap| > zn)]

Nn
.

(35)
For a particle in a higher dimensional lattice, the sum
(30) has to be modified to account for the fact that two
lattice sites at distance n can be connected by multiple
lattice paths of shortest length n, whose number is ap-
proximately equal to dn. For each of these paths the
sequence of bath states can be chosen among Nn pos-
sibilities. Thus (35) remains valid with the substitution
N → Nd.

We perform the computation of the distribution of
(31) taking into account the dependence of the hop-
ping amplitude on the energy difference between bath
states which arises in the hybridized, intermediate re-
gion. In the intermediate regime we need to consider the
hybridization of the bath eigenstates non-perturbatively.
We can do this as follows: consider an eigenstate |αi〉 of
H0 = (ωM + λM (i))

H0|αi〉 = Eαi |αi〉, (36)

and turn on the “perturbation” λ(M (i+1)−M (i)) ≡ λV .
Considering the new H = H0 + λV = ωM + λM (i+1)

with eigenstates |αi+1〉 we have on one hand the spectral
decomposition

〈αi|
1

E −H |αi〉 =

∫
dEαi+1

ρ(Eαi+1
)

1

E − Eαi+1

|〈αi|αi+1〉|2,
(37)

on the other hand

〈αi|
1

E −H |αi〉 =
1

E − Eαi − Σαi(E)
, (38)

where Σ is the self-energy function. We now take E →
Eαi+1

+ i0+, and take the Im part of (37) which gives:

πρ(Eαi+1)|〈αi|αi+1〉|2 =
∆

(Eαi+1 − Eαi)2 + ∆2
, (39)

where

∆ = Im Σαi(Eαi+1
). (40)

Working at second order in the perturbation we have

Σαi(E) = λ2

∫
dEβρ(Eβ)

|Vα,β |2
E − Eβ

, (41)

and so

∆ = Im Σαi(Eαi+1
) = 2λ2πρ(Eαi+1

) (42)

where we have assumed that 〈αi|αi+1〉 is some smooth
function of the energy (true on average) and that
|Vα,β |2 = 2, again true on average (we are in the region of
well hybridized bath states, so average and typical values
are the same). Now recalling that ρ(E) ≡ 1/δ we obtain

P (E′, E) = |〈αi|αi+1〉|2 =
∆δ/π

(E − E′)2 + ∆2
, (43)

a result that we made use of in the main text.
To get the distribution of |Ap|, it is convenient to ex-

tract all energy scales and write the amplitude in terms
of a new variable Zn > 0

|Ap| =
(
t

W

√
δ

π∆

)n
eZn , (44)

and then write the Laplace transform of the probability
distribution Pn(Z) of the variable Zn:

g(s) =

∫ ∞
0

dZPn(Z)e−sZ . (45)

Assuming ε0 +Eα0
= 0 (this gives the transition at the

center of the band, or equivalently at T =∞), we find

g(s) =
1

(s+ 1)n

(
8W

πΩ

)n
g̃(s), (46)

where

g̃(s) =

n∏
i=1

∆

4W

∫ Ω
2∆

− Ω
2∆

dEi

√
1−

(
2∆

Ω
Ei

)2

ΞW
∆

(Ei, s)e
s
2 log(1+(Ei−Ei−1)2)

(47)

with

Ξw(x, s) =
∣∣∣1 +

x

w

∣∣∣s+1

sgn (w + x)+
∣∣∣1− x

w

∣∣∣s+1

sgn (w − x)

(48)
and Ei ≡ Eαi/∆ is dimensionless.

We need to invert the Laplace transform to get

Pn(Z) =
1

2πi

(
8W

πΩ

)n ∫
B
ds
esZ g̃(s)

(s+ 1)n
. (49)

The Bromwich path is to the right of the n-pole s = −1.
For the purpose of computing the large deviations giving
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rise to a resonance, we consider Z = O(n) for large n, so
Z = nζ. Then

Pn(Z) =
1

2πi

∫
B
dsenf(s), (50)

with

f(s) = sζ − log(s+ 1) + log
8W

πΩ
+

1

n
log g̃(s) (51)

can be computed with the saddle point expansion.
In the intermediate regime λ < ω it holds that ∆ < Ω,

thus we approximate

√
1−

(
2∆
Ω Ei

)2 → 1; moreover,

since the saddle point is dominated by the region with
s → −1, we can approximate Ξ(x, s) ' Ξ(x,−1) =
2Θ(W/∆− |x|), so that

g̃(s) ≈
n∏
i=1

∆

2W

∫ W
∆

−W∆
dEie

s
2 log(1+(Ei−Ei−1)2)

=

(
n∏
i=1

∆

2W

∫ W
∆

−W∆
dEi

)
(
1 + (En − En−1)2

) s
2
(
1 + (En−1 − En−2)2

) s
2 · · ·

· · ·
(
1 + (E2 − E1)2

) s
2
(
1 + E2

1

) s
2 .

(52)

This function is regular at s = −1 and it can be seen as
the n−th application of an integral Kernel:

K(x′, x) =
(
1 + q2(x′ − x)2

) s
2 , (53)

with measure dµ(x) = dx/2, to the function φ =
(1 + q2x2)s/2. Here q = W/∆ = (λc/λ)2, with λc =√
Wω/2

√
2N introduced in (17).

Denoting with α(s, q) the largest eigenvalue of K, we
have, following the usual arguments for transfer matrix
calculations

g̃(s) = c α(s, q)n (54)

to leading exponential order in n (c does not scale with
n). As K is a positive Kernel, by the Perron-Frobenius
theorem, the largest eigenvalue is positive and corre-
sponds to a positive eigenfunction F without any node
on the interval [−1, 1] solving the equation∫ 1

−1

dx

2
(1 + q2(x′ − x)2)s/2F(x) = α(s, q)F(x′). (55)

In the limit of small q one has

K(x′, x) ' 1 +
sq2

2
(x′ − x)2 +O(q4). (56)

Then the eigenvalue problem can be solved exactly with
an ansatz of the form F(x) = a + bx2 which for small q
gives

α = 1 +
q2s

3
+
q4s2

45
+O(q6), (57)

so to lowest order

1

n
log g̃(s) = q2s/3 +O(q4). (58)

Inserting (58) into (51), we get that df(s)/ds equals zero
at the point

s∗q�1 = −1 +
1

ζ + q2/3
, (59)

where

f(s∗q�1) = −ζ + 1 + log

(
8W

πΩ
(ζ + q2/3)

)
− q2

3
. (60)

Taking (44) into account we obtain:

P (|Ap| > zn) ≈ Cn
[√

2e

πz

t

λN
e−

q2

3 log

(
2zW

t

√
Nλ

ω
e
q2

3

)]n
,

(61)
where Cn scales sub-exponentially in n. Since this prob-
ability is exponentially small in n, from (35) one gets

P

(
max

p∈paths∗(α0)
|Ap| > zn

)
≈ 1− e−NnP (|Ap|>zn), (62)

which approaches 0 for increasing n whenever

NP (|Ap| > zn)
1/n

< 1. Using (61), the condition
for the critical hopping reads (in dimension d):

√
2e

π

td

λ
e
− 1

24

(
Wω
λ2
√
N

)2

log

(
2W

ω

λ
√
N

t
e

1
24

(
Wω
λ2
√
N

)2
)

= 1,

(63)
where we have taken the limit z → 1. This is in agree-
ment with the estimate (20) discussed in the main text.

Note that Wω/λ2
√
N = 2

√
2(λc/λ)2 is small in the small

q regime that we are considering, and thus the exponen-
tial factors in (63) can be neglected. Then the criterion
for localization reduces to:

√
2e

π

τκ

W log

(
2W

ω
√
N

W
τ

)
< 1, (64)

which equals the critical condition for localization on
a Bethe lattice with the effective parameters W =
λ
√
N,κ = Nd and τ = t/

√
N , up to an additional fac-

tor W/ω
√
N ∼ W/δ > 1 in the logarithmic correction.

Thus, the extrapolation to the Zeno regime is consistent
with Eq. (14) in the main text.

For generic q the integral equation is not easy to solve
but the point s = −1 to which the saddle point is going to
be very close, is regular. An approximation to the largest
eigenvalue which works remarkably well for all values of q
and s < 0 is obtained by taking the simple trial function
F = 1.

The double integral α = 〈F|K|F〉 can then be trans-
formed into a single integral (since it depends only on
x′ − x)

α(q, s) = 2

∫ 1

0

(1− x)(1 + q2x2)s/2dx (65)
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FIG. 6. Comparisons of the largest eigenvalue of the kernel
in (55) and its approximate form (66). Above: Continuous
line is the exact numerical results, dashed lines are analytical
approximations. Below: Relative error, in percent for s = −1.

and from this one gets:

α(q, s) =
1

2q2(s+ 2)

(
4q2(s+ 2)F

(
1

2
,−s

2
;

3

2
;−4q2

)
−
(
4q2 + 1

) s
2 +1

+ 1
)
,

(66)

where F (a, b; c;x) is the hypergeometric function.
The comparison with the numerics is in Fig. 6, the

error never exceeds 1.6% and is exact both in the large-q
and in the small-q limit. For small q one recovers (57).

The approximate expression (66) allows to derive an
analytic estimate of the critical hopping in the regime of
large q, where it holds

α(s, q) = qsα̃(s, q) +O
(

1

q2

)
(67)

with

α̃(s, q) =

[
2s+1

(s+ 1)(s+ 2)
+

1

q1+s

√
πΓ(−(s+ 1)/2)

2Γ(−s/2)

]
.

(68)

Neglecting higher order terms in 1/q, the saddle point
is attained at the point s∗q�1 satisfying:

s∗q�1 = −1 +
1

ζ + log q + d
ds log α̃(s∗q�1, q)

. (69)

The function log α̃(s, q) has the expansion:

log α̃(s, q) = α0(q) + α1(q)(s+ 1) +O((s+ 1)2), (70)

with

α0(q) = log [log(4q)− 1] ,

α1(q) = − log q

2
− 1

2
+O

(
1

log q

)
.

(71)

For q large, the saddle point s∗q�1 approaches the point
s = −1; in this regime one can therefore set

s∗q�1 ≈ −1 +
1

ζ + log q + d
ds log α̃(−1, q)

= −1 +
1

ζ + log q + α1(q)
.

(72)

Substitution into (51) gives:

f(s∗q�1) =− ζ + 1 + log [ζ + log q + α1(q)] +

+ log

(
8W

πΩ

log(4q)

q

)
+O

(
1

log q

)
,

(73)

from which one gets

P (|Ap| > zn) ≈Dn

[
4e

πz

tλ

Wω
√
N

log

(
2Wω

λ2
√

2N

)]n
·

· logn

W
t

√
W
√

2N

ω

 ,

(74)

with Dn scaling sub-exponentially with n. In this limit,
the locator expansion converges (in d dimensions) for:

4e

π

td

W

λ
√
N

ω
log

(
2Wω

λ2
√

2N

)
log

W
t

√
W
√

2N

ω

 < 1,

(75)
which is in agreement with the estimate (20) in the main
text.

For arbitrary q the saddle point equation in s has to be
solved numerically. The estimate of the critical value of
the hopping is obtained solving numerically the equation

NPn(n log(W (∆π)1/2/tδ1/2))1/n = 1 (76)

which is equivalent to NP (|Ap| > zn)
1/n

= 1 with z →
1. The result for d = 1 is plotted in Fig. 3 in the text.


