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All local electronic properties of graphene on a hexagonal boron nitride (hBN) substrate exhibit
spatial moiré patterns related to lattice constant and orientation differences between shared tri-
angular Bravais lattices. We apply a previously derived effective Hamiltonian for the π-bands of
graphene on hBN to address the carrier-dependence of transport properties, concentrating on the
conductivity features at four electrons and four holes per unit cell. These transport features measure
the strength of Bragg scattering of π-electrons off the moiré pattern, and exhibit a striking particle-
hole asymmetry that we trace to specific features of the effective Hamiltonian that we interpret
physically.

I. INTRODUCTION

Boron nitride is a popular substrate for high quality
graphene devices because it is atomically smooth, has
low chemical reactivity, and is typically relatively free of
defects.1–5 These properties make it possible to achieve
high graphene mobilities on hBN substrates. Hexagonal
boron nitride (hBN) is a wide band gap semiconductor6

with weakly coupled honeycomb lattice layers that are
identical to graphene in structure, apart from a lattice
constant difference of about two percent larger and pos-
sible differences in orientation. If the graphene and hBN
lattices were perfectly matched, the graphene π electrons
would inherent hBN’s broken inversion symmetry and
develop a finite energy gap at neutrality.7,8 When exfoli-
ated graphene is placed on a hBN surface, however, the
two lattices do not align2,9 and the electronic structure
is more complex.10,11

In the most interesting case of nearly aligned layers, the
two similar lattice periodicities lead to long-period moiré
patterns2,3,12 and to low-energy electronic properties that
are insensitive to commensurability at an atomic level.
Experiments show that in samples of this type a gap
nevertheless appears at the Fermi level of a neutral sheet,
and that its value is enhanced by electron-electron inter-
actions and influenced by the strain patterns induced in
the graphene sheet by the lattice constant mismatch.13–15

At zero rotation angle (perfect alignment), the moiré
wavelength is around 15 nm. In this case, secondary
gapped Dirac points appear9,11,12,16–18 at energies ∼ ±
150 meV from the principal Dirac point, corresponding
to the Fermi level of samples with ±4 electrons per moiré
period, corresponding to one full conduction band or one
empty valance band, respectively. These electronic struc-
ture features are conveniently probed by studying the
corresponding features in the carrier dependence of the
dc transport properties of the graphene sheet. In this
article, we present a theory of the transport properties of
graphene on hexagonal boron nitride. We focus on the
±4 electron-per-period features associated with the sec-

ondary Dirac points, and in particular on the substan-
tial particle-hole asymmetry which appears in all elec-
tronic properties, including the density of states.12,17–19

We trace the asymmetry to the influence of the moiré pat-
tern on inter-sublattice hopping terms in the graphene
sheet Hamiltonian, and in particular to differences be-
tween the hopping amplitudes to nearest neighbor sites
at carbon-above-boron and carbon-above-nitrogen posi-
tions.
Our paper is organized as follows. First in Section

II we briefly summarize the moiré band Hamiltonian we
use as the basis for our transport theory. In Section III
we describe its band structure and discuss its density-of-
states, carefully analyzing the origin of its particle/hole
asymmetry. In Section IV we detail the transport theory
we employ and in Section V we summarize its predictions
for graphene on hBN. Finally, in Section VI we discuss
and summarize our findings.

II. MOIRÉ BAND MODEL

The moiré band Hamiltonian we employ for the
graphene sheet π-band electrons accounts for the influ-
ence of the substrate by adding a local sub-lattice de-
pendent term to the k · p Dirac model of an isolated
graphene sheet. The substrate interaction term has the
same periodicity as the moiré pattern and, because it is
periodic, can be analyzed using Bloch’s theorem. The
moiré band Hamiltonian yields a non-trivial band struc-
ture. It does not account for those features of the full
Hamiltonian associated with atomic-scale commensura-
bility and is accurate only for moiré pattern periods that
greatly exceed the graphene sheet lattice constant. This
however is the interesting case, because the influence of
the substrate is weak for short moiré periods. The latter
property can be traced20 in part to the property that the
distance between layers is substantially larger than the
distance between atoms within a layer.
At a given position in the moiré pattern, the substrate

interaction term in the moiré band Hamiltonian reflects
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the local coordination between the graphene sheet and
the substrate lattice, i.e. the positions of nearby boron
and nitrogen atoms in the substrate relative to the po-
sitions of the carbon atoms in the graphene sheet. The
substrate interaction term can be evaluated using ab ini-

tio methods8,11 by calculating the rigid displacement de-
pendence of the band Hamiltonian of commensurate hon-
eycomb structures.
In this paper we use a moiré band Hamiltonian for

graphene on hBN derived in this way. The moiré band
Hamiltonian is able to account for the lattice mismatch of
around 1.7 percent between graphene and hBN, and for
strains in the graphene lattice and the substrate, and can
be applied at any relative orientation between graphene
sheet and substrate.11 In a previous work we explained
in detail how these effects combine with electron-electron
interactions to control the size of the the gap which opens
at the Fermi level of neutral graphene sheets, i.e. at the
primary Dirac points in momentum space.11 In this paper
we will focus on the secondary Dirac points, and on gaps
at the Fermi level of graphene sheets with ±4 electrons
per moiré period. These features reflect the scattering
of bare graphene sheet electrons off the periodic part of
the substrate interaction Hamiltonian, whereas the neu-
tral sheet gaps reflect mainly the spatial average of the
substrate interaction Hamiltonian.
The moiré band Hamiltonian can be written as a sum

of bare Dirac (HD) and substrate interaction (HM) con-
tributions:

H = HD +HM. (1)

For practical calculations, we express this Hamiltonian
operator as a matrix in momentum space:

〈k′, s′|H |k, s〉 =δk,k′HD(k) +

+
∑

G

〈s′|HM,G|s〉 δk′,k+G (2)

where s and s′ are sublattice indices, k and k′ are
wavevectors, HM,G is the Fourier transform of HM(r)
over one period of the moiré pattern, and G is a moiré
pattern reciprocal lattice vector.
Ref. 11 discusses three versions of the moiré band

Hamiltonian HM. In the first version neither graphene
nor boron nitride atomic positions were allowed to relax
under the the influences of inter-layer forces. This ver-
sion gives very small band gaps at the primary Dirac
point and is not consistent with experimental results.
The other choices are to let just the graphene lattice
relax, or to let both the graphene and boron nitride lat-
tices relax. These lead to larger primary Dirac point
gaps that are more in line with experimentally observed
results, suggesting that strains play an essential role in
samples with large period moiré patterns. In this paper
we will use the version of the moiré band Hamiltonian
that accounts for strains in both graphene and in the
substrate, although we expect only relatively small quan-
titative substrate strain effects at the secondary Dirac
points.
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FIG. 1. Band structure and density of states of graphene on
boron nitride. (a) Schematic illustration of the moiré pat-
tern Brillouin zone, outlined in red. The blue dots are moiré
pattern reciprocal lattice vectors. We label high symmetry
points in the moiré Brillouin zone, Γ, M, and K at the Bril-
louin zone center, edge center, and corner points respectively,
by black dots. (b) Moiré bands along the black lines in (a).
(c) The density of states (horizontal axis) as a function of
energy (vertical axis).

III. MOIRÉ BAND STRUCTURE AND

DENSITY-OF-STATES

The moiré band structure and the density-of-states for
the case of zero twist angle between graphene and sub-
strate hexagonal lattices and a lattice constant mismatch
of −0.017 are illustrated in Figure 1. Note that in addi-
tion to the small gap at the Dirac point, there are avoided
crossings at the high-symmetry Brillouin-zone boundary
points M and K. The electronic structure in this region
of energy is highlighted in the Figure 2. Because distinct
points on the Brillouin-zone boundary are connected by
reciprocal lattice vectors, the size of the avoided cross-
ing gaps is directly related to elastic scattering of bare
graphene states off the substrate interaction Hamiltonian
associated with the moiré pattern.

There is a distinct particle-hole asymmetry between
the conduction and valence bands which is apparent in
the density-of-states (Figure 1 (c)) and has been dis-
cussed previously in Refs. 12, 17, and 18, in terms of a
phenomenological substrate interaction Hamiltonian in
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FIG. 2. Band structure near the secondary Dirac points.
When substrate interactions are neglected, degeneracies form-
ing secondary Dirac points occur at the M and K high-
symmetry points defined in Figure 1. The substrate interac-
tion Hamiltonian lifts these degeneracies. There are 2-band
avoided crossing near the M point ((a) and (c)) and three
band avoid crossings near the K point ((b) and (d)) in both
the conduction band and the valence band.

which the number of free parameters has been mini-
mized using symmetry considerations (the phenomeno-
logical substrate interaction Hamiltonian is compared
with the interaction Hamiltonian derived from ab initio

theory used here in Appendix A) and in Ref. 21 in terms
of an effective Hamiltonian derived from a tight binding
model.
To understand the physical mechanism behind this

asymmetry, we use a nearly-free Dirac-electron approx-
imation by treating the substrate-interaction Hamilto-
nian as a perturbation at the M point. When reduced to
the Brillouin-zone, two eigenstates of the bare graphene
Dirac Hamiltonian, corresponding to Dirac cones cen-
tered atG0 ≡ 0 andG4 ≡ G(0,−1) are degenerate at the
M point. Here G ≡ |G| is the magnitude of the primitive
moiré reciprocal lattice vectors. The perturbed energies
are,

E
(b)
± = E

(b)
0,M ± |Ub| (3)

where b is the band index (1 for conduction band and −1

for valence band), E
(b)
0,M = b~v|G|/2 is the energy of the

bare Dirac Hamiltonian states at the M point,

Ub =
(

ψ
(b)
G4

)†

HM,G4
ψ
(b)
0 (4)

and ψ
(b)
G

is the wavevector-dependent sub lattice spinor of
the unperturbed Dirac Hamiltonian. This leading order

perturbation theory analysis implies a band-dependent
energy splitting at the M point equal to δM,b = 2|Ub|.
To extract the physics behind the strong band depen-

dence of this splitting, apparent in Figure 2 and indirectly
in Figure 1, we decompose each Fourier component of the
moiré band Hamiltonian into terms proportional to dif-
ferent sub lattice Pauli matrix contributions:12,17,18,21,22

HM,G =
∑

α=0,x,y,z

hαM,G τα (5)

(τ0 is the 2x2 identity matrix). Note that the ex-
pansion into Pauli matrices is justified by the property
that HM(r) is Hermitian; the non-Hermitian character of
HM,G allows the expansion coefficients hαM,G to be com-
plex. For the ŷ-direction M-point, the bare sub lattice
spinor has a pseudospin orientation proportional to the
ŷ-direction momentum. It follows that,

(

ψ
(b)
G4

)†

τxψ
(b)
0 ≈bi (6)

(

ψ
(b)
G4

)†

τyψ
(b)
0 ≈ 0 (7)

(

ψ
(b)
G4

)†

τzψ
(b)
0 ≈1.0, (8)

and therefore that the coupling matrix element Ub is pro-
duced by the hxM,G inter sub lattice tunneling and the
hzM,G sub lattice site-energy contributions to the sub-
strate interaction Hamiltonian. The two sign choices in
Eq. 6 correspond to conduction and valence bands. From
the substrate interaction Hamiltonian

hxM,G4
=(−0.70− 7.31i) meV ≈ −7.3i meV (9)

hzM,G4
=(−5.63− 0.36i) meV ≈ −5.6 meV (10)

it follows that the two contributions to Ub add in the
valence band case and nearly cancel in the conduction
band case. The final result is that the gap at the M
point in the moiré Brillouin-zone is δM,v = 26 meV in
the valence band and almost an order of magnitude larger
than in the conduction band where δM,c = 2.9 meV.
Real space maps of the coefficients of the Pauli matrix

expansion of the sub-lattice dependent substrate interac-
tion Hamiltonian, Hx

M(r), Hy
M(r), and Hz

M(r), are pro-
vided in Figure 3. In our calculations the spatial origin
is chosen to lie at an AA point in Figure 1. The relevant
Fourier component for the matrix element we evaluate is
G4. The weighting factor in haM,G4

is therefore complex
conjugated when y → −y in Figure 3 where we see that
Hz

M is approximately even and Hx
M is approximately odd.

Hz
M provides a measure of the difference between site en-

ergies on the two graphene sub lattices. The difference
between π-orbital energies is largest in magnitude when
one carbon site is above the positively charged nitrogen
site and the other is above the negatively charged boron
site. At BA sites the carbon atoms above boron have a
higher site energy than the the hexagonal plaquette cen-
tered carbon atoms, whereas at AB sites the plaquette
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centered carbon atoms have a higher site energy than the
carbon atoms above nitrogen. It follows that the on-site
term Hz

M is negative at AA positions and positive at both
AB and BA positions. The pseudospin term Hx

M provides
a measure of differences between the hopping amplitudes
from a carbon atom to its three near neighbors, and this
difference vanishes by symmetry at AA, AB and BA
sites. Carbon-carbon hopping is most anisotropic when
one carbon atom is above the mid-point of a BN bond,
and this leads to Hx

M values which have opposite sign at
the mid-point between AA and AB points compared to
the mid-point between AA and BA points, and there-
fore to hxM,G4

values that are approximately imaginary.
We see therefore that the particle hole asymmetry is de-
scribed correctly only when both site energy and hopping
amplitude distortions are accounted for properly.
At the ŷ-direction K point, there are three approx-

imately degenerate bands, corresponding to G0 = 0,
G4 = G(0,−1), and G3 = G(−

√
3/2,−1/2). Pertur-

bation theory (Appendix B) at K leads to a result that is
similar to perturbation theory at M in that band separa-
tions are larger for the valence band than for the conduc-
tion band. Although the nearly-free-electron calculation
is not as simple as in the two bands case, it is again true
that a correct understanding of the origin of the strong
particle-hole asymmetry requires an accurate account of
substrate induced changes in both π-band energies and
π-band hopping amplitudes.

IV. TRANSPORT THEORY

With this background established, we now explore the
dc transport properties of graphene on boron nitride.
One possible approach is to apply Boltzmann transport
theory to the bands predicted by the moiré band Hamil-
tonian. This strategy is however reliable only when the
associated Bloch state energy uncertainty, ~/τ where τ
is the Bloch state lifetime, is small compared to the en-
ergy scale of band structure features. Because of the
long period of the moiré pattern and the relatively weak
strength of the substrate interaction, the largest band
structure feature scale is the 26 meV valence band gap
at four holes per moiré period explained in the previous
section. We therefore choose an approach that is able
to describe both weak and strong substrate interaction
limits by applying a kinetic equation which is able to ac-
count for both intraband and interband contributions to
the conductivity and using a relaxation time approxima-
tion for disorder. An overview of the theory is presented
in this section, with details in Appendix C. The conduc-
tivity can be decomposed into intraband and interband
terms, arising from scattering within a single band and
scattering between bands. The intraband contribution is
proportional to the density of states and the interband
contributions become important when the spacings be-
tween bands close to the Fermi energy is smaller than
∼ ~/τ . In particular, because of the small band sepa-

rations at the Brillouin zone boundary, we anticipate a
large interband contribution to the conductivity at four
electrons per moiré period.

We obtain an estimate for the steady state density ma-
trix by combining the equation of motion for the density-
matrix (ρ) with a relaxation time approximation that
accounts for the influence of disorder scattering on both
band diagonal and band off-diagonal terms:

∂ρ

∂t
= − i

~
[H, ρ] +

1

~

∂ρ

∂k
· eE− ρ− ρ0

τ
(11)

Here, H is the moiré band Hamiltonian in Equation (2),
e is the magnitude of electric charge, E is the applied
electric field, k is wave-vector in the moiré Brillouin zone
measured from one of the graphene valleys, and τ is the
relaxation time. The first term on the right-hand-side is
purely off-diagonal in a moiré band Bloch representation
and vanishes in equilibrium. The second term on the
right-hand-side is the forcing term due to electric field,
and the last term is the relaxation time approximation
for scattering. We treat the relaxation time as an ad-
justable independent parameter, and assume that τ is
the same for both intraband and interband scattering.
In the steady state, ∂ρ/∂t = 0. We expand this equation
to linear order in the electric field E, writing the density
matrix, ρ = ρ(0)+ρ(1), with ρ(1) being the linear response
correction to the equilibrium moiré band density-matrix
ρ(0):

ρ(0) =
∑

nk

|nk〉〈nk| fnk (12)

where n is a band index, and fnk is one if the state is filled
and zero if the state is empty. Since the first and third
terms on the right-hand-side of Equation (11) are propor-
tional to ρ(1), the kinetic equation is readily solved for
the density-matrix linear response. The linear response
current,

jα =Tr {ρ(1)ĵα} ≡
∑

nk

〈nk|ρ(1)ĵα|nk〉 =
∑

nm;k

ρnm(−evDτα)mn

=− evD
∑

nk







ρ(1)nn〈nk|τα|nk〉+
∑

m 6=n

ρ(1)nm〈mk|τα|nk〉







(13)

≡jα,intra + jα,inter (14)

where α = x, y is the direction, ĵ is the current opera-
tor and vD is the Dirac velocity of graphene. Note that
τ without a superscript refers to relaxation time, while
τα with a superscript is a Pauli matrix. The conduc-
tivity can be correspondingly written as a sum of an in-
traband contribution due the dependence in Eq.( 12) of
band eigenenergies on k and interband contributions due
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FIG. 3. Real space maps of the moiré-band Hamiltonian. The moiré Hamiltonian is local in position, but sublattice-dependent.
At each position it can be decomposed into the sum of four terms proportional to Pauli matrices that act on sub lattice degrees
of freedom. The x-component Hx

M is shown in (a), Hy

M in (b) and Hz
M in (c). For all subplots, the axes are in units of the moiré

unit cell length, aM. The open circles (color code explained by the cartoons in (a)) designate the positions within the moiré
pattern of high-symmetry local stacking configurations. Red open circles correspond to AB (carbon above nitrogen) stacking,
black to AA, and blue to BA (carbon above boron). In the cartoons, black dots are carbon atoms, reds are nitrogen, and blues
are boron. )

to the dependence of k variation of band eigenstates:

σαβ
intra =e2v2Dτ1

∑

nk

δ(εF − εnk)〈nk|τα|nk〉〈nk|τβ |nk〉

(15)

σαβ
inter =ie

2
~v2D

∑

n,k,m 6=n

fmk − fnk
εnk − εmk

〈nk|τα|mk〉〈mk|τβ |nk〉
(

εnk − εmk + i~τ−1
2

)

(16)

where εn,k is the energy of band n at wavevector k and
τ1(2) is the relaxation time for intra-(inter-)band scatter-
ing. The conductivity estimates summarized below were
obtained by evaluating the sums in the above expressions
numerically.
To capture qualitative experimental features realisti-

cally, we used mobility as a parameter and from this cal-
culated a relaxation time proportional to mobility and
energy, which is appropriate for a linear band structure.23

The relaxation time for band b

τb =
µ

e

E

v2b
(17)

is dependent on the mobility µ, the energy E measured
from the primary Dirac point, and an approximate band
velocity vb. In the absence of a moiré pattern this expres-
sion for the relaxation time is motivated by the experi-
mental finding that the conductivity in graphene sheets
is proportional to carrier density - i.e. that although the
mobility can be sample dependent, it is approximately
independent of density in individual samples. This prop-
erty of graphene is related to the dependence of the dis-
order scattering amplitude on momentum transfer.24–26

We calculate the band velocity by taking the average of

TABLE I. Table of band velocities and relaxation times for
the six lowest energy bands of aligned graphene on boron ni-
tride. The first two columns give the band edges, Emin and
Emax. Band velocity, vb is measured in units of the Dirac
velocity for graphene, vD = 0.84 × 106 m/s. Both τ and ~/τ
are given at an average band energy E = (Emax + Emin)/2
for a sample mobility of 50, 000 cm2/Vs. Note that according
to our calculations there is a finite energy gap in the valence
band which is indirect in moiré momentum space and there-
fore smaller than the local valence band gaps at individual
momenta.

Emin (meV) Emax (meV) vb/vD τb (ps) ~/τb (meV)
-265 -170 0.393 9.9 0.066
-253 -147 0.752 2.5 0.26
-143 -1.71 0.916 0.61 1.1
5.31 155 0.969 0.60 1.1
138 260 0.801 2.2 0.30
163 266 0.447 7.6 0.087

the velocity along the direction from the moiré zone cen-
ter to the zone corner (Γ to K in Fig. 1(a)), and the
velocity along the direction from the zone center to the
zone edge (Γ to M in Fig. 1(a)). We note that this proce-
dure introduces a spurious reduction in the band velocity
for the higher energy band of around 10 percent. While
both this velocity averaging and the isotropic assumption
for τ are rough estimates, we expect this approximation
will capture the main features of the electron transport.
Table I gives the average band velocities and representa-
tive relaxation times for the six lowest energy bands. For
calculations of the mean free path and quantum trans-
port for graphene on boron nitride without the effects of
in-plane strain, we refer the reader to Ref. 19.
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FIG. 4. The conductivity of graphene on hBN as a func-
tion of (a) energy and (b) density for a mobility of 50, 000
cm2/Vs. In both plots the total conductivity is a solid black
line. Features in the density of states (see Figure 1 (c)) have
corresponding features in the intraband contribution to con-
ductivity. The interband conductivity (red lines) is negligible
at this mobility.

V. TRANSPORT THEORY RESULTS

The conductivity calculated for graphene on orienta-
tionally aligned hBN is plotted in Figure 4 both as a func-
tion of Fermi energy and as a function of carrier density.
At high mobilities, the total conductivity is indistinguish-
able from the intraband contribution. Its features closely
track the density of states. On the other hand, at low mo-
bilities the interband contribution peaks when the Fermi
level is close to weakly split Brillouin-zone edge states.
Figures 5 and 6 show that while the interband contribu-
tion to the conductivity is generally quite weak, there is
a peak on the conduction band side at a density close to
four electrons per moiré period (red lines).

Figure 5 focuses on the strongest substrate related fea-
tures in transport which appear when the Fermi level lies
in the valence band at four holes per moiré period. Al-
though much smaller, at δv ≈ 3.5 meV, than the splitting
at individual k-points on the zone boundary, an overall
gap does survive at this density. The gap is indirect in
momentum space with the valence band maximum at the
moiré M point and the conduction band minimum at the
moiré K point, as seen in Figure 2 (c) and (d). When the
mobility decreases ~/τ increases and the interband peak
strengthens, slightly weakening the conductivity feature
at 4 holes per moiré period; ~/τ is ∼ 0.1 meV at this
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FIG. 5. Conductivity vs. hole density. (a) The conductiv-
ity as a function of Fermi energy for p-type systems. The
intraband contribution is plotted in blue and the interband
contribution in red. The gray shaded region indicates the en-
ergy range with the Fermi level in the gap at four holes per
moiré period. (b) The conductivity as a function of hole den-
sity. The feature at four holes per moiré unit cell is due to
the gap at this density. The calculations in this Figure are
for a mobility of 5, 000 cm2/Vs.
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FIG. 6. Conductivity vs. electron density. (a) The con-
ductivity as a function of Fermi energy for n-type systems.
The intraband contribution is plotted in blue, the interband
contribution in red. (b) The conductivity as a function of
electron density. The feature at four electrons per moiré unit
cell is due to the avoided band crossings at the Brillouin-zone
boundary which are not sufficiently strong to yield an over-
all gap. The calculations in this Figure are for a mobility of
5, 000 cm2/Vs. The interband contribution has peaks when
the interband separation (see Figure 1 (b)) is smallest

energy in Figure 4 and ~/τ ∼ 1.0 meV at this energy in
Figure 5. In both cases, ~/τ is much smaller than the
band splitting, and therefore the interband scattering is
negligible on the hole side.

A detailed look at the conduction band feature at a mo-
bility of 5, 000 cm2/Vs and four electrons per unit cell is
provided in Figure 6. The intraband conductivity (blue
lines) shows a dip when the Fermi level is close to the
energies of the moiré Brillouin zone boundary avoided
crossing states. There is no overall gap in the conduction
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FIG. 7. Mobility-dependence of the conductivity feature at
four electrons per moiré period. The size of the intraband
conductivity (blue) dip and the interband conductivity peak
(green) as a function of mobility. The total feature size is
shown in black. For low mobility samples the relaxation ap-
proximation conductivity can have a peak rather than a dip
at this density.

band, as shown in Figure 2, so there is a Fermi surface
and an intraband contribution to transport at all ener-
gies in this interval, although the curve nevertheless has
a dip. The peaks in the DOS are associated with saddle
points in the moiré band structure. In particular, the
first large peak is due to the saddle point at the M point
in the first conduction band. The saddle point peaks
are smoothed out in the conductivity calculation because
of finite spectral widths associated with the finite Bloch
state lifetimes. As shown in Figure 6 (b), the dip in in-
traband conductivity is partially compensated by a peak
in the interband contribution shown in red in Figure 6.
In Figure 7 we plot the magnitude of both features as a
function of mobility. In the relaxation time approxima-
tion the intraband conductivity is proportional to mobil-
ity, and the intraband dip therefore dominates at high
mobilities. In the same approximation, the peak in the
interband contribution can strongly compensate at low
mobilities.

Because the avoided crossing gaps on the moire band
Brillouin-zone boundary are vastly larger in the hole car-
rier case than in the electron carrier case, the physics of
the conductivity minimum is not the same. In the va-
lence band case, the size of the gap is large compared to
~/τ and the interband contribution to the dc conductiv-
ity is negligible. In the conduction band case, the density
of states does not vanish at any energy so the intraband
conductivity is always finite. In addition avoided crossing
gaps are not typically large compared to ~/τ , allowing for
a non-negligible interband contribution.

VI. SUMMARY AND DISCUSSION

We have calculated the band structure, the density
of states, and the transport properties of graphene on
hexagonal boron nitride at zero twist angle using a moiré
band model. All exhibit a pronounced particle-hole
asymmetry, which we have traced to a correlation be-
tween spatial variations of the difference between hon-
eycomb sub lattice site energies, and spatial variations
in intersublattice hopping amplitude properties. These
variations are correlated because both are related to the
charge difference between boron and nitrogen sites in
the substrate. The difference between nearest neighbor
hopping amplitudes in carbon-above-boron and carbon-
above nitrogen regions plays a particularly essential role.
We focus our transport calculations on the first fea-

tures in conduction and valence bands, where there are
avoided crossings of the secondary Dirac points, cor-
responding to four carriers per moiré unit cell. The
particle-hole asymmetry is seen in the transport. We
find there is an overall gap of ∼ 3.5 meV in the valence
band, and no gap in the conduction band. We have in-
cluded effects of interband and intraband response in the
conductivity, the latter becoming important at lower mo-
bility. In the relaxation time approximation, the inter-
band dc conductivity has peaks at 0 and ±4 electrons per
moiré unit cell, which are not negligible for low mobility
samples.
Experiments in graphene on boron nitride to date have

focused on high-mobility samples, with mobilities as high
as 275, 000 cm2/Vs at low temperature.27 Resistance
peaks at 4 carriers per moiré unit cell and a distinct par-
ticle/hole asymmetry have been reported in Ref. 13 in
high-mobility (100, 000 cm2/Vs) samples and in Ref. 28
for a sample of moderate mobility (5, 000 cm2/Vs) in
agreement with our calculations. Although low mobility
CVD graphene on SiO2 and BN is available,29 transport
measurements of low mobility rotationally aligned sam-
ples have not been reported. The interband conductivity
peak arises from large interband matrix elements of the
current operator. We expect that optical experiments
can readily probe this scattering mechanism in high mo-
bility samples.30
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Appendix A: Comparison between phenomenological

and ab-initio substrate interaction Hamiltonians

Refs.17 and 18 formulate a symmetry-based phe-
nomenological approach that can be used to construct
effective Hamiltonians for graphene on substrates and
leads to effective Hamiltonians of the form:

H = ~vk · σ + w0~vGσ0 + w̃3~vGσ3τ3 + u0~vGf1(r) + u3~vGf2(r)σ3τ3 + u1~v [ẑ ×∇f2(r)] · στ3 + u2~v∇f2(r) · στ3
+ ũ0~vGf2(r) + ũ3~vGf1(r)σ3τ3 + ũ1~v [ẑ ×∇f1(r)] · στ3 + ũ2~v∇f1(r) · στ3

(A1)

where

f1(r) =

6
∑

m=1

eiGm·r (A2)

and

f2(r) = −i
6
∑

m=1

(−1)meiGm·r (A3)

The vectors Gm are the first shell of moiré reciprocal
lattice vectors labeled as in Figure 1. We rewrite our
effective Hamiltonian obtained by performing ab initio

calculations in this phenomenological form.31 In Table
II we list the Hamiltonian parameters we obtain in this
way for a lattice mismatch of ε = −0.017 and a zero twist
angle. We note that including relaxation in the Hamilto-
nian significantly changes the values of the parameters.
These differences in parameters are relevant for the in-
terpretation of the particle-hole asymmetry in graphene
on hBN.

Appendix B: Avoided crossing analysis at the moiré

Brillouin zone corners

At each of the moiré Brillouin zone corners, there are
three degenerate solutions to the gapped Dirac equation,
HD+HM,G=0 with a mass ofm = 3.7 meV.17,21 As in the
case of the M point shown in the main text, we treat the
off-diagonal terms in a degenerate perturbation theory.
The energies are the eigenvalues of the 3 × 3 effective
Hamiltonian,

H
(b)
K,eff =







E
(b)
0,K t∗3,b t∗4,b
t3,b E

(b)
0,K t∗5,b

t4,b t5,b E
(b)
0,K






(B1)

where the index ± refers the conduction (+) or valence
(−) band and

tj,b =
(

ψ
(b)
Gi+Gj

)†

HM,Gj
ψ
(b)
Gi

(B2)

TABLE II. Table of parameters for the Hamiltonian in
Eqn. (A1) at ε = −0.017 and zero twist angle. The first col-
umn shows parameters for the Hamiltonian used in this paper.
This Hamiltonian includes relaxation effects of the graphene
and boron nitride lattices. The second column shows the
parameters without including relaxation effects. Both these
Hamiltonians are discussed in detail in Ref. 11. All quantities
are in meV units.

Relaxed Rigid
w0~vG (meV) 0 0
w̃3~vG (meV) 3.74 0
u0~vG (meV) 1.26 −0.64
ũ0~vG (meV) 8.98 10.10
u1~vG (meV) 0.70 1.97
ũ1~vG (meV) −7.31 −11.17
u2~vG (meV) 0 0
ũ2~vG (meV) 0 0
u3~vG (meV) −0.36 1.26
ũ3~vG (meV) −5.63 −8.89

The unperturbed energy on the diagonal is,

E
(b)
0,K = b

√

m2 + (~vG/
√
3)2 (B3)

There are three eigenvalues of the Hamiltonian, labeled
with subscript i = 1, 2, 3

E
(b)
i = E

(b)
0,K − wi −

|t3,b|2 + |t4,b|2 + |t5,b|2
3wi

(B4)

where wi are the three solutions to the polynomial

w6 + 2Re {t∗3t∗5t4}w3 +

( |t3,b|2 + |t4,b|2 + |t5,b|2
3

)3

= 0

(B5)
which are guaranteed to be real since the Hamiltonian
is Hermitian. Decomposing the moiré Hamiltonian into
terms proportional to Pauli matrices,

HM,G =
∑

α=0,x,y,z

hαM,Gτ
α (B6)



9

(τ0 is the 2x2 identity matrix), we obtain values for hM,G

and
(

ψ
(b)
Gi+Gj

)†

ταψ
(b)
Gi

shown in table III. The situation

is much more complicated than that of the M point, but
the generic features remain: there is a sign change in the
matrix elements of τx,y and not τ0,z , or vice versa, which
results in constructive interference of different contribu-
tions to the ti,b values in the valence band and destruc-
tive interference in the conduction band. This leads to a
smaller energy splittings in the conduction band.

Appendix C: Transport theory

The commutator, [H, ρ], is

[H, ρ]nn′ = (εnk − εn′k) ρnn′ (C1)

which vanishes when n = n′.

The derivative with respect to k of the equilibrium

density matrix is,

∂ρ(0)

∂k
=
∑

m

{

∂fmk

∂k
|mk〉〈mk|+

+ fmk

∣

∣

∣

∣

∂

∂k
mk

〉

〈mk|+ fmk|mk〉
〈

∂

∂k
mk

∣

∣

∣

∣

}

(C2)

The derivative of the wavefunction with respect to k is,

∣

∣

∣

∣

∂

∂k
nk

〉

=
∑

m 6=n

(

〈mk|∂H
∂k

|nk〉
εnk − εmk

)

|mk〉 (C3)

The only part ofH which depends explicitly on k isH0 =
~vD (τx, τy) · k which has derivative with respect to kα
of ~vDτ

α. It follows that

(

∂ρ(0)

∂kα

)

nn′

= δnn′

∂f

∂εnk
〈nk|~vDτα|nk〉+

+ (1− δnn′)〈nk|~vDτα|n′k〉fn′k − fnk
εn′k − εnk

(C4)

Note that τ without a superscript refers to relaxation
time, while τα with a superscript is a Pauli matrix. Using
this in Equation (11) gives the expression for the current,
Equation (13).
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