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The two inequivalent valleys in graphene are protected against long range scattering potentials
due to their large separation in momentum space. In tailored

√
3N ×

√
3N or 3N × 3N graphene

superlattices, these two valleys are folded into Γ and coupled by Bragg scattering from periodic
adsorption. We find that, for top-site adsorption, strong inter-valley coupling closes the bulk gap
from inversion symmetry breaking and leads to a single-valley metallic phase with quadratic band
crossover. The degeneracy at the crossing point is protected by C3v symmetry. In addition, the
emergence of pseudo-Zeeman field and valley-orbit coupling are also proposed, which provide the
possibility of tuning valley-polarization coherently in analogy to real spin for spintronics. Such
valley manipulation mechanisms can also find applications in honeycomb photonic crystals. We also
study the strong geometry-dependent influence of hollow- and bridge-site adatoms in the inter-valley
coupling.

PACS numbers: 68.65.Cd, 71.10.Pm, 73.22.Pr, 73.43.Cd

I. INTRODUCTION

Honeycomb Dirac materials have two-fold degenerate
band structures with inequivalent KK′ valleys,1–5 whose
origin can be traced back to the bipartite nature of hon-
eycomb lattices (A and B triangular sublattices). This bi-
nary valley degree of freedom has led to proposals of val-
leytronics applications6–12 that leverage the valley pseu-
dospins in a manner analogous to electron spins in spin-
tronics applications. A distinct scenario is that of single
(odd-number) Dirac-cone in Z2 topological insulators13

where their surface states are effectively decoupled from
each other due to their distant spatial separation. There-
fore, a single Dirac-cone structure is desirable when we
require a Hamiltonian that embodies the chiral anomaly
of Dirac fermions14 and at the same time is protected
against inter-valley scattering.

In this paper, we propose to engineer a single valley
phase in 2D honeycomb Dirac materials through

√
3N ×√

3N or 3N × 3N superlattices that fold and couple the
inequivalent KK′ valleys into the same Γ. Utilizing the
π-band tight-binding model and block-diagonalization
method, we show that the effective Hamiltonian for top-
site adsorbed superlattices exhibit inter-valley coupling
and valley-orbit coupling mechanisms that resemble the
conventional in-plane Zeeman fields and spin-orbit cou-
pling of the electron spins.1,2,15–20 The pseudo-Zeeman
field and pseudospin-orbit coupling allow to control val-
ley polarization coherently, while the latter one further
indicates the possibility of manipulating valley polariza-
tion via electric fields. Moreover, together with the coex-
isting staggered sublattice potentials, we find that inter-

FIG. 1: (color online) Schematic representation of inter-valley
coupling adatom superlattices and their respective Brillouin
zones. (a) and (b) are respectively primitive and reciprocal
lattices for the top adsorption in

√
3×

√
3 graphene supercells.

The red lines represent the Brillouin zone of pristine graphene.

valley coupling can drive a topological phase transition
from a quantum valley-Hall phase into a single-valley
metallic phase with quadratic band crossover. We also
propose that such inter-valley coupling mechanism and
quadratic band crossover can be observed in photonic
crystals. Then we turn to study the inter-valley cou-
pling mechanisms in hollow- and bridge-site decorated
graphene and find that the inter-valley coupling mecha-
nisms are strongly dependent on the adsorption geome-
try.

The remainder of this paper is organized as follows.
The inter-valley coupling of top-site adsorption and the
topological phase transition are presented in Sec. II. The
possible applications of the band-crossing phase are then
discussed. The results of hollow and bridge adsorption



2

are shown in Sec. III and we present the summary in
Sec. IV. Appendix A and B separately present the meth-
ods for calculating the photonic band structure and the
symmetry analysis of three adsorption geometries.

II. TOP SITE ADSORPTION

A. Inter-valley coupling

When the
√
3N ×

√
3N or 3N × 3N supercells are tai-

lored on a honeycomb lattice, KK′ valleys are coupled by
Bragg scattering21 since they are folded into Γ valley, as
illustrated schematically in Fig. 1(b) showing the recip-

rocal lattices for both 1 × 1 (red) and
√
3 ×

√
3 (black)

supercells. Here, we only focus on the top-site adsorption
in

√
3×

√
3 supercell as shown in Fig. 1(a) where the six

atoms in each primitive cell can be classified into three
different categories: (i) one at the adatom site, (ii) three
at the nearest neighbor sites, and (iii) two at next-nearest
sites. We represent the corresponding site energies as u1,
u2, and u3, and set u3 = 0 as the reference value. Assum-
ing that the adsorption sites belong to sublattice “A”, the
real-space tight-binding Hamiltonian can be written as:

Ht = H0 + u1

∑

i

′
a†iai + u2

∑

i

′ ∑

δ

b†i+δbi+δ, (1)

where
∑

i
′
runs over all adatom sites and a†i (b†i ) is the

creation operator of an electron at i-th A(B) site. Here

H0 = −t0
∑

<ij>(a
†
ibj + h.c.) is the band Hamiltonian

of pristine graphene with t0 being the nearest-neighbor
hopping energy.

The Brillouin zone of pristine graphene can be rep-
resented through three copies of

√
3 ×

√
3 graphene su-

percell’s first Brillouin zone as displayed in Fig. 1(b).
The three copies are set to be centered at Kj (j=1-3)
that are respectively wavevectors of K, K′, and Γ points.
Therefore, the operator ai can be expanded in momen-
tum space as: ai =

1√
N0

∑

k

∑

j exp[i(Kj + k) ·Ri]aj,k,

where N0 is a normalization factor, and k runs over the
first Brillouin zone of

√
3×

√
3 graphene supercell. Then

the Hamiltonian of Eq. (1) can be expressed in momen-
tum space as:

Ht(k) = H0(k) +
∑

j,j′

[
u1

3
a†j,kaj′,k +

u2

3
ξjj′ b

†
j′,kbj,k], (2)

where H0(k) = −t0
∑

j(χjka
†
j,kbj,k + h.c.) describes

the kinetic energy of pristine graphene with χjk =
∑

δ e
i(Kj+k)·δ, and ξjj′ =

∑

δ e
i(Kj−Kj′ )·δ. The last two

terms give sublattice potentials when j = j′ which are
different for AB sublattices due to inversion symmetry
breaking. When j 6= j′, they give rise to inter-valley
coupling through a finite u1 contribution while u2 con-
tribution vanishes due to the phase interference (ξ12=0).

By block diagonalization, the low-energy effective Hamil-
tonian can be further obtained:

Heff
t = U0 + vF (τzkxσx + kyσy) + ∆1σz (3)

+
∆2

2
(1 + σz)τx,

where U0=(∆2 + u2)/2 and ∆1=(∆2 − u2)/2 with ∆2=
u1/3. τ and σ are respectively Pauli matrices of KK′ val-
leys and AB sublattices. The third term reflects the ef-
fective potential imbalance through a mass term of mag-
nitude ∆1 and the last term describes inter-valley cou-
pling through the τx operator. We note that the coupling
between K and K′ valleys only occurs at “A” sublattice
with the coupling amplitude ∆2 depending on u1 linearly.
Such an inter-valley coupling acts on the valley pseu-
dospin as an effective Zeeman field that can be used to
control the valley polarization coherently in valleytronics
devices.
When the nearest neighbor hopping terms of superlat-

tice Hamiltonians are allowed to change by δt = t − t0
due to the influence of the adatoms, the real-space tight-
binding Hamiltonian in Eq. (1) acquires an additional

term H ′ =
∑′

〈i,j〉δt(a
†
i bj + h.c.) where the index i runs

over “A” sites right underneath the adatoms and the j
sites represent the three nearest “B” sites. The modified
effective Hamiltonian becomes:

Heff
t

′
(k) = U ′

0 + v′F (τzkxσx + kyσy) + ∆′
1σz1τ

+
∆′

2

2
(1σ + σz)τx + vδσy(τykx + τxky), (4)

where (U ′
0, ∆

′
1) have same forms as (U0, ∆1) by changing

∆2 to be ∆′
2 = 3u1t

2
0/(t + 2t0)

2, and the Fermi velocity
is modified to be v′F = vF (2t + t0)/(t + 2t0). The last
term in Eq. (4) can be identified as a valley-orbit inter-
action of strength vδ = vF (t− t0)/(t+ 2t0) coupled with
a sublattice-flip potential. This term also couples differ-
ent valleys and implies the possibility of manipulating
the valley degree of freedom by external electric field in
a manner analogous to the control of electron spin by
electrical means via spin-orbit coupling.

B. Single-valley metallic phase

Adatom superlattices lead to both inter-valley coupling
and inversion symmetry breaking potentials. It is easy to
understand that each term can independently contribute
in opening a Dirac point gap when they are viewed as uni-
form in-plane xy and out-of-plane z contributions to the
pseudospin fields in the Dirac Hamiltonian,22 where the
former shifts the position of the Dirac points in momen-
tum space and the latter introduces an inversion sym-
metry breaking gap in the Dirac cones. Here we show
that when those effects are present simultaneously in a
superlattice, a topologically distinct single-valley phase
can be engineered. We begin considering for sake of
clarity the top-adsorption configurations neglecting the
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modification of the hopping energy in the band Hamilto-
nian and setting the site energies at all “B” sublattices
to an assumed constant value (i.e., UB = u2 < 0). When
u1 = 0, the site energies at all “A” sublattices are iden-
tical, i.e., UA = 0. This leads to vanishing inter-valley
coupling and the imbalanced sublattice potentials open a
quantum valley-Hall gap at the Dirac points, where the
doubly-degenerate massive Dirac cones are folded as a
single valley around the Γ point but remain distinguish-
able [See Fig. 2(a)]. When we allow u1 to take negative
values, we find a gradual decrease of the inversion sym-
metry breaking induced gap |∆1| and an increase of inter-
valley coupling strength |∆2| that lifts the degeneracy of
the conduction bands splitting by a magnitude of 2∆2

[See Fig. 2(b)]. The simultaneous presence of both terms
breaks the particle-hole symmetry and leads to a smaller
bulk gap ∆′ = |2∆1 + ∆2|. However, the degeneracy of
valence band edge is also present since it is protected by
C3v symmetry [See Appendix B].

When u1 is even further decreased and reaches a crit-
ical value of u1 = 3u2/2, the bulk gap ∆′ completely
closes as shown in Fig. 2(c). Here we achieve a single
band touching point at Γ formed by a Dirac-cone cen-
tered at the edge of the parabolic valence band. In this
limit where the bulk gap is closed, the valley-Hall effect
is absent and the valleys are no longer distinguishable.
When we allow even smaller values of u1, the inter-valley
coupling strength |∆2| further increases, while the mag-
nitude of the staggered sublattice potentials |∆1| first
decreases to zero then increases again. During this pro-
cess, a conduction-valence band inversion happens due to
the strong inter-valley coupling and the doubly degener-
ate valence-band edges are split by a local band gap of

∆′ =
∣

∣

∣
2|∆1| − |∆2|

∣

∣

∣
as displayed in Fig. 2(d). This band

inversion drives the C3v protected degenerate valence-
band edges into a crossing point between conduction and
valence bands producing a valley-mixed metallic phase
with quadratic band crossover.

A detailed analysis of the band crossover at low en-
ergy limit shows that, when |∆2| ≫ |∆1|, the low-energy
Hamiltonian of the quadratic touching bands can be fur-
ther simplified as:

Heff
t

′′
(k) = U ′′

0 + αk2 − β

[

0 (π†)2

π2 0

]

, (5)

which is represented on the basis of “B” sublattice from
both K and K′ valleys. Here, we define U ′′

0 = U0 −∆1,
k2 = k2x+k2y, α = ∆1v

2
F /(∆

2
2−∆2

1), and β = ∆2v
2
F /(∆

2
2−

∆2
1). The last term couples states between valleys K and

K′ with π = kx + iky, and gives rise to the quadratically
dispersing Fermi point band structure in analogy to bi-
layer graphene. However, an additional term, i.e., αk2,
is present due to the inversion symmetry breaking which
breaks the chiral symmetry and makes the low-energy
bands different from that of bilayer graphene at K or K′

valley.

FIG. 2: (color online) Topological transition from a quantum
valley-Hall insulator to a single-valley phase as a function of
the parameters u1. Here, we set u2 to be fixed with u2 < 0
and u3 = 0. −2∆2 corresponds to the local band gap from
the inter-valley scattering. ∆′ measures the bulk (local) band
gap from the competition between inter-valley coupling and
sublattice potentials. The progressive decrease of u1 leads to
a complete closure of the quantum valley-Hall gap and then
transitions to the single valley phase by reversing ∆′.

C. Quadratic band crossover

Apart from the chiral symmetry breaking, the main
difference between this band crossover and that of bilayer
graphene is that here we have only a single parabolic dis-
persion. This is of interest, because it provides an ideal
platform to study the single Dirac-cone transport phe-
nomena of Z2 topological insulators and allows to explore
the chiral anomaly of single valley physics that is not
compensated by its time-reversal counterpart. For ex-
ample, if broken symmetry gapped phases are developed
in the presence of electron-electron interactions,24–26 a
mass sign dependent spontaneous orbital moments will
develop per spin-valley.26–28 In our single valley phase,
it is expected that when the Fermi surface lies at the
crossing point, a quantum anomalous Hall ground state
will develop when both spin components have the same
mass, or alternatively a quantum spin-Hall state will be
present when the masses for each spin term have oppo-
site signs.29 Besides, a superconducting phase can also
be expected when the Fermi surface is shifted away from
the crossing point.30 Whereas the energetically favored
ground state depends on details of the band Hamilto-
nian and the models for the electron-electron interaction,
further control of quantum phase transitions should be
achievable by means of external magnetic fields coupling
with the spontaneous orbital moments. Furthermore, in
bilayer graphene, the magnitude of the gaps predicted
in a Hartree-Fock theory without dynamical screening is
on the order of a few tens of meV26 whereas experimen-
tal gaps turned out to be an order of magnitude smaller
∼ 2 meV31 due to the exponentially increasing screening
feedback when the gaps are small. Thus, it is expected
that substantially larger gaps can develop, if flatter bands
can be tailored when the leading parabolic dispersion co-
efficients can be made smaller than the one used in bilayer
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FIG. 3: (color online) Upper panel: Schematic representa-
tion of honeycomb photonic crystals with a

√
3 ×

√
3 peri-

odicity. ~α1 and ~α2 denote the primitive vectors. The dis-
tance between nearest columns is set to be a and the slab
width is d = 0.1a. ri (i = 1-3) label the radii of differ-
ent columns. In our simulation, each column is chosen to
be infinitely long. Lower panel: Photonic band structures of
transverse-magnetic modes along high-symmetry lines for dif-
ferent radii r1 = 0.18a (a), 0.23a (b), 0.28a (c), and 0.32a (d),
respectively. Here, we set r2 = 0.25a and r3 = 0.18a.

graphene. Moreover, in the presence of strong magnetic
field, the anomalous Landau-level quantization can also
be expected as that in bilayer graphene case.32

D. Photonic-crystal bands

Experimental realizations of periodic graphene super-
lattices could take advantage of substrates that can gen-
erate the 3 × 3- or

√
3 ×

√
3-type superstructure, like

EuO(111)33 and Ag(111) substrates.34 There are also
other methods for engineering such kind of superstruc-
tures, e.g., silicene on Ag(111) substrate,35 InSb(111)
surface,36 artificial organic molecular lattice,37 or pat-
terned two dimensional electron gas with well-established
experimental technique.38 The applicability of our theory
depends on the degree of the achievable commensurabil-
ity with the crystal structure of honeycomb lattices. It
is noteworthy that, since our model is spin independent,
it can also apply to Bosonic systems like cold atoms39

or photonic crystals40 in honeycomb superlattices. One
possibility is to use honeycomb photonic crystals made
of silicon columns linked by thin silicon slabs as shown in
the upper panel of Fig. 3, and use electromagnetic waves
with transverse-magnetic modes in the xy plane. The
corresponding site potentials and hopping energies for
the photonic crystal setup can be controlled through the
column radius r and the link width d. The confinement
radii allow to tune the concentration of electrical-field
energy of the harmonic modes.
If the columns’ radii are identical and the connecting

FIG. 4: (color online) Primitive cells for hollow- (a) and
bridge-site (c) adsorption. ~αi indicates the primitive lattice
vectors for 1 × 1 (in red) and 3 × 3 (in black) graphene su-
percell. u1 denotes the site-energy induced by the adatoms.
(b): Reciprocal lattices for 1 × 1 (in red) and 3 × 3 (in black)
graphene supercell. (d) and (e): Low energy band structures
for hollow- and bridge-site adsorptions. ∆ indicates the local
gap from pseudo-Zeeman field in bridge adsorption.

slabs have the same width, the two dimensional photonic
band structure for transverse-magnetic modes23 obtained
from the finite elements method41,42 shows two linearly
dispersing Dirac cones, closely resembling the band struc-
ture of pristine graphene.23,40,43 To model the

√
3 ×

√
3

graphene supercell, we first classify the columns’ radii
into three categories ri (i=1-3) with r3 = 0.18a as a ref-
erence, and the link width is chosen to be d = 0.10a with
a being the distance between two nearest columns. Fig-
ures 3(a)-3(d) display the photonic band structures for
different r1 = 0.18a (a), 0.23a (b), 0.28a (c), and 0.32a
(d) at fixed r2 = 0.25a along high symmetry lines. One
can observe a topological phase transition from an insu-
lator to a single-valley metallic phase when r1 is progres-
sively increased [See the highlighted regions] in a way
closely similar to the behavior of the electronic band
structure shown in Fig. 2.

III. HOLLOW AND BRIDGE ADSORPTION

In this part, we present the inter-valley coupling mech-
anisms for hollow and bridge adsorption in 3× 3 honey-
comb supercells as shown in Figs. 4(a) and 4(c). For
both cases, the inversion symmetry is preserved and thus
staggered sublattice potential is absent, which is differ-
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TABLE I: Inter-valley coupling mechanisms for different ad-
sorption sites.

Adsorption Site Symmetry Inter-Valley Coupling
Top C3v (1 + σz)τx

Hollow C6v τxσx

Bridge C2v τx1σ

ent from top adsorption. The corresponding first Bril-
louin zones for pristine graphene and graphene supercells
shown in Fig. 4(b) in red and black respectively where K
and K′ points of pristine graphene are also folded into Γ
inducing inter-valley coupling.
We first study the hollow adsorption as shown in

Fig. 4(a). By considering only the site energies surround-
ing the adatoms, the real-space π-orbital tight-binding
Hamiltonian is written as:

Hh = H0 + u1

∑

i

′
(a†iai + b†ibi), (6)

where
∑′

i runs over six atoms nearest to adatoms
with site energy of u1. Since the Brillouin zone
of pristine graphene can be divided into nine copies
of that of 3 × 3 graphene supercell, the operator
ai can be expanded in momentum space as: ai =

1√
N0

∑

k

∑

j exp[−i(Kj + k) ·Ri]aj,k, where Kj (j = 1-

9) denotes the center of j-th copy and k runs over the
Brillouin zone of 3 × 3 graphene supercell. Therefore,
the Hamiltonian of Eq. (6) in momentum space can be
expressed as:

Hh(k) = H0(k) +
∑

j,j′

u1

9
ξjj′ (a

†
j,kaj′,k + b†j′,kbj,k). (7)

In the second term, j = j′ gives equivalent AB sublattice
potentials, while j 6= j′ couples different parts. Although
the direct coupling between valleys KK′ vanishes due to
phase interference, i.e., ξ12 =

∑

δ e
i(K−K

′)·δ = 0, a band
gap opens at Γ point with four lower energy bands around
the gap mainly contributed from eigenstates near valleys
KK′ as shown in Fig. 4(d). This suggests that the gap
is induced by inter-valley coupling from higher-order ef-
fects. By doing a block diagonalization,44 a low-energy
effective Hamiltonian with nontrivial contribution from
u1 can be obtained:

Heff
h =

u1

3
+ vF (τzkxσx + kyσy) +

u2
1

9t0
τxσx, (8)

where the first term is an energy shift relative to the
charge neutrality point. The last term couples valleys
K and K′ where τx implies a pseudo-Zeeman field in x-
direction to induce a precession of valley polarization.
Moreover, the coupling only occurs between different sub-
lattices, and the resulting band gap 2u2

1/9t0 indicates a
second-order correction from site energy u1.
Then we turn to the bridge adsorption case as shown

in Fig. 4(c). Assuming that the adatom only influences

the site energies u1 of the nearest two carbon atoms and
neglecting the high-order contribution from Γ valley of
graphene, the continuum effective Hamiltonian for four
lower bands can be obtained similar to hollow adsorption,
which can be expressed as follows:

Heff
b =

u1

9
+ vF (τzkxσx + kyσy) +

u1

9
τx1σ. (9)

where the third term represents the first-order inter-
valley coupling contributed from the on-site energy,
which also acts as a pseudo-Zeeman field in x-direction
yet without a sublattice flipping. This term shifts the two
degenerate Dirac cones of graphene and opens a local en-
ergy gap ∆ = 2|u1|/9 at k = 0 as shown in Fig. 4(e). The
gap is closed at (±|u1|/9vF , 0) due to the dispersion of
energy bands where another two Dirac cones are formed.

IV. DISCUSSIONS AND CONCLUSIONS

In summary, we presented the theory for the inter-
valley coupling mechanisms due to Bragg scattering in√
3×

√
3 or 3× 3 adatom decorated graphene supercells

that act as in-plane pseudo-Zeeman fields or pseudospin-
orbit coupling. Three possible adsorption geometries,
i.e., top-, hollow-, and bridge-site adsorption, are studied
and we found that inter-valley coupling mechanisms are
sensitive to the adsorption site as summarized in Table I.
These inter-valley coupling mechanisms can be used to
tailor valley pseudospins of honeycomb lattices and have
important implications in valleytronics, where the coher-
ent control of valley polarization is yet a grand challenge
due to the missing counterpart mechanisms of spin-orbit
couplings or magnetic fields for spintronics. Especially,
the valley-orbit coupling in top adsorption case makes
it possible to control the valley polarization via electric
means. Moreover, our theory also suggests strategies for
engineering single-valley electronic structure in conven-
tional Dirac materials with two inequivalent degenerate
valleys by folding them together. In addition, the single-
valley phase for top adsorption can be manipulated by
combining inter-valley couplings and imbalanced sublat-
tice potentials originated from the inversion-symmetry
breaking. By increasing the strength of inter-valley cou-
pling from zero, a topological phase transition can take
place from the quantum valley-Hall phase to a chiral
anomalous single-valley metallic phase with quadratic
band crossover that resemble the electronic structure of
a half Bernal-stacked bilayer graphene apart from a chi-
ral symmetry breaking term. A concrete proposal for
such a single-valley phase is presented in honeycomb pho-
tonic crystals since a spinless particle is considered in the
present work. When the spin degree of freedom is further
included in the honeycomb structure (e.g., silicene45),
the competition between valley-mixing and spin-mixing
mechanisms will give rise to a rich variety of topological
phases, which is beyond the scope of the present work
and will be discussed in our future work.
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FIG. 5: (color online) Left panel: Schematic of honeycomb-
structured photonic crystals. The distance between nearest
columns is set to be a and the slab width is d = 0.1a. ri
(i = 1-3) label the radii of different columns. Right panel:
The photonic band structure with uniform column radii and
the slab widths where Dirac cones are present around K point
and K′ point and the later one is not shown for clarity of the
figure.

It is noteworthy that Ref. [46] presents similar inter-
valley coupling terms. However, the physical origin of
inter-valley coupling in our work is totally different from
theirs, which comes from the short-range components
of scattering potential from single adatom on graphene
rather than Bragg scattering in graphene superlattice. In
addition, when the supercell slightly deviates from the
perfectly commensurate

√
3 ×

√
3 supercell, the two in-

equivalent Dirac cones are preserved and remain sepa-
rate although an inter-valley coupling gap can appear at
higher energies due to the coupling between states away
from K and K′ points as discussed in Ref. [47].
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Appendix A: Calculation of Photonic Band

Structure

In our simulation of photonic band structure, we con-
sider a honeycomb lattice with

√
3×

√
3 periodicity, which

is comprised of silicon columns linked with thin silicon
slabs in the vacuum background as shown in Fig. 5(a).
The columns are infinite in z-direction and their radii
are ri (i = 1-3). In our calculation, the electromagnetic
wave propagates within the xy plane, i.e., the wavevec-
tor component along z-direction is kz = 0. Various nu-
merical methods can be used to calculate the photonic

band structure, such as plane wave method (PWE), fi-
nite difference time domain (FDTD) method, and finite
elements method (FEM).41,42 Here, FEM is employed,
which is much efficient in calculating structures with ex-
tremely small domains needing to be meshed. The pho-
tonic band structure with the uniform column radii and
the slabs widths are calculated as shown in Fig. 5(b),
where two Dirac cones in K and K′ points for transverse-
magnetic modes40,43 are formed, resembling the linear-
dispersed Dirac cones of pristine graphene.

Appendix B: Symmetry Analysis

In this part, we derive the inter-valley coupling mech-
anisms utilizing symmetry analysis. We focus on the
Hilbert space spanned by four basis functions: |KA〉,
|KB〉, |K ′

A〉, and |K ′
B〉 defined as below

|KA〉 =
1√
N

∑

i

eiK·[Ri+τA]|pz, i, A〉

|KB〉 =
1√
N

∑

i

eiK·[Ri+τB ]|pz , i, B〉

|K ′
A〉 =

1√
N

∑

i

eiK
′·[Ri+τA]|pz, i, A〉

|K ′
B〉 =

1√
N

∑

i

eiK
′·[Ri+τB ]|pz, i, B〉

(B1)

where A and B represent the A/B sublattices of graphene
while K and K′ represent the two valleys with K(K′) =
2π
a (± 2

3
√
3
, 0) and a being the distance between two near-

est carbon atoms. |pz , i, A(B)〉 is the pz orbital of carbon
atom centered at Ri+τA(B) denoting the position of the
A(B) site in the i-th unit cell.
For top adsorption, the system possesses the symmetry

represented by C3v point group with the rotation center
locating at the adsorption site assumed as A site. The
symmetry operators in C3v can be classified into three
classes. The first class is the invariant operation labelled
by ê while the second class is rotation operation around
z-direction by 2π/3 (4π/3) denoted by Ĉ3 (Ĉ2

3 ). The
third class is the mirror reflection about the three planes
through rotation center labelled by σ̂v.

48 The generating
operators are set as Ĉ3 and y-direction reflection σ̂v which
can be expressed as the following matrices on the basis of
|KA〉, |KB〉, |K ′

A〉, and |K ′
B〉 that form a reducible four

dimensional representation T1,

T1(Ĉ3) = diag{1, ω, 1, ω∗}

T1(σ̂v) =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0







(B2)

where diag indicates a diagonal matrix with ω = ei2π/3.
These matrices can be block diagonalized by a uniform
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TABLE II: Symmetrized matrices and corresponding tensor
operators for each block of effective Hamiltonian for top ad-
sorption with C3v symmetry. A1, A2, and E represents the
irreducible representations of C3v point group. Mij is a 4× 4
matrix with only one nonzero element locates at the i-th row
and j-th column. Ladder operators σ+,− = σx ± iσy with
σx,y,z being Pauli matrices. ∆t is constant, π = kx + iky, and
k2 = k2

x + k2
y.

Blocks Representation
Symmetrized

matrices
Tensor

operator
HA1A1

HA2A2

A1 × A1 =
A2 × A2 = A1

1 ∆t, k
2

HA1A2
A1 × A2 = A2 1 0

HA1E A1 × E = E {M13,−M14} {π, π†}
HA2E A2 × E = E {M23,M24} {π, π†}

HEE
E × E =

A1 + A2 + E

A1 : 12×2

A2 : σz

E : {σ+,−σ−}

A1 : ∆t, k
2

A2 : 0
E : {π, π†}

transformation that changes these basis into a new set of
basis







|A+〉
|A−〉
|KB〉
|K ′

B〉






=









1/
√
2 0 1/

√
2 0

1/
√
2 0 −1/

√
2 0

0 1 0 0
0 0 0 1















|KA〉
|KB〉
|K ′

A〉
|K ′

B〉






.(B3)

The corresponding matrix representation of these opera-
tors can be rewritten as

T2(Ĉ3) = diag{1, 1, ω, ω∗}

T2(σ̂v) =







1 0 0 0
0 −1 0 0
0 0 0 1
0 0 1 0







(B4)

which indicates that |A+〉 and |A−〉 forms two inequiva-
lent one-dimensional irreducible representations labelled
by A1 and A2 corresponding to the split conduction band
edges in Fig. 2(b). Moreover, {|KB〉, |K ′

B〉} form a two-
dimensional irreducible representation labelled by E that
leads to the double degenerate valence band edges or
crossing point shown in Fig. 2.
Based on these three irreducible representations, we

can divide the effective Hamiltonian into nine blocks as
follows according to the invariant expansion method in-
troduced in Ref. [49]:

Heff =





HA1A1
HA1A2

HA1E

HA2A1
HA2A2

HA2E

HEA1
HEA2

HEE



 (B5)

where Hαβ is a Dα ×Dβ matrix with Dα(Dβ) being the
dimension of irreducible representation α (β). In order
to obtain the effective Hamiltonian, we list in Tab. II the
symmetrized matrices for each block and the correspond-
ing tensor operators composed by momentum operators.

Each block can be obtained by the production of sym-
metrized matrix and tensor operators.49 Therefore, the
effective Hamiltonian of can be expressed as

Heff =









∆1t 0 η1tπ
† −η1tπ

0 ∆2t η2tπ
† η2tπ

η∗1tπ η∗2tπ ∆3t η3tπ
†

η∗1tπ
† η∗2tπ

† −η3tπ ∆3t









(B6)

where π = kx + iky while ∆it and ηit (i = 1-3) are cou-
pling constants and are complex numbers in general with
η∗it being corresponding conjugate number and subscript
t indicating top adsorption. In addition, due to the Her-
miticity of Hamiltonian, η∗3t = −η3t indicates that η3t is
a pure imaginary number. Finally, we can express this
effective Hamiltonian in the basis of |KA〉, |KB〉, |K ′

A〉,
and |K ′

B〉 as following by a unitary transformation:

Heff
t =









∆At vtπ
† ∆AAt −vδtπ

v∗t π ∆Bt v∗δtπ η3tπ
†

∆AAt vδtπ
† ∆At −vtπ

−v∗δtπ
† η∗3tπ −v∗t π

† ∆Bt









(B7)

where ∆At = (∆1t+∆2t)/2, ∆Bt = ∆3t, ∆AAt = (∆1t −
∆2t)/2, vt = (η1t + η2t)/

√
2, and vδt = (η1t − η2t)/

√
2.

This Hamiltonian has the same form as Eq. (4).
For hollow adsorption, the system has C6v symmetry

with the rotation center locating at the adsorption site.
For this case, we find that the four basis functions can be
reconstructed into two two-dimensional irreducible rep-
resentations as below:

|m1〉 = (|KB〉 − |K ′
A〉)/

√
2

|m2〉 = (|KA〉 − |K ′
B〉)/

√
2

|p1〉 = (|KB〉+ |K ′
A〉)/

√
2

|p2〉 = (|KA〉+ |K ′
B〉)/

√
2

(B8)

where the former (latter) two basis give rise an irreducible
representation that is odd (even) under rotation of π.
Therefore, we can divide the effective Hamiltonian into
4 blocks and each block is a 2 × 2 matrix that can be
written as follows in the first order of momentum:

Heff =

(

∆1h12×2 ηh(kxσx − kyσy)
η∗h(kxσx − kyσy) ∆2h12×2

)

. (B9)

where the diagonal terms lead to two double degenerate
energy levels which are separately conduction and valence
band edges split by a gap of |∆1h −∆2h| with subscript
representing hollow adsorption. This Hamiltonian can be
expressed on the basis of |KA〉, |KB〉, |K ′

A〉, and |K ′
B〉 as

follows:

Heff
h =

∆1h +∆2h

2
(B10)

+









0 vhπ
† vδhπ

† ∆h

vhπ 0 ∆h vδhπ
v∗δhπ ∆h 0 −vhπ
∆h v∗δhπ

† −vhπ
† 0








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where ∆h = ∆2h − ∆1h, vh = 2Re(ηh), and vδh =
2iIm(ηh) with Re (Im) indicating the real (imaginary)
part of a complex number. It is noted that, there is no
staggered sublattice potential here due to inversion sym-
metry.
For bridge adsorption, we can also obtain the effective

Hamiltonian similarly. However, this effective Hamilto-
nian is very complex since the symmetry of this system
is lower than the previous ones. For simplicity, we divide
the system into two parts where the first part is effec-
tive Hamiltonian of pristine graphene with D6h symme-
try and the second part account for the effects of adatoms
with C2v symmetry. The second part is treated as pertur-
bation with only the lowest order contribution being in-
cluded. We find that the four degenerate basis functions
in pristine graphene can be reconstructed into four one
dimensional presentations with the corresponding basis
are

|mm〉 = (|KB〉 − |K ′
A〉 − |KA〉+ |K ′

B〉)/2
|pm〉 = (|KB〉+ |K ′

A〉 − |KA〉 − |K ′
B〉)/2

|mp〉 = (|KB〉 − |K ′
A〉+ |KA〉 − |K ′

B〉)/2
|pp〉 = (|KB〉+ |K ′

A〉+ |KA〉+ |K ′
B〉)/2,

(B11)

where the left (right) m/p indicates that the wavefunc-

tion is odd/even under rotation of π (y-direction reflec-
tion). We can obtain the effective Hamiltonian in the
zeroth order of momentum that can be written as

Heff = diag{∆1b,∆2b,∆3b,∆4b} (B12)

where ∆ib (i = 1-4) are constants with subscript b indi-
cating bridge adsorption. Then we express the effective
Hamiltonian as follows under the basis of |KA〉, |KB〉,
|K ′

A〉, and |K ′
B〉

Heff
b = vF (τzkxσx + kyσy) +

∆11b

4
14×4 (B13)

+
1

4







0 ∆21b ∆31b ∆41b

∆21b 0 ∆41b ∆31b

∆31b ∆41b 0 ∆21b

∆41b ∆31b ∆21b 0







where ∆11b =
∑

i ∆ib with i = 1-4, ∆21b = −∆1b −
∆2b +∆3b +∆4b, ∆31b = ∆1b −∆2b −∆3b +∆4b, and
∆41b = −∆1b+∆2b−∆3b+∆4b. Here, staggered sublat-
tice potential is absent similar to hollow adsorption and
∆31b corresponds to the on-site potential induced inter-
valley coupling while ∆31b,41b are induced by hopping
term modification that is neglected in Sec. IV.
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shuler, Solid State Commun. 149, 1499 (2009).
22 J. Jung, A. Raoux, Z. H. Qiao, and A. H. MacDonald,

Phys. Rev. B 89, 205414 (2014).
23 See more details in Appendix.
24 A. A. Abrikosov and S. D. Beneslavskii, J. Low Temp.

Phys. 5, 141 (1971).
25 H. Min, G. Borghi, M. Polini, and A. H. MacDonald, Phys.

Rev. B 77, 041407(R) (2008).
26 J. Jung, F. Zhang, and A. H. MacDonald, Phys. Rev. B

83, 115408 (2011).
27 F. Zhang, J. Jung, G. A. Fiete, Q. Niu, and A. H. Mac-

Donald, Phys. Rev. Lett. 106, 156801 (2011).
28 D. Xiao, W. Yao, and Q. Niu, Phys. Rev. Lett. 99, 236809

(2007).
29 J. M. Murray and O. Vafek, Phys. Rev. B 89, 201110(R)

(2014).
30 K. A. Pawlak, J. M. Murray, and O. Vafek,

arXiv:1411.3633.
31 J. Velasco Jr, L. Jing, W. Bao, Y. Lee, P. Kratz, V. Aji, M.

Bockrath, C. N. Lau, C. Varma, R. Stillwell, D. Smirnov,
F. Zhang, J. Jung, and A. H. MacDonald, Nature Nan-
otech. 7, 156-160 (2012).

32 K. S. Novoselov, E. McCann, S. V. Morozov, V. I. Fal’ko,
M. I. Katsnelson, U. Zeitler, D. Jiang, F. Schedin, and A.



9

K. Geim, Nature Phys. 2, 177 (2006).
33 H. X. Yang, A. Hallal, D. Terrade, X. Waintal, S. Roche,

and M. Chshiev, Phys. Rev. Lett. 110, 046603 (2013).
34 H. Huang, D. Wei, J. Sun, S. Wong, Y. P. Feng, A. H. C.

Neto, and A. T. S. Wee, Sci. Rep. 2, 983 (2012).
35 L. Chen, C. Liu, B. Feng, X. He, P. Cheng, Z. Ding, S.

Meng, Y. Yao, and K. Wu, Phys. Rev. Lett. 109, 056804
(2012).

36 M. Nishizawa, T. Eguchi, T. Misima, J. Nakamura, and T.
Osaka, Phys. Rev. B 57, 6317 (1998).

37 Z. F. Wang, Z. Liu, and F. Liu, Phys. Rev. Lett. 110,
196801 (2013).

38 C.-H. Park and S. G. Louie, Nano Lett. 9, 1793 (2009).
39 C. Wu, D. Bergman, L. Balents, and S. Das Sarma, Phys.

Rev. Lett. 99, 070401 (2007).
40 J.-Y. Yea, V. Mizeikisb, Y. Xua, S. Matsuoa, and H. Mis-

awa, Opt. Commun. 211, 205 (2002).
41 J. Jin, The finite element method in electromagnetics, 2nd

ed. (Wiley, 2002).

42 J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R.
D. Meade, Photonic Crystals: Molding the Flow of Light

(Princeton Univ. Press, 2008).
43 C. Ouyang, Z. Xiong, F. Zhao, B. Dong, X. Hu, X. Liu,

and J. Zi, Phys. Rev. A 84, 015801 (2011).
44 R. Winkler, Spin-orbit coupling effects in two-dimensional

electron and hole systems (Springer, Berlin, 2003).
45 C. J. Tabert and E. J. Nicol, Phys. Rev. Lett. 110, 197402

(2013).
46 A. Pachoud, A. Ferreira, B. Özyilmaz, and A. H. Castro
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Phys. Rev. B 88, 155415 (2013).
48 M. El-Batanouny and F. Wooten, Symmetry and con-

densed matter physics: A computational approach (Cam-
bridge Univ. Press, 2008).
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