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We develop a Boltzmann-Langevin description of Coulomb drag effect in clean double-layer sys-
tems with large interlayer separation d as compared to the average interelectron distance λF .
Coulomb drag arises from density fluctuations with spatial scales of order d. At low tempera-
tures their characteristic frequencies exceed the intralayer equilibration rate of the electron liquid,
and Coulomb drag may be treated in the collisionless approximation. As temperature is raised the
electron mean free path becomes short due to electron-electron scattering. This leads to local equili-
bration of electron liquid and consequently drag is determined by hydrodynamic density modes. Our
theory applies to both collisionless and hydrodynamic regime and enables us to describe the crossover
between them. We find that drag resistivity exhibits nonmonotonic temperature dependence with
multiple crossovers at distinct energy scales. At lowest temperatures Coulomb drag is dominated
by the particle-hole continuum, whereas at higher-temperatures of the collision-dominated regime
it is governed by the plasmon modes. We observe that fast intralayer equilibration mediated by
electron-electron collisions ultimately renders stronger drag effect.

PACS numbers: 71.27.+a, 72.10.-d, 73.40.Ei, 73.63.Hs

I. INTRODUCTION

Since the pioneering papers by Pogrebinskii1 and
Price2 their idea of Coulomb drag evolved into the inde-
pendent and fruitful field of research in condensed mat-
ter physics. The initial motivation was to propose an
experiment that would provide a direct measure of the
rate of electron-electron collisions not masked by other
competing relaxation channels such as electron-impurity
or electron-phonon collisions. This became possible and
was realized in the electrically isolated but interactively
coupled double-layer systems.3–7 When current is driven
through one layer while the voltage across the other layer
is measured, the resulting nonlocal drag resistivity is a
direct probe of the rate of momentum transfer between
the two layers via electron-electron scattering. In many
practical cases, Coulomb drag measurements provide in-
credibly sensitive tools for revealing electronic correla-
tions, which are not readily accessible via more standard
transport experiments in a single layer samples. Recent
results on the drag resistivity in double layer heterostruc-
tures made of graphene8–10 triggered a flood of theoret-
ical work11–18 including new proposals for the mecha-
nism of this phenomenon in the case of tightly nested
layers.19–24

Coulomb drag resistivity ρD is extremely sensitive to
temperature T , magnetic field B, interlayer spacing d, in-
tralayer density n or density mismatch between the lay-
ers, and intralayer mean free path `, which can be domi-
nated by either impurity scattering in the disordered case
or by electron-electron collisions in clean systems. The
strength of correlation effects can be conveniently de-
scribed by the electron gas parameter rs = (πna2B)−1/2,
where aB = ε/me2 is the effective Bohr radius in the host
material of quantum well with dielectric constant ε.

In initial measurements3–7 not only the characteristic
dependence of the drag resistivity on the various param-
eters, but also the magnitude of the effect, were in very
good agreement with theoretical predictions.3,6,25–31 In
particular, at relatively low temperatures and in the clean
limit
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where kF and EF are Fermi momentum and energy, re-
spectively, κ ' rskF is the inverse Thomas-Fermi screen-
ing radius, and ρQ = 2π/e2 is quantum of resistance
(throughout the paper ~ = kB = 1). These early exper-
iments were performed on quantum wells with the typi-
cal electron density n ∼ 1011cm−2 and layer separation
d ∼ 250Å. That translates into EF ∼ 60K, kF d� 1 and
corresponds to weakly interacting limit rs ∼ 1, which was
explored in theoretical calculations.

Subsequent detailed experimental investigations of
drag resistivity posed theoretical challenges. For example
measurements32,33 on samples with densities and mobili-
ties comparable to that of early measurements, but with
much higher interlayer separations (up to d ∼ 5000Å) re-
vealed that ρD/T

2 ceases to be a constant but acquires a
peculiar temperature dependence, while the overall mag-
nitude of the drag resistivity significantly exceeds the ex-
pected value. Such a dramatic disagreement between ex-
perimental findings and theoretical predictions of Eq. (1)
was attributed to an additional contribution to drag ef-
fect due to virtual-phonon exchange.34 It was also ob-
served that at higher temperatures, drag resistivity be-
comes a nonmonotonic function of T . It exhibits a well
pronounced peak at T ∼ EF followed by a rapid decay
at higher temperatures.35,36 The difficulty of explaining
this feature within the phonon drag mechanism prompted
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consideration of the plasmon contribution to Coulomb
drag,37,38 which yields an enhancement of drag at tem-
peratures of the order of the characteristic plasmon en-
ergies. Further challenges to the theory of Coulomb drag
were posed by experiments in samples with low carrier
density, n ∼ 109cm−2, where inter-electron interactions
are strong, rs � 1.39,40 In such double-layers even at low
temperatures, T � EF , the drag resistance is one to two
orders of magnitude larger than expected on the basis of
a simple extrapolation of the small rs results. Further-
more, the power exponent in temperature dependence de-
viates from being simply quadratic, drag has unexpected
behavior on the density mismatch, and the system has
anomalous response to a magnetic field.

For electron liquids with rs � 1 there exists a wide
temperature interval, EF < T < rsEF , in which the
liquid is strongly correlated but is not quantum degen-
erate, and hence may not be described by the Landau
Fermi-liquid theory. Within this interval one can fur-
ther distinguish between the classical, ωD < T < rsEF ,
and semiquantum,41,42 EF < T < ωD, regimes (here
ωD ∼ EF

√
rs is the Debye frequency in the liquid). The-

ory of Coulomb drag in this temperature interval has not
been developed. A detailed consideration of Coulomb
drag based on an extrapolation of Fermi-liquid-based for-
mulas to the region where rs > 1 has been carried out
in Ref. 43 in an attempt to address the data of Ref. 39,
however such analysis can be qualitatively justified only
for the temperature range T < EF /(kF d). Another ap-
proach to theory of Coulomb drag in systems with rs � 1
was developed in the hydrodynamic regime,44 where the
mean free path due to intralayer electron-electron colli-
sions becomes shorter than other relevant length scales.
In this case the drag resistivity can be expressed in terms
of the viscosity and thermal conductivity of the electron
liquid. The hydrodynamic approach does not assume the
Fermi-liquid behavior of the electron fluid, but also ap-
plies to classical and semiquantum strongly correlated
liquids for which experimental realization of the hydro-
dynamic regime is more realistic. As the temperature is
lowered the Fermi-liquid theory becomes applicable. At
the same time the equilibration length due to intralayer
electron-electron collisions becomes longer and the sys-
tem eventually crosses over into the collisionless regime
of Coulomb drag.

Previous microscopic calculations of Coulomb drag
were made under a tacit assumption of the collision-
less regime with respect to intralayer electron-electron
scattering, namely when intralayer mean free path ex-
ceeds interlayer separation ` � d. The only exception
is the paper Ref. 45 where crucial importance of the in-
tralayer equilibration has been emphasized in the con-
text of drag between one-dimensional quantum wires.
In the two-dimensional case, at large interlayer spac-
ings the crossover from the collisionless to the hydro-
dynamic regime occurs within the range of applicability
of the Fermi-liquid theory. This enables construction of
a microscopic description of Coulomb drag in the entire

crossover interval between the collisionless and the hy-
drodynamic regimes.

In the present work we develop a theory of Coulomb
drag for an arbitrary relation between the interlayer spac-
ing d and the intralayer equilibration length `. We find
that the crossover from the collisionless, ` � d, to the
collision-dominated (hydrodynamic) regime, `� d, is hi-
erarchical and is characterized by several parametrically
distinct energy scales. Depending on the temperature,
drag is dominated either by particle-hole continuum or
plasmon modes. In addition to reproducing the previ-
ously known ∝ T 2 temperature dependence in the colli-
sionless regime [Eq. (1)], we clarify more subtle linear in
∝ T term briefly discussed in Ref. 27. More importantly,
we identify a new regime in which the drag resistivity is
dominated by plasmons and follows a T 3 temperature de-
pendence. Apart from being relevant to experiments our
work provides a novel approach to Coulomb drag effect,
which is based on the stochastic Boltzmann-Langevin ki-
netic equation.46,47

The paper is organized as follows. In Sec. II we give
a qualitative discussion for the Coulomb drag effect in
the crossover region from collisionless to hydrodynamic
regime. In Sec. III we derive a general formula for the
drag resistivity using the formalism of stochastic kinetic
equation. In Sec. IV we focus on the situation where
the interlayer momentum relaxation rate due to drag
1/τD = ne2ρD/m is smaller than the equilibration rate
of the electron liquid, 1/τ ∼ r2sT 2/EF , when description
of drag greatly simplifies. This situation is realized at
sufficiently large intralayer separations. In this regime
the electron liquid in the layers may be assumed in lo-
cal equilibrium characterized by a drift velocity in each
layer. In order to obtain specific predictions for the tem-
perature dependence of the drag resistivity in Sec. V we
adopt a model collision integral characterized by a single
relaxation rate 1/τ . In Sec. VI we analyze our result in
various temperature regimes and uncover the structure
of the crossover in the temperature dependence of the
drag resistivity. We find that at low temperatures drag
is dominated by the particle-hole continuum, whereas in
the collision-dominated regime of higher temperatures
drag is governed by the plasmon modes. The ratio of
ρD(T )/T 2 is a nonmonotonic function of temperature
which exhibits a broad peak. In Sec. VII we discuss our
findings and compare them with available experimental
results. In our summary we also discuss open questions
and directions for future research related to magnetodrag
phenomena.

II. QUALITATIVE DISCUSSION

Coulomb drag originates from interaction between fluc-
tuations of electron densities in the two layers with spa-
tial scales of the order of the interlayer distance d. At
large interlayer separations, kF d � 1, such fluctuations
involve a large number of particles. To leading order
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in 1/(kF d) the instantaneous electron density at spatial
scales of order d is given by the mean density of the elec-
tron fluid. In this approximation, however, the Coulomb
drag vanishes. The fluctuations of electron density that
result in drag ultimately arise from discrete nature of
charge carriers and at small spatial scales have the char-
acter of “shot noise”. At spatial scales of order d, the
characteristic frequencies and character of propagation
of density fluctuations which govern drag, depend sen-
sitively on the mean free time of the electrons due to
intralayer electron-electron scattering, τ .

If the characteristic frequencies of density fluctuations
responsible to Coulomb drag exceeds 1/τ the influence
of intralayer electron-electron scattering on the dynam-
ics of such fluctuations may be neglected. We refer to
this regime as collisionless. We stress that even in the
collisionless drag regime electron-electron scattering is
essential for establishing the steady state. Only its in-
fluence on the propagation of density fluctuations is neg-
ligible. In the opposite, collision-dominated drag regime
electron-electron collisions play a crucial role not only in
establishing the character of steady state flow but also
in the propagation of density fluctuations responsible for
drag.

In the collisionless regime, the density fluctuations con-
sist of ballistically propagating particle-hole excitations
and of plasmons. The characteristic energy scales asso-
ciated with these two types of density fluctuations are
respectively

Td =
EF
kF d

, ωpl = Td
√
κd. (2)

At T < Td drag is dominated by the particle-hole contin-
uum and follows the quadratic temperature dependence,
Eq. (1). The T 2 scaling can be simply understood from
the phase space argument for the low temperature two-
particle scattering arising from the ∼ T smearing of both
the initial and final states near the Fermi surface. The
power law ∝ d−4 falloff of ρD follows from the screening
properties of the Coulomb potential.

At higher temperatures, T > Td, drag continues to
be dominated by the particle-hole continuum but the
quadratic temperature dependence is replaced by the lin-
ear one, ρD ∝ T/Td,27 because of phase-space limitations
associated with the predominance of small-angle scatter-
ing. The crossover to the collision-dominated regime for
the particle-hole excitations happens at 1/τ ∼ Td. For
Fermi-liquids this occurs at Tc ∼

√
EFTd ∼ ωpl. The

crossover to the collision-dominated regime for plasmons,
1/τ > ωpl, occurs at a much higher temperature scale

Th ∼
√
EFωpl. Above this temperature the electron liq-

uid enters the hydrodynamic regime where the distinc-
tion between the particle-hole continuum and plasmons
is no longer meaningful. Drag resistivity in the hydrody-
namic regime follows44 the 1/T behavior. The crossover
regime

ωpl < T < Th (3)

has not been previously explored. Note that the extrap-
olation of the hydrodynamic result44
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to temperatures T ∼ Th yields a greater drag resistivity
than the extrapolation of the ballistic result to Th by a
parametrically large factor kF d� 1. One concludes then
that fast intralayer equilibration mediated by electron-
electron collisions ultimately renders stronger drag effect.
The detailed comparison of various regimes is given in
Sec. VI.

To get some physical insight into the origin of the ap-
parent mismatch between collisionless and hydrodynamic
answers for the drag resistivity, one should recall that hy-
drodynamic description follows from a more general ki-
netic theory by retaining only zero-modes of the collision
integral. These modes correspond to the conservation
laws of particle number, momentum and energy of the
liquid, and are described by the hydrodynamic equations.
The more general kinetic description captures not only
the hydrodynamic modes but also modes that are relaxed
by electron-electron scattering. Their fluctuations decay
rapidly with the typical rate of inelastic collisions and
govern the crossover regime.

Below we develop a general theory of Coulomb drag in
clean double layers with large interlayer spacing which
is valid in both collisionless and collision-dominated
regimes, and enables us to explore the crossover be-
tween them. The dynamics of density fluctuations can
be described using the generalization of the Boltzmann-
Langevin formalism46,47 to nonideal gases.48 In this ap-
proach one describes the state of the system by a fluctuat-
ing distribution function f = f̄+δf averaged over a phys-
ically microscopic spatial scales (of order d in our case)
containing a large number of particles. Time evolution
is described by the system of equations for the average
distribution function f̄ and the fluctuations δf . The evo-
lution equation for the fluctuating part δf is the Boltz-
mann equation with a fluctuating Langevin source whose
variance is determined by average distribution function f̄ .
The short range part of the Coulomb interaction between
electrons is described by the collision integral whereas its
long range part enters the Boltzmann equation in the
form of an external potential related to the density of
fluctuation by the Poisson equation. The evolution equa-
tion for the average distribution function f̄ also differs
from the standard Boltzmann equation. The difference
arises because in contrast to the assumption of complete
relaxation of correlations that underlies the Boltzmann
equation, only relaxation of short range correlations is
assumed, whereas long scale correlations are taken into
account.48 As a result the evolution equation for the av-
erage distribution function f̄ contains the correlator of
long-range density fluctuations of the distribution func-
tions.
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III. BOLTZMANN-LANGEVIN APPROACH TO
COULOMB DRAG

There are three different computational approaches to
the problem of Coulomb drag (CD) resistivity, which are
based on either Kubo formula,29,30 and closely related
to it memory-function formalism,28,31 or alternatively ki-
netic equation.27,37,38 The latter approach has certain
advantages over the other methods since it allows to ac-
count on equal footing for inter- and intralayer interac-
tions, and in principle can be generalized to nonequilib-
rium situations. It should be noted that previous treat-
ments of the CD problem based on the kinetic equa-
tion27,37,38 had been carried out in the main kinetic ap-
proximation, namely without inclusion of the stochastic
Langevin forces. Furthermore, kinetic equation for the
electron distribution function due to intralayer collisions
has not been solved explicitly. Instead the distribution
function was extracted from the argument of the Galilean
boost in the moving frame with electron liquid and elec-
tron polarization function then was computed for the
bare noninteracting limit. Because of these reasons such
a description does not adequately capture the crossover
to collision-dominated regime. We will show that not
only the nonequilibrium part of the electron distribution
function is important in the calculation of the drag re-
sponse, but there are also corresponding corrections to
the electron polarization function that give rise to con-
tributions to drag resistivity. Moreover, the functional
form of the polarization function is strongly affected by
intralayer collisions, which thus require separate serious
considerations. This physical picture has certain paral-
lels with the problem of nonequilibrium fluctuations and
the shot noise. Indeed, it is known that electron col-
lisions strongly modify the spectral function of current
fluctuations and change the Fano factor.49 Drag may be
interpreted as the rectification effect of nonequilibrium
fluctuations of electron liquid50 so that one naturally ex-
pects that equilibration processes play a prominent role
for this phenomenon. This observation suggests to use
Boltzmann-Langevin kinetic theory, which was extremely
fruitful in the context of shot noise problem, in applica-
tion to the drag effect.

A. Boltzmann-Langevin kinetic equation

We consider a Coulomb drag double-layer setup where
the active drive-layer is driven out of equilibrium by an
applied bias while the induced response is measured in
the other passive drag-layer. We describe the state of
the electron liquid within each of the layers labeled by
an index ı =↑, ↓ by the respective distribution functions
f ı = f̄ ı + δf ı, where f̄ ı is the time average distribu-
tion function and δf ı is its fluctuating part. The general
Boltzmann-Langevin (BL) kinetic equation is47

[∂t + v ·∇− e(Eı −∇φı)∂p]f ı = St{f ı}+ δJ ı. (5)

The right hand side of this equation describes the flux
of particles into a given phase space point due to col-
lisions. The average flux is described by the colli-
sion integral St{f ı}. Stochastic nature of collisions
causes fluctuations in the probability flux, which are de-
scribed by the extraneous source δJ ı. The second-order
correlation function of the extraneous sources is local,
〈δJ(p, r, t)δJ(p′, r′, t′)〉 ∝ δ(t− t′)δ(r− r′), reflecting lo-
cality of collisions, and has been evaluated by Kogan and
Shulman47 for various types of scattering processes. Its
specific form depends on the form of the collision integral
and can be found in Refs. 47 and 49.

The fluctuating electric potentials φı in Eq. (5) are
related to the distribution functions in both layers by
the Poisson equation

φıω,q = −2πe

εq

∫
dΓp[δf

ı
ω,q(p) + e−qdδf−ıω,q(p)], (6)

where dΓ = 2d2p/(2π)2 denotes the density of states in
two-dimensional momentum space with the factor of two
accounting for the spin. In addition, in Eq. (6) we also
used the Fourier representation, denoted the interlayer
distance by d and q = |q|. Isolating the fluctuating part
of Eq. (5) we obtain in the Fourier representation

(−iω+ivq−eEı∂p)δf ıω,q+ieqφıω,q∂pf̄
ı=δSt{f ı}+δJ ıω,q

(7)
where δSt{f ı} is the fluctuating part of the collision inte-
gral. To leading order in the fluctuations the latter may
be obtained by expanding the collision integral to the lin-
ear order in δf ı around f̄ ı. For the average part of the
distribution function we get from Eq. (5)

−eEı∂pf̄ ı + e〈∇φı∂pδf
ı〉 = St{f̄ ı} (8)

where angular brackets 〈· · · 〉 denote averaging over the
fluctuations.

Equations (6), (7) and (8) supplemented by the expres-
sion for the variance of the Langevin fluxes δJ ı in terms
of the average distribution function f̄ ı constitute a closed
system describing the fluctuations and Coulomb drag in
the double layer setup. Drag resistivity ρD = E↑/j↓ is
defined as the ratio between the electric field generated
in the drag layer in response to the current flow in the
drive layer.

At this point we briefly outline the program of calcu-
lations that will lead us to the general expression for ρD.
First, we need to find the Green’s function of the Boltz-
mann equation (7). Next we will use the Boltzmann-
Langevin scheme to evaluate the density-density correla-
tions and consequently the dragging force. To perform
averaging over the stochastic fluxes we will assume that
correlators of Langevin sources have equilibrium form in
each layer, one moving and one at rest, thus employing
fluctuation-dissipation relation in the boosted reference
frame.
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B. Drag force

Using the general approach summarized above, the
drag resistivity may be determined by solving for the
nonequilibrium electron distribution function that arises
in response to a driving (staggered in the layer index)
electric field and evaluating the resulting staggered cur-
rent. Alternatively, it may be advantageous to evaluate
the interlayer momentum transfer rate (drag force) for
a given nonequilibrium distribution of electrons. In the
present section we derive a general expression for the drag
force in terms of the electron distribution function in the
layers. In Sec. IV we use this expression to evaluate drag
resistivity at large interlayer separations.

A formal solution of Eq. (7) may be written in the form

δf ıω,q = K̂ı
ω,q(−ieqφıω,q∂pf̄ ı + δJ ıω,q), (9)

where(
K̂ı
ω,q

)−1
δf ıω,q = (−iω + ivq− eEı∂p)δf ıω,q − δSt{f ı}

(10)
is the resolvent of the Boltzmann equation. We note
that if the stationary distribution function f̄ ı does not
correspond to equilibrium, the linearized collision inte-
gral does not generally have zero modes. However, if
deviations from equilibrium are small some of the eigen-
values of the linearized collision integral are expected to
be anomalously small, the latter correspond to hydrody-
namic modes. We also note that the source in the right
hand side of above equation is localized in phase space
in the vicinity of the Fermi surface.

Multiplying Eq. (8) by p and integrating by parts we
obtain

eEın̄ı = e〈∇φıδnı〉 (11)

where we used conservation of momentum in collisions∫
dΓpSt{f̄} and introduced the average density n̄ı =∫
dΓf̄ ı in layer-ı and its fluctuations δnı =

∫
dΓδf ı.

Using the Poisson equation (6) we can reduce Eq. (11)
to

eEın̄ı = −2πe2
∑
q,ω

iqe−qd

εq

(
δ~n⊗ δ~nT

)ı,−ı
ω,q

. (12)

Here we wrote density fluctuations in the two layers in
the form of a column vector and introduced the spectra
power of density fluctuations in the standard way

〈δ~nω,q⊗δ~nTω′,q′〉 = (2π)3δ(ω+ω′)δ(q+q′)
(
δ~n⊗ δ~nT

)
ω,q

(13)
Summation over the frequency and momenta implies∑
q,ω =

∫
dω
2π

∫
dΓq. Changing the variables (ω,q) →

(−ω,−q) under the integral we can rewrite the drag force
as

eEın̄ı = −πe2
∑
q,ω

qe−qd

εq
Tr
[
σ̂y
(
δ~n⊗ δ~nT

)
ω,q

]
(14)

where we denote the Pauli matrices in the layer space by
σ̂. From Eq. (9) we get

δnıω,q = δnı,extω,q − eφıω,qΠı
ω,q. (15)

Here δnı,extω,q denotes the extrinsic density fluctuations
that would be induced by Langevin sources in the Fermi
gas in the absence of long-range Coulomb interactions

δnı,extω,q =

∫
dΓpdΓkK

ı
ω,q(p,k)δJ ıω,q(k). (16)

The polarization operator function

Πı
ω,q =

∫
dΓpdΓkK

ı
ω,q(p,k)iq∂pf̄

ı (17)

describes the response to a fluctuating potential in a
nonequilibrium steady state f̄ ı(p) and also in the pres-
ence of the electric field Eı. We can rewrite Eq. (15) in
the form

(1̂− Π̂ω,qV̂q)δ~nω,q = δ~nextω,q (18)

where matrices (in the layer index) of polarization oper-
ator and interaction potential are denoted as follows

Π̂ω,q = δıı′Π
ı
ω,q, V̂q =

2πe2

εq

(
1 e−qd

e−qd 1

)
. (19)

From the last two equations we read off the power spec-
trum of density fluctuations in the form

(δ~n⊗ δ~nT )ω,q =

(1− Π̂ω,qV̂q)
−1N̂ω,q(1− V̂qΠ̂−ω,−q)−1, (20)

where N̂ω,q = (δ~next ⊗ δ~next,T )ω,q. Substituting this ex-
pression into the trace in Eq. (14) we get

Tr
[
σ̂y
(
δ~n⊗ δ~nT

)
ω,q

]
= Tr

[
V̂ −1q σ̂yV̂

−1
q

(V̂ −1q − Π̂ω,q)
−1N̂ω,q(V̂

−1
q − Π̂−ω,−q)

−1
]
. (21)

By employing Eq. (19) we notice that

V̂ −1q σ̂yV̂
−1
q =

( εq

2πe2

)2 σ̂y
1− e−2qd

(22)

and therefore the formula for the dragging force reduces
to

eEin̄i = − πe2

2εκ2

∑
q,ω

q2eq
sinh(qd)

Tr

[
σ̂y

( q
κ
v̂−1q − P̂ω,q

)−1
N̂ω,q

( q
κ
v̂−1q − P̂−ω,−q

)−1]
(23)

where eq is the unit vector in the direction of q. Here
we also introduced the dimensionless interaction matrix
v̂q = (εq/2πe2)V̂q, dimensionless polarization operator

P̂ = ν−1Π̂, where ν is the single particle density of
states, and the inverse Thomas-Fermi screening radius
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κ = 2πνe2/ε. Above equation expresses the drag force in
terms of the density response functions in each layer, and
the correlator of extrinsic density fluctuations. We note
here that the latter in general can not be reduced to a
density response function. In equilibrium N̂ω,q and P̂ω,q
are proportional to unity matrix, and the interaction ma-
trix v̂q has only σ̂0 and σ̂x components. As a consequence
the trace in the integrand of Eq. (23) vanishes resulting
in zero drag force as it should be.

For the further convenience with the intermediate steps
of calculation we introduce following matrices

P̂ =
qeqd

2κ sinh(qd)
σ̂0 − P̂ω,q, (24a)

P̂∗ =
qeqd

2κ sinh(qd)
σ̂0 − P̂−ω,−q, (24b)

V̂ =
q

2κ sinh(qd)
σ̂x. (24c)

We remind that polarization operator matrix is diago-
nal in the layer index, however it is proportional to σ̂0
only for the case of identical layers. We will assume this
case for the simplicity of further considerations and will
provide necessary generalization for the case of unequal
layers at the end of this section. With these new nota-

tions we observe that
(
q
κ v̂
−1
q − P̂ω,q

)−1
= (P̂ −V̂)−1 and(

q
κ v̂
−1
q − P̂−ω,−q

)−1
= (P̂∗ − V̂)−1. Next, let us denote

nonequilibrium corrections to various quantities by ∆ so
that to the linear order in those we get from (23)

eEin̄i = − πe2

2εκ2

∑
q,ω

q2eq
sinh(qd)

Tr
[
(P̂∗ − V̂)−1σ̂y(P̂ − V̂)−1

{
∆N̂ω,q −∆P̂(P̂ − V̂)−1N̂ω,q − N̂ω,q(P̂∗ − V̂)−1∆P̂∗

}]
.

(25)

This equation constitutes the essential result of this sec-
tion. It relates the driving electric field to the polariza-
tion operators of the individual layers and the correlators
of Langevin fluxes in them. The latter are determined by
nonequilibrium distribution functions, which are in turn
determined by the driving electric field via the system of
equations (6)–(8). Further calculations of drag require
explicit forms of the nonequilibrium corrections to the
polarization function and the correlator of the Langevin
fluxes. Determination of the nonequilibrium distrubution
function in the general situation is a very difficult prob-
lem. The situation simplifies dramatically when the rate
of momentum transfer between the layers due to drag is
smaller than the equilibration rate of the electron liquid
due to intralayer electron-electron scattering. This is al-
ways the case when the layers are sufficiently far apart.
In this situation the nonequilibrium state of the system
may be characterized by two hydrodynamic velocities in
each layer, and deviation from true thermal equilibrium
is characterized by the difference between the layer ve-
locities.

IV. DRAG AT FAST INTRALAYER
EQUILIBRATION

Drag resistivity may be characterized by the relaxation
rate 1/τD = ρDne

2/m of the staggered momentum.27,28

At large interlayer separations this rate is significantly
smaller than the intralayer equilibration rate of the elec-
tron fluid, 1/τ , τ−1 � ρDne

2/m. Under this condition
the electron distribution function in each layer is well ap-
proximated by the equilibrium distribution with the drift

velocity ±u/2 corresponding to the current density in the
layer. In this case we can obtain the nonequilibrium parts
of various quantities by applying Galilean boost, namely

∆P̂ω,q =
qu

2
σ̂z∂ωPω,q, ∆B̂ω,q =

qu

2
σ̂z∂ωBω, (26)

where B̂ω,q is the matrix distribution function of collec-
tive bosonic excitations, which at equilibrium is given by
Bω = coth(ω/2T ). Since by the fluctuation-dissipation
theorem

N̂ω,q = − i
2
ν
[
P̂ω,q − P̂−ω,−q

]
B̂ω,q, (27)

we readily find in the notations of Eq. (24a)

∆N̂ω,q =
iν

2

[
(∆P̂ −∆P̂∗)B + (P̂ − P̂∗)∆B̂

]
. (28)

Using this result in Eq. (25) and after some matrix alge-
bra we can rewrite the trace as a sum of two contributions

eEin̄i =
iπνe2

4εκ2

∑
q,ω

q2eq
sinh(qd)

[T1 + T2], (29a)

T1 = BωTr
[
σ̂y[∆(P̂ − V̂)−1 −∆(P̂∗ − V̂)−1]

]
, (29b)

T2 =−qu

2
∂ωBωTr

[
σ̂y(P̂ − V̂)−1(P̂ − P̂∗)σ̂z(P̂∗ − V̂)−1

]
.

(29c)
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It is easy to see that the variations ∆(P̂ − V̂)−1 and

∆(P̂∗−V̂)−1 contain only matrices σ̂0, σ̂x and σ̂z. There-
fore the trace of their product with σ̂y must vanish iden-
tically T1 = 0. The second trace does not vanish because
of the explicit presence of the σ̂z matrix arising from the
staggered boost in the layers. Indeed, after cyclic permu-
tation of matrices under the trace we observe that

(P̂∗ − V̂)−1σ̂y(P̂ − V̂)−1 =

σ̂y(|P|2 − V2) + iσ̂zV(P − P∗)
|P − V|2|P + V|2

, (30)

where in accordance with Eqs. (24a) and (24c) we wrote

P̂ = Pσ̂0 and V̂ = Vσ̂x with P = Veqd − P . As the con-
sequence of above equality, we find for the nonvanishing
contribution to the trace in the formula for the drag force

T2 =
i(qu)

2T sinh2(ω/2T )

V(P − P∗)2

|P − V|2|P + V|2
. (31)

At this point we are prepared to find the drag resistivity.
Since averaging over the fluctuations has been performed,
all the quantities appearing in the expression for the drag
force should be understood as being equilibrium averages.
In particular, to simplify notations in what follows we re-
label time average density n̄→ n with the understanding
that n is the equilibrium density of carries in quantum
wells.

We collect all the factors in Eqs. (29) and (31), notice
that upon angular averaging over the momentum transfer
〈eq(equ)〉q = u/2, and thus obtain for the drag resistiv-
ity ρD = E/enu following result

ρD
ρQ

=
1

8πTn2

∑
q,ω

q2V2

sinh2(ω/2T )

(ImP)2

|P − V|2|P + V|2
. (32)

This expression can be brought to a more familiar form
by observing that ImP = −ImP and consequently

V(P − P∗)2

|P − V|2|P + V|2
=
κ3

q3
(1− e−2qd)e−qd(P − P ∗)2

|E+E−|2

= − κ

4q
e−qdIm

(
1

E+

)
Im

(
1

E−

)
, (33)

where in a usual way we introduced the dielectric func-
tions corresponding to the symmetric and antisymmetric
density modes

E±(ω, q) = 1− κ

q
(1± e−qd)Pω,q. (34)

As a result Eq. (32) can be equivalently rewritten as

ρD
ρQ

=
1

256πTn2

∑
q,ω

q2e−qdIm(E−1+ )Im(E−1− )

sinh2(ω/2T ) sinh(qd)
. (35)

It is instructive to make several comments in regards
to Eq. (32). (i) If one neglects the plasmon resonances
in the denominator of Eq. (32), then one finds that drag

is simply proportional to (ImP )2, which is standard for-
mula that applies to the contribution of the particle-hole
continuum. (ii) In general, full expression (33) gives com-
plete formula that accounts for plasma resonance of the
two dielectric functions. As it will be explained later,
plasma modes govern drag resistivity in the collision-
dominated transport regime. (iii) In the case of non-
identical layers Eq. (32) should be generalized as fol-
lows: in the numerator one should replace Im(P)2 →
ImP↑ImP↓ and V2 → V↑V↓, while in the denominator
n2 → n↑n↓ and |P −V|2|P+V|2 → |Det(P̂ − V̂)|2, where
determinant can no longer be simply factorized as a prod-
uct of two independent terms for each of the layers. In
our analysis we concentrate on the case of symmetric
layers. Even though the analytical calculations are still
doable for the general nonsymmetric case, obtained re-
sults for the drag resistivity become quite cumbersome
and do not bring any new physics insight concerning the
temperature dependence of the transresistivity.

V. RELAXATION TIME APPROXIMATION

When analyzing temperature dependence of the drag
resistivity from Eq. (32) we must discuss analytical struc-
ture of the polarization function Pω,q in (ω, q)-plane. In
most of the previous studies this function was calcu-
lated for the bare noninteracting limit with respect to in-
tralayer electron-electron collisions. This approximation
is only sufficient to describe low-temperature collisionless
regime where drag is dominated by the particle-hole con-
tinuum. Finite intralayer equilibration length ` changes
Pω,q in a significant way which becomes quantitatively
important for drag already at moderately high tempera-
tures T > vF /d. Technically, finite ` makes ImPω,q 6= 0
at the high frequency limit, ω > vF q, where conven-
tional collisionless result yields vanishing spectral weight
of particle-hole excitations. Consequently, as a result of
equilibration processes, plasmon poles lie within the high
frequency tail of particle-hole continuum of states and
yield important contribution to drag resistivity. This
mechanism becomes progressively stronger as tempera-
ture gets higher, with thus shorter equilibration length,
and eventually plasmon modes take over and dominate
the Coulomb drag. These points will be explicitly illus-
trated by the subsequent calculation, while we turn our
attention now to the derivation of Pω,q at finite `.

We treat the intralayer collision integral in the relax-
ation time approximation

St{f} = −1

τ
(δf − fh). (36)

We assume that τ is dominated by electron-electron in-
teractions, so that τ−1 ∝ T 2. Importantly, Fermi liq-
uid like quadratic temperature dependence of the relax-
ation time has been experimentally confirmed even in the
regime of correlated electrons with thus strong interac-
tions rs � 1.51 In Eq. (36) fh stands for the hydrody-
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namic part of the nonequilibrium distribution, which has
locally equilibrium form

fh = −
[
δµ+m(u · v) +

δT (ε− µ)

T

]
∂εf0 (37)

where f0 = [e(ε−µ)/T + 1]−1 is the Fermi distribution.
The Lagrange multipliers δµ, u and δT have the mean-
ing of the local change in, respectively, the chemical po-
tential, hydrodynamic velocity, and temperature. Their
values are found from the conditions that the collision
integral (36) conserves the particle number, momentum
and energy:∫

dΓδf = −δµ
∫
dΓ∂εf0 = νδµ, (38a)

∫
dΓpδf = −

∫
dΓp(p · u)∂εf0 = mnu, (38b)

∫
dΓ(ε− µ)δf = −δT

T

∫
dΓ(ε− µ)2∂εf0 =

π2

3
νTδT,

(38c)
with ν = ∂µn being density of states. With the collision
integral in the form of Eq. (36) the solution for the lin-
earized Boltzmann-Langevin kinetic equation (7) can be
presented in the form

δfω,q =
1

1− iωτ + iτqv

(
τδJω,q − ∂εf0 ×[

ieτφq,ωqv + δµω,q +mvuω,q +
(ε− µ)δTω,q

T

])
(39)

where we suppressed the layer index-ı for brevity and
used Fourier representation. We substitute above expres-
sion into the integral constraints of Eqs. (38). It is con-
venient to separate the integration over the phase space
dΓ into the integration over the energy and the angular
averaging over the Fermi surface, 〈. . .〉. The latter can
be performed with the aid of the following relations〈

1

1− iωτ + iτqv

〉
=

1

Dω,q
, (40a)〈

v

1− iωτ + iτqv

〉
=− iq

q2τ

(
1− 1− iωτ

Dω,q

)
, (40b)〈

vivj
1− iωτ + iτqv

〉
=(Lω,q−Mω,q)

qiqj
q2

+Mω,qδij , (40c)

where we introduced the following dimensionless quanti-
ties

Dω,q =
√

(1− iωτ)2 + q2v2τ2, (41a)

Lω,q =
1− iωτ
q2τ2

[1− (1− iωτ)/Dω,q] (41b)

Mω,q =
1

q2τ2
(Dω,q − 1 + iωτ). (41c)

When performing integration in dΓ over the absolute
value of v we make use of the advantage that in the de-
generate electron liquid all integrals are dominated by
momenta near the Fermi surface. As a result, we ob-
tain a closed system of linear algebraic equations for the
Fourier components of Lagrange multipliers

ν

(
1− 1

Dω,q

)
δµω,q + iν

(
1− 1− iωτ

Dω,q

)
mquω,q
q2τ

=

eνφω,q

(
1− 1− iωτ

Dω,q

)
+

∫
τδJω,qdΓ

1− iωτ + iτqv
, (42)

ν

(
1− 1− iωτ

Dω,q

)
δµω,q − iτ(n− νmLω,q)quω,q =

eντ2q2φω,qLω,q −
∫

iτ2vqδJω,qdΓ

1− iωτ + iτqv
, (43)

π2

3
νT

(
1− 1

Dω,q

)
δTω,q =

∫
τ(ε− µ)δJω,qdΓ

1− iωτ + iτqv
, (44)

where Dω,q and Lω,q are obtained from Dω,q and Lω,q
with the replacement of v by the Fermi velocity v → vF .
It is interesting to observe that fluctuations of tempera-
ture decouple from the fluctuations of the density and
drift velocity. Since our goal is to get the polariza-
tion function for the density fluctuations we only need
the first two of the above equations. Notice that the
latter are also consistent with the continuity equation
−iωδnω,q + inquω,q = 0. By excluding uω,q in favor of
δnω,q = νδµω,q from the above system we can cast equa-
tion for the density fluctuations in the form of Eq. (15)
and consequently read off the polarization operator

Pω,q=−
(
ω + i

τ

)
−
√(

ω + i
τ

)2 − q2v2F[
1 + 2iω

q2v2F τ

][(
ω + i

τ

)
−
√(

ω + i
τ

)2 − q2v2F]− ω .
(45)

This important result together with Eq. (32) enables us
to study temperature dependence of the drag resistiv-
ity in various transport regimes, which is our immediate
goal.

VI. DRAG RESISTIVITY

We have determined that there are three distinct tem-
perature scales, and consequently four separate regions,
where Coulomb drag resistivity exhibits qualitatively dif-
ferent behavior. At lowest temperatures equilibration
length is very large ` = vF τ � d, electron kinetics is
essentially collisionless, and drag is dominated by the
particle-hole excitations with characteristic wave vectors
q ∼ d−1 and frequencies ω ∼ T . Since the spectral
edge of the particle-hole excitations is set by the line
ω = vF q this introduces characteristic crossover temper-
ature Td ∼ EF /kF d [see Eq. (2)].

As temperature increases, equilibration length gets
shorter and may become comparable to the interlayer
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spacing, ` ∼ d, which happens at the characteristic tem-
perature

Tc ∼ EF
√
kF /κ2d. (46)

This scale signifies beginning of the collision-dominate
transport regime. The remaining scale is deduced from
the condition when equilibration rate τ−1 becomes com-
parable to the energy scale of plasmon modes ωpl ∼
vF
√
κq at characteristic for the drag wave vector q ∼ d−1.

This yields temperature scale

Th ∼ EF
√
kF /κ

4
√

1/κd (47)

above which hydrodynamic transport regime sets in. Our
goal is to describe the crossover in the temperature de-
pendence of drag resistivity throughout the entire range
of hierarchical scales Td < Tc < Th. Before we pro-
ceed with task it will be convenient to introduce sev-
eral dimensionless variables and parameters. We will be
measuring momenta q and frequencies ω in units d−1

and Td = vF /d respectively, thus introducing x = qd
and w = ω/Td. We also introduce dimensionless equi-
libration length l = vF τ/d, and dimensionless frequen-
cies w2

s(a) = κd
2 x(1±e−x) for symmetric (antisymmetric)

plasmon modes. In these notations equation (32) can be
rewritten in manifestly dimensionless form

ρD
ρQ

=
Td

32πT

1

(nd2)2(κd)2

∑
x,w

x4

sinh2(x) sinh2(wTd/2T )

×
Im(P−1w,x)2∣∣∣ x2

2w2
s
P−1w,x − 1

∣∣∣2 ∣∣∣ x2

2w2
a
P−1w,x − 1

∣∣∣2 . (48)

We need to explore now various asymptotic limits of this
formula.

A. Collisionless regime T < Tc

In the low temperature limit drag resistivity is domi-
nated by the low-energy excitations since plasmon poles
are much higher in energy. Indeed, for typical x . 1 we
have ws(a) � 1 while integral in Eq. (48) is dominated
by frequencies w � ws(a), so that we can replace the
denominator in the second line of Eq. (48) to unity and
obtain a simplified expression

ρphD
ρQ

=
Td

32πT

1

(nd2)2(κd)2

∑
x,w

x4(ImP−1w,x)2

sinh2(x) sinh2(wTd/2T )
.

(49)

In the current notation with the superscript-ph in ρphD we
want to emphasize that this contribution originates from
particle-hole modes to distinguish it from contributions

due to plasmons ρplD that will be discussed below.
For T � Tc equilibration length is l � 1, and polar-

ization operator in Eq. (49) can be taken in the main

approximation. From Eq. (45) we find in the dimension-
less variables

Pw,x = 1− w√
w2 − x2

. (50)

For this temperature regime, keeping correction terms to
Pw,x in powers of 1/l will result only in subleading correc-
tions to drag resistivity in Eq. (49) in a small parameter
T/EF � 1. At lowest temperatures, T < Td, frequency
integration in Eq. (49) is dominated by the range where
w � x, so that it is sufficient to take Im(P−1w,x) ≈ w/x
and thus obtain

ρphD
ρQ

=
πζ(3)

16

1

(kF d)2(κd)2
T 2

E2
F

, (51)

which is well known result.4,27–30

At the higher temperatures, T > Td, we can approxi-
mate sinh2(wTd/2T ) ≈ (wTd/2T )2, however we need now
full expression for Pw,x from Eq. (50) since leading contri-
bution to integrals comes from w ∼ x. As a result, drag
resistivity crosses over to the linear temperature depen-
dence

ρphD
ρQ

=
π3

360

1

(kF d)3(κd)2
T

EF
. (52)

It is worthwhile emphasizing that dependence on the in-
terlayer separation changes as well from being propor-
tional d−4 to d−5.

In order to account for the contribution from plasmon
resonances to drag resistivity in this temperature regime
we need more accurate expression for the polarization
function in the high frequency limit. Expanding Eq. (45)
under the assumption that x/(w + i/l)� 1 one finds

P−1w,x =
2w2

x2
−
(

1 +
w

2(w + i/l)

)
. (53)

This expression allows one to approximate resonant de-
nominators in Eq. (48) by plasmon poles∣∣∣∣ x22w2

α

P−1w,x − 1

∣∣∣∣−2≈ w4
α

[(w − wα)2 + γ2α][(w + wα)2 + γ2α]
(54)

where we have introduced plasmon damping rates

γα =
x2

8

l

1 + (wαl)2
, α = s, a. (55)

The expression (55) is based on the relaxation time
approximation and describes the plasmon attenuation
rate in the entire crossover between the hydrodynamic
(wαl � 1) and collisionless (wαl � 1) regimes. In the
collisionless regime it is consistent with the results of the
microscopic treatment of plasmon attenuation rates in
Ref. 52.
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For T � Tc the plasmon contribution to ρD in Eq. (48)
is dominated by the pole at the frequency of the antisym-
metric plasmon. Using Eqs. (53) and (54) in Eq. (48)

ρplD
ρQ

=
Td

128πT

1

(nd2)2(κd)2

∑
x,w

x4

sinh2(x) sinh2(wTd/2T )

(wl)2

[1 + (wl)2]2
w4
a

[(w − wa)2 + γ2a][(w + wa)2 + γ2a]
.(56)

Integration over the frequency here is straightforward
since poles near ±wa are narrow and each Lorentzian
function is effectively a delta-function with the weight
π/γa. The remaining x-integration is dominated by the
range where x . 1 where one can approximate w2

a = κdx2

and find as a result

ρplD
ρQ

=
3ζ(3)

16

1

k2Fκd
3

(
T

EF

)5

. (57)

This contribution is obviously smaller than that given by
Eq. (52) in the same range of temperatures. We con-
sidered this term here in such details not only for com-
pleteness of our analysis. It will be shown in the next
subsection that Eq. (57) will crossover into new power-
law behavior of the drag resistivity that will overcome
respective contribution of the particle-hole continuum.

B. Collision-dominated regime T > Tc

We proceed to consider the intermediate and high tem-
perature intervals. In this case the particle-hole contin-
uum and the plasmon contributions are described by well
separated peaks in the integrand of Eq. (32) and can be
considered separately.

The particle-hole contribution is dominated by the fre-
quency range where w > x so that we need to use Eq. (53)
for the polarization operator. Furthermore, we may also
approximate sinh(wTd/2T ) ≈ wTd/2T and set plasmon
denominators in Eq. (32) to unity, which thus yields

ρphD
ρQ

=
T

32πTd

1

(nd2)2(κd)2

∑
w,x

x4

sinh2(x)

l2

[1 + (wl)2]2
.

(58)
The remaining momentum and frequency integrations
are elementary here and one finds

ρphD
ρQ

=
3ζ(3)

16

1

(kF d)2(κd)4
EF
T
. (59)

It is easy to check that at T ∼ Tc this result matches
with Eq. (52), and at the same time it shows that the
contribution of the particle-hole excitations to the drag
resistivity becomes a decreasing function of temperature
in the collision-dominated regime.

The situation with plasmon contributions is different.
Accounting for both symmetric and antisymmetric plas-
mon resonances, and using Eqs. (53) and (54), we obtain

from Eq. (32)

ρplD
ρD

=
T

32πTd

1

(nd2)2(κd)2

∑
w,x

x2

sinh2(x)

l2

[1 + (wl)2]2

×
∏
α=a,s

w4
α

[(w − wα)2 + γ2α][(w + wα)2 + γ2α]
. (60)

Frequency integration in this formula can be done ex-
actly, however it leads to extremely cumbersome expres-
sion. Much more useful result can be obtained by ex-
ploring following simplifying observation. The relevant
wavenumbers for the integrand function in the above
expression are logarithmically large x ∼ ln(κd/l2). In
this case the frequencies of the symmetric and antisym-
metric plasmons nearly coincide, and consequently their
dumping rates becomes almost identical. Thus one can
justify to replace γα → γ = (x2l/8)[1 + κdl2x/2]−1

and also l2[1 + (wl)2]−2 → (8γ/x2)2. We integrate
over w by leading poles and make use of the follow-
ing algebraic identities: (wswa)2 = 1

2 (κdx)2e−x sinh(x),

(ws±wa)2 = κdx(1±
√

1− e−2x), w2
a+w2

s = κdx, which
leads us to the following intermediate result

ρplD
ρD

=
T

32πTd

l

(nd2)2(κd)

∑
x

x3ex

sinh(x)

1

1 + κdl2x/2

×

[
1 +

x3e2xl2(1 +
√

1− e−2x)

64κd(1 + κdl2x/2)2

]−1
. (61)

It is useful to observe at this point that κdl2 ∼ (Th/T )4

so that the remaining integral can be estimated for two
asymptotic regions. At the range of intermediate tem-
peratures Tc � T � Th we estimate

ρplD
ρQ
∼ 1

(kF d)4
T 3

E3
F

, (62)

whereas in the hydrodynamic regime of high tempera-
tures T � Th we estimate with logarithmic accuracy

ρplD
ρQ
∼ 1

(kF d)2(κd)3
EF
T

(63)

in agreement with Ref. 44 [see comment in Ref. 53]. We
can check that the low-temperature plasmon contribu-
tion (57) matches with Eq. (62) at the expected crossover
scale T ∼ Tc, while Eqs. (62) and (63) are of the same
order at T ∼ Th where drag resistivity reaches its abso-
lute maximum. It is instructive to compare particle-hole
[Eq. (59)] and plasmon [Eq. (62)] contributions to drag
resistivity in the collision dominated regime. In partic-
ular at T ∼ Th one easily finds that plasmons dominate

by a parametrically large factor ρplD/ρ
ph
D ∼ κd� 1.

VII. DISCUSSION

We have developed a general computational scheme
to describe nonlocal transport in interactively coupled



11

T2 

T 

T3 1/T 
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ρ1 

FIG. 1. Schematic illustration for the temperature depen-
dence of the drag resistivity in various regimes. The four inter-
vals from low to high temperatures are described by Eqs. (51),
(52), (62), and (63) respectively. At the crossover scales Td

and Tc the estimated magnitude of drag resistivity is ρ1/ρQ ∼
1/(kF d)4(κd)2 and ρ2/ρQ ∼

√
kF /κ2d/(kF d)3(κd)2, while

the maximum value of drag ρmax is estimated in Eq. (65).

double-layer systems. As an alternative route to exist-
ing formulations, our approach is based on the stochas-
tic Boltzmann-Langevin kinetic theory. Using this ap-
proach we reproduced the known results for the drag re-
sistivity of clean double layers in the low-temperature
regime and studied the previously unexplored collision-
dominated transport regimes. Our main analytical result
is Eq. (35) for the drag resistivity, which is expressed in
terms of the momentum and frequency dependent dielec-
tric function of individual layers. This expression has
some parallels with the Lifshitz theory of Van der Waals
forces.54 It holds as long as the intralayer equilibration
rate is faster than the interlayer momentum relaxation
rate. Note that this assumption is valid at large inter-
layer distances, kF d � 1. Under these conditions the
electron distribution in the driven system is given by
the locally equilibrium distribution function in each layer
and is characterized by the corresponding drift velocity.
The correlators of Langevin forces driving the density
fluctuations can then be extracted from the fluctuation-
dissipation theorem. Under more complicated nonequi-
librium conditions drag should be computed from the
more general Eq. (25) while distribution function and
Langevin forces should be found by solving correspond-
ing kinetic problem. It is worth stressing that the charac-
teristic time scale for electron-electron scattering τee can
be significantly shorter than that for the impurity, τim, or
phonon, τph, scattering. For example, for relatively clean
GaAs quantum wells at the doping level ∼ 1011cm−2 and
at temperatures ∼ 10K electron-electron scattering time
is estimated to be τee ∼ 10−11s whereas τim and τph are
typically of order the order of ∼ 10−9s. The relation
τee � {τim, τph} justifies applicability of our result for
drag resistivity (35).

The general expression (35) applies not only to Fermi

liquids but also to classical and semi-quantum strongly
correlated liquids. To make further progress we focused
on the Fermi-liquid regime. To obtain concrete expres-
sions for the drag resistivity we treated electron-electron
collisions in the relaxation time approximation. As a
result we expressed the drag resistivity in term of the
single relaxation rate, 1/τee ∝ T 2/EF . We found that
there are four distinct temperature regimes where drag
exhibits qualitatively different behavior and is governed
by different types of density fluctuations - quasiparticles
and plasmons. The main findings of our work are summa-
rized in Fig. (1), which schematically illustrates temper-
ature dependences of the drag resistivity in the various
transport regimes.

At low temperatures, T < Tc (see Eq. (2)) drag is
dominated by the continuum of quasiparticle excitations
with collisionless dynamics. Within that temperature do-
main ρD crosses over from being quadratic in T below Td
to a linear dependence in T above Td. Analytical ex-
pressions for these regimes are given by Eqs. (51) and
(52) respectively. Interestingly, it has been know from
the early measurements that ρD/T

2 ceases to be mono-
tonic function of temperature already at low tempera-
tures. Indeed, it has been pointed out in Ref. 4 that
the ratio ρD/T

2 displays a noticeable falloff above cer-
tain crossover temperature. Furthermore, it has been
pointed out that the ratio d4ρD/T

2 appreciably depends
on d above that temperature, and that crossover scale
itself shifts to lower temperatures for the larger inter-
layer separations. All these features are accounted for by
our results for particle-hole contributions to drag with
the identification that expected crossover takes place at
T ∼ EF /(kF d).

The collision-dominated regime for quasiparticle dy-
namics sets in at T > Tc. In this regime Coulomb drag
is dominated by the plasmon contribution. The temper-
ature dependence of this contribution is very sensitive
to the plasmon attenuation rate. In the relaxation time
approximation the latter is given by Eq. (55), which is
consistent with the result of a microscopic calculation of
Ref. 52. It is worth noting that in a wide temperature
interval Tc < T < Th [see Eqs. (46) and (47) ] the fre-
quency of the plasmon modes contributing to drag, ωpl in
Eq. (2), still exceeds the rate of electron collisions, so that
their hydrodynamic treatment is inapplicable. In this in-
termediate regime drag resistivity is ∝ T 3, [see Eq. (62)].
At T > Th the rate of equilibration exceeds ωpl. In this
regime drag can be treated using the hydrodynamic ap-
proach44 and follows the 1/T temperature dependence
[see Eq. (63)]. In the entire range drag may be repre-
sented by the interpolation formula

ρD
ρQ
∼ 1

c1(kF d)2(κd)3T/EF + c2(kF d)4E3
F /T

3
, (64)

with numerical coefficients of the order of unity c1 ∼ c2 ∼
1. This expression allows us to estimate the maximum
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value of drag resistivity

ρmaxD

ρQ
∼
√
κ/kF

4
√
κd

(κd)3(kF d)2
. (65)

We note that in the measurements of Refs. 39 and 40 in
the low density strongly-correlated samples revealed that
within broad experimentally probed temperature regime
ρD ∝ TαT /dαd where power-exponents vary in the range
1 < αT < 3 and 2 < αd < 5. Perhaps even more im-
portantly the observed magnitude of the drag resistivity
was one to two orders of magnitude larger than expected
on the basis of a simple extrapolation of the small rs re-
sults. Such manifestly nonquadratic temperature depen-
dence of the drag resistance combined with unexpected
magnitude of the effect was attributed in the literature
to a possible non-Fermi liquid behavior of strongly cor-
related liquids. In contrast, our conclusions are different.
We have found that fast equilibration promotes stronger
drag effect and at the same time is responsible for non-
monotonic temperature dependence of drag, so that most
of the observations find natural explanation within our

theory. Very peculiar detail, that should be stressed once
again, is that counterintuitively plasmons start to dom-
inate the drag even at moderately high temperatures,
definitely at temperatures way below the plasmon reso-
nances.
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