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The electronic transport properties of single layer graphene having a dilute coating of indium
adatoms has been investigated. Our studies establish that isolated indium atoms donate electrons
to graphene and become a source of charged impurity scattering, affecting the conductivity as well
as magnetotransport properties of the pristine graphene. Notably, a positive magnetoresistance
is observed over a wide density range after In doping. The low field magnetoresistance carries
signatures of quantum interference effects which are significantly altered by the adatoms.

I. INTRODUCTION

Surface adsorbates have the potential to open novel av-
enues for tailoring the electronic, optical, magnetic and
chemical properties of many material systems. In addi-
tion to influencing the electronic scattering mechanisms,
adatoms can couple to the spin, orbital and charge de-
grees of freedom and even bestow their own distinctive
properties upon the substrate material1. These effects
are enhanced in thin films due to the increased surface to
volume ratio. Graphene, a single-atom-thick sheet of car-
bon atoms behaving as a zero band-gap semimetal with
a linear Dirac spectrum, is therefore a compelling host in
this respect. While experiments on graphene have uncov-
ered a myriad of intriguing properties to date2, the effects
of adatoms on the electron transport in graphene have
only begun to be explored. Early studies on potassium
doped graphene were instrumental in demonstrating the
role of charged impurity scattering on the conductivity3.
The adsorption of elements such as hydrogen4,5, oxygen6

and fluorine7 have been found to strongly impact the
electronic behavior, inducing insulating band gaps or lo-
cal magnetic moments. Transition metal adatoms on
graphene are of particular interest due to a spate of in-
triguing theoretical predictions. Several 5d atoms are ex-
pected to induce novel topological behavior such as quan-
tum spin Hall or quantum anomalous Hall effects8–10.
Meanwhile the expectation of magnetic moments aris-
ing from 3d metal adatoms has received experimental
support11. Thus further studies into such heavy adatoms
are timely and essential for engineering newer graphene
devices.

In the present work, we employ indium (In) to inves-
tigate the influence of heavy adatoms on the electrical
transport of graphene. We find that dilute In coverages
(less than 1%) on SiO2-supported graphene significantly
charge dope the system, leading to increased charged im-
purity scattering and decreased carrier mobilities. At
the same time, the magneto-resistance at the few-Tesla
scale reveal signatures of an In-induced enhancement of
the charge density inhomogeneities (commonly referred
to as “puddles”) around the Dirac point. At low mag-
netic fields (. 50 mT) clear signatures of weak localiza-
tion12,13 and universal conductance fluctuations are seen,

with the In adatoms reducing the amplitude and expand-
ing the width of the zero-field weak localization anomaly
and suppressing the conductance fluctuations.

II. EXPERIMENTAL

Measurements of the graphene samples were performed
in situ before and after the controlled deposition of In
atoms in a custom-built cryostat inserted into a liq-
uid helium dewar. The sample stage, held within the
cryogenically-established ultra-high vacuum (UHV) en-
vironment, may be controllably heated to initially des-
orb surface contaminants and later to reverse the charge
doping created by the indium adatoms. A thin, indium-
coated tungsten wire, located about 15 cm below the
sample stage, allows for deposition of a dilute quench-
condensed film of In onto the cold graphene sample. The
average concentration of deposited In adatoms may be
estimated from the observed changes in the graphene
transport due to charge doping by the indium; theoret-
ical estimates8,14 suggest roughly 0.8 electron donated
per In atom. The deposition rate is highly control-
lable via the current passed through the tungsten wire
source. The charge doping induced by indium deposition
can be reversed upon annealing the sample to temper-
atures above 450 K, with the sample returning close to
its original state. This behavior was reproducible in sev-
eral samples. Apart from the deposition and annealing
processes, the devices are stable at low temperature for
periods of several weeks, due to the intrinsically high vac-
uum of the cryogenic environment. Each device consists
of graphene mechanically exfoliated from Kish graphite
onto a Si/SiO2 wafer having an oxide thickness of 285 nm.
Voltages Vg applied to the degenerately-doped substrate
control the graphene free carrier density, n ∝ (Vg − V0),
with the offset voltage V0 ∼ 15 − 20 V determined by
charged impurities in the SiO2. Electrical contacts were
made using standard electron beam lithography. The
samples were subsequently etched in an oxygen plasma
to form a Hall bar and rinsed clean with solvents. Here
we report results from a single Hall bar device having
wide and narrow central regions of width W = 8 µm and
1 µm respectively, see Figure 1(a).
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FIG. 1. (Color online) (a) Contrast-enhanced image of single-
layer graphene Hall bar device. The Hall bar has both a wide
(8 µm) region and a narrow (1 µm) region. (b) Resistivity
ρxx vs. density n at T = 12 K, for the wide (red) and nar-
row (blue) regions of the graphene device prior to deposition
with In adatoms. c) Plot of the conductivity σxx vs. n plot
clearly reveals a weak sub-linear contribution to the density
dependence of σxx in the as-made device.

III. RESULTS

A. Transport at zero magnetic field

Figure 1 (b) shows the longitudinal resistivity ρxx (in
ohms per square) and conductivity σxx (in units of e2/h)
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FIG. 2. (Color online) Effect of In deposition on graphene
conductivity σxx vs. gate voltage Vg at T = 12 K. Data
is from the wide region of the Hall bar, with trace (a) taken
before any In deposition, trace (b) after the first In deposition,
trace (c) after warming the sample to 450 K, and finally trace
(d) after a second In deposition.

of both the wide (red) and narrow (blue) regions of the
as-made (i.e. before In deposition) device as functions
of the free carrier density n, at T = 12 K. (The gate
voltage versus density calibration is established via ob-
servations of Shubnikov-de Haas magneto-oscillations in
ρxx.) The resistivity peak appears extremely similar in
the two regions, differing noticeably only at the Dirac
point. The conductivity is roughly linear in density away
from the Dirac point, with the slope dσxx/dn implying
an average mobility of µ ≈ 6000 cm2/Vs. As commonly
observed, there is also a small sub-linear contribution
to σxx(n). The sub-linear contribution appears to be
stronger in the narrow region of the device, at least at
high densities on the hole-side of the Dirac point. While
the dominant linear density dependence of σxx is believed
to arise from long-range charged impurity scattering, the
sub-linear contribution is generally attributed to short-
range (on the lattice scale) scatterers15. The edge of the
graphene sheet is one obvious source of short-range scat-
tering and this might explain the enhanced sub-linearity
of the conductivity we observe in the narrow region of
the device.

The charge doping and associated changes in electronic
transport at zero magnetic field due to In deposition are
demonstrated in Fig. 2 where the conductivity σxx is
plotted versus gate voltage, Vg. The data shown is from
the wide region of the device; the results from the nar-
row region are almost identical. Four traces, (a) through
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(d), are shown in the figure. Trace (a) was acquired af-
ter the graphene had been annealed at 200◦ C in the
cryogenically established UHV environment, but prior to
any heating of the In evaporation source. The Dirac
minimum conductivity point lies near Vg = 20 V and
the steep, nearly linear, increase in σxx away from this
point correspond to average electron and hole mobilities
of µ & 6000 cm2/Vs, as mentioned above. Subsequent to
recording trace (a), the evaporation source was heated
and In atoms began to adsorb onto the graphene sur-
face. This process was monitored in real-time by ob-
serving the graphene conductivity. Trace (b), recorded
after the evaporation was stopped, immediately reveals
several qualitative effects of the In deposition: First, the
Dirac point has shifted to more negative Vg, demonstrat-
ing electron doping of the graphene by the In adatoms.
From the magnitude of the shift, trace (b) corresponds
to a net electron doping of about 4.5× 1012 cm−2. Sec-
ond, the slope dσxx/dVg away from the Dirac point is
much less than in trace a), indicating significantly re-
duced carrier mobility. Third, the curvature d2σxx/dV

2
g

around the Dirac point is substantially smaller than in
trace (a). This suggests that the In deposition has en-
hanced the carrier density inhomogeneity at the Dirac
point. Finally, though not readily apparent in Fig. 2,
the weak sub-linearity of σxx vs. density apparent in
Fig. 1 (c) is no longer observed after In has been de-
posited; in fact, away from the Dirac point, σxx(Vg)
shows a small super-linearity after In deposition. These
various effects are broadly similar to those observed in
experiments on graphene doped with potassium or other
adatoms2,3,15–17, and may reasonably be expected if in-
dium atoms donate electrons to graphene and become
charged impurity scattering centers.

After trace (b) was recorded, the graphene sample was
briefly heated in situ to about 450 K. After re-cooling to
T = 12 K, trace (c) was recorded. As the figure makes
clear, the σxx(Vg) characteristic of the graphene sample
is almost exactly the same as it was before any In was
deposited; there is only a small shift in the location of the
Dirac point. Heating to 450 K is apparently sufficient
to ‘clean’ the graphene sample. Whether this cleaning
occurs because the In adatoms have desorbed, migrated
away from the conducting region of the sample, or have
been rendered benign in some other way, is at present
unknown.

Finally, a second, briefer, In deposition was made, re-
sulting in σxx trace (d). As intended, the doping is less
than for trace (b), and corresponds to about 2.5 × 1012

cm−2. All of the effects observed in trace (b) are also
seen in trace (d), only now, as expected, less intensely.

At low temperatures, the conductivity σxx of graphene,
away from the Dirac point, is often assumed to reflect two
distinct sources of scattering, screened charged impurities
and abrupt short-range scatterers (edges, lattice defects,
etc.)15,18:

σ−1
xx (n) = σ−1

CI (n) + σ−1
SR . (1)

For charged impurities a distance d << 1 nm away from
the graphene plane, σCI(n) is proportional to the car-
rier density n: σCI(n) = C |n|/nimp, where nimp is the
impurity density and C is a constant estimated15 to be
C = 20e2/h in the limit d→ 0. (At finite d, Adam et al.

find σCI(n) to be super-linear in n, increasingly so as d
rises15.) In contrast to this, the short-range contribution
to the conductivity, σSR, is expected to be independent
of density.
For our sample, the conductivity σxx, away from the

Dirac point, is nearly linear in density both before and
after the deposition of indium. This suggests that nearby
screened charged impurities dominate the carrier mobil-
ity µ = σxx/|n|e. By making the reasonable assumption
that the number of additional charged impurities, ∆nimp,
due to the indium deposition equals the charge doping de-
duced from the shift of the Dirac peak, we can estimate
the distance d between the adatoms and the graphene
plane by comparing the conductivity before and after
the deposition and using the theory of Adam et al.15.
For carrier densities between n = 3 and 4 × 1012 cm−2,
we find d ≈ 0.8 − 0.9 nm for both the first and second
In deposition. At these d values, the theory shows some-
what more super-linearity in σxx(n) than we observe; this
is plausibly the result of short-range scatterers present
in our sample but not included in the theory. We note
that recent density functional theory (DFT) calculations
suggest that chemisorbed In atoms reside much closer,
favoring positions about d ≈ 0.24 nm above the center of
the hexagons of carbon atoms in the graphene19,20.

B. Magneto-resistance at intermediate magnetic

fields

We turn now to the impact of the indium adatoms on
the resistivity coefficients (Hall, ρxy, and longitudinal,
ρxx) in a magnetic field B. We concentrate first on fields
B & 50 mT in order to avoid the quantum interference
effects which we discuss subsequently.
Figure 3 shows the Hall coefficient RH ≡ dρxy/dB,

measured in the wide region of the device at T = 12 K,
as a function of free carrier density n, where n is com-
puted from the gate voltage (relative to the Dirac point)
and the known capacitance between the graphene and the
conducting Si substrate. Two data sets are shown: The
red data points were obtained from the graphene sam-
ple before any indium deposition, while the blue data
were obtained after about 2.5× 1012 cm−2 indium atoms
were deposited. Owing to charge density inhomogene-
ity, the Hall coefficient passes smoothly through RH = 0
at n = 0 in both cases. It is clear from the figure that
the smearing of the divergence at n = 0 of the ideal
RH = −1/ne Hall coefficient (indicated by the dashed
solid line in the figure) is significantly stronger when the
indium is present. The two light solid lines are simple
convolutions of the ideal RH behavior with gaussian den-
sity distributions of rms widths σn = 0.3 and 0.6 × 1012



4

-2

-1

0

1

2
R

H
  
 (

k
W
/T

)

-2 -1 0 1 2

n   (10
12

 cm
-2

)

FIG. 3. (Color online) Hall coefficient vs. density near the
Dirac point. The red and blue data points correspond to
RH measurements before and after the deposition of about
2.5 × 1012 cm−2 indium adatoms, respectively. The dashed
curve shows the ideal RH = −1/ne behavior while the two
light solid lines display convolutions of the ideal behavior with
gaussian density distributions of rms width σn = 0.3 and
0.6× 1012 cm−2.

cm−2; these roughly approximate the observed behavior
of RH(n) for the clean and indium-decorated graphene
sample, respectively.

The data in Fig. 3 corroborate our earlier conclu-
sion that the deposition of indium adatoms increases the
charge density inhomogeneity σn near the graphene Dirac
point. The theory of Adam et al.15 suggests that a sheet
of 2.5× 1012 cm−2 charged impurities positioned d = 0.9
nm away from graphene will induce charge density fluc-
tuations of rms amplitude σn = 0.6× 1012 cm−2 around
the Dirac point. This remarkable agreement with the
blue data set in Fig. 3 is somewhat misleading since, as
the red data set in the figure proves, density fluctuations
(σn ≈ 0.3 × 1012 cm−2) are present in our sample even
prior to the indium deposition. However, since it is rea-
sonable to assume that these prior density fluctuations
are statistically independent of the fluctuations induced
by the In adatoms, the two sources of inhomogeneity
would add in quadrature to produce σn,tot ≈ 0.7 × 1012

cm−2, still in good agreement with the blue data set in
Fig. 3. We note in passing that if d ≈ 0.25 nm, as DFT
suggests19, the theory of Adam et al.15 would predict
σn ≈ 1.1 × 1012 cm−2. Our data is not consistent with
such a large density inhomogeneity.

Away from the Dirac point, at densities |n| & 1012

cm−2, the longitudinal resistivity ρxx of the sample ex-
hibits very little magnetic field dependence for B . 3
T. This is illustrated in Fig. 4(a) where the frac-
tional change in the resistivity ∆ρxx/ρxx ≡ (ρxx(B) −

ρxx(0))/ρxx(0) measured in the wide region of the de-
vice is plotted versus magnetic field at the hole-like den-
sity of n = −2.8 × 1012 cm−2. Again two data sets
are shown, one with and one without approximately
2.5 × 1012 cm−2 In adatoms present. This very weak
magnetic field dependence is consistent with the behav-
ior of a simple Drude metal. (Beyond B ≈ 3 T clear
Shubnikov-de Haas oscillations emerge in ρxx data from
the clean graphene sample. Only weak hints of oscilla-
tions are seen, at the highest magnetic fields, in the lower
mobility, In-decorated sample.)

As the n = 0 Dirac point is approached, this very
weak magneto-resistance is replaced by a strong positive
magnetoresistance. This is shown in Figs. 4(b) and 4(c)
where ∆ρxx/ρxx data from the wide region of the clean
and In-decorated graphene sample, respectively, are dis-
played at various free carrier densities, n. At n = 0 (red
traces) both the clean and In-decorated sample exhibit a
nearly linear magnetoresistance, with ρxx increasing by
about 70 (50) % in the clean (In-decorated) graphene
sample by B = 2 T.

For the clean graphene sample, the large magnetore-
sistance seen at n = 0 disappears quickly as n becomes
finite. The green, blue, magenta, and black traces in Fig.
4(b), corresponding to n = 0.7, 1.4, 2.8, and 5.6 × 1012

cm−2, respectively, reveal virtually no magnetoresistance
(for B ≤ 2 T) at these densities. In contrast, for the
In-decorated sample, the strong, quasi-linear magnetore-
sistance found at n = 0 subsides only gradually with
density. Moreover, as Fig. 4(c) demonstrates, ∆ρxx/ρxx
at finite n exhibits a non-linear, saturating dependence
on magnetic field.

These same basic magnetoresistance effects are ob-
served in ∆ρxx/ρxx data from the narrow region of the
graphene sample, even if some quantitative differences do
appear. In addition, as already suggested by the B = 0
data in Figs. 1 and 2, we find that the magnetoresis-
tance, at a given |n|, is essentially identical on the elec-
tron (n > 0) and hole (n < 0) sides of the Dirac point.

Strong, quasi-linear, positive magnetoresistance of
graphene near the Dirac point has been reported
previously21,22. It generally believed to be a result of the
charge density inhomogeneities (electron and hole “pud-
dles”) which are known to exist near the n = 0 charge
neutrality point. As the average density |n| increases,
the system eventually becomes unipolar, with the frac-
tional density fluctation σn/|n| falling with |n| owing to
enhanced screening. It seems reasonable to expect the
magnetoresistance to subside once σn/|n| is sufficiently
small and the graphene carriers become more Drude-like.
That we observe a strong positive magnetoresistance over
a wider density range about n = 0 in the In-decorated
sample than in the clean sample further supports our
conclusion that the In adatoms exacerbate the density
inhomogeneities in the sample.

Some aspects of the positive magnetoresistance fea-
tures observed near the Dirac point are captured by the-
ories which treat transport in a system of electron and
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FIG. 4. (Color online) Effect of In adatoms on the magnetore-
sistance of graphene. a) ∆ρxx/ρxx vs. B at n = −2.8× 1012

cm−2. Red trace corresponds to clean graphene sample, while
for the blue trace approximately 2.5× 1012 cm−2 In adatoms
are present. b) and c): Magnetoresistance at various free car-
rier densities in the clean and In-decorated sample, respec-
tively. Red, green, blue, magenta, and black traces: n = 0,
0.7, 1.4, 2.8, and 5.6 × 1012 cm−2. All data at T = 12 K.

hole puddles within an effective medium approximation
(EMA)23–25. For example, EMA models23 which assume
electron and hole puddles having the same carrier mobil-
ity µ predict a linear magnetoresistance at n = 0, at least
for magnetic fields B >> µ−1. Similarly, the observed
non-linear saturating behavior of ∆ρxx/ρxx with B at fi-

nite |n| also emerges from EMA calculations. Although
estimating the mobility of the electron and hole puddles
presumably present at n = 0 is problematic, we note that
the linear magnetoresistance we observe near n = 0 per-
sists to magnetic fields considerably smaller than µ−1, if
µ is taken to be any of the values (µ ∼ 2000 − 6000
cm2/Vs) found in our sample at densities well away
from the Dirac point. Finally, we note that alternative
theories26 of the linear magnetoresistance, based on mul-
tiple scattering off of poorly conducting regions in an
inhomogeneous conductor, have also recently appeared.

C. Quantum interference effects

At magnetic fields below about B ∼ 100 mT the mag-
netoresistance of both the clean and indium-decorated
sample shows clear signs of quantum interference effects,
including both weak localization and universal conduc-
tance fluctuations. Figure 5 a) shows the change in the
magnetoconductance ∆σ = −∆ρ/ρ2 around B = 0, at
various temperatures, for the clean graphene sample at
a free carrier density of n ≈ 5 × 1012 cm−2. These data
exhibit a cusp-like minimum in ∆σ at B = 0, of depth
comparable to e2/h. As the temperature is increased,
the minimum broadens and weakens. In addition, the
fluctuations in the conductance, which are roughly sym-
metric in magnetic field and quite prominent at the low-
est temperatures, subside entirely by T = 50 K. These
features are clearly reminiscent of the signatures of weak
localization and universal conductance fluctuations seen
in ordinary disordered thin metal films27,28.
Figure 5 b) shows the effect of indium adatoms on the

magnetoconductance at T = 12 K. The top trace corre-
sponds to the clean graphene sample, while for the middle
and lower trace the sample is decorated with approxi-
mately 2.5 and 4.5×1012 cm−2 In adatoms, respectively.
In each case the gate voltage Vg was adjusted to yield the
same free carrier density, n ≈ 5 × 1012 cm−2; this rela-
tively high density was chosen in order that the compli-
cating effects of carrier density inhomogeneity, discussed
in section III-B, are minimized. As the figure makes
plain, the In adatoms reduce the magnitude and broaden
the width of the cusp-like minimum in ∆σ around B = 0.
The conductance fluctuations, so readily apparent in the
clean sample at low temperatures, are almost entirely
suppressed by the In adatoms. As explained below, these
various changes in the magnetoconductance can be un-
derstood as consequences of the reduced mobility of the
graphene carriers in the In-decorated sample.
Finally, Fig. 5 c) displays the temperature depen-

dence of the magnetoconductance of the graphene sam-
ple decorated with approximately 2.5 × 1012 cm−2 in-
dium adatoms. Just as for the clean sample, increas-
ing the temperature weakens and broadens the cusp-like
minimum in ∆σ. Here again the free carrier density is
n ≈ 5× 1012 cm−2. At this density the mobility is found
to be µ ≈ 5400 and 2300 cm2/Vs in the clean and In-



6

1.0

0.5

0

D
s

  
 (

e
2
/h

) 12 K

50 K

a)
Clean sample

1.0

0.5

0

D
s

  
 (

e
2
/h

)

-50 0 50

B   (mT)

12 K

50 K

c)
In-decorated sample

1.0

0.5

0

D
s

  
 (

e
2
/h

)

b)

clean

with In

with more In

Adding indium

FIG. 5. (Color online) Low field magnetoconductance ob-
served in the narrow region of the sample at a free carrier
density of n = 5.5 × 1012 cm−2. a) Clean sample at T = 12,
20, 33, and 50 K. b) Effect of In deposition on ∆σ at T = 12
K. Blue: clean sample. Green (Red): After deposition of ap-
proximately 2.5 (4.5) ×1012 cm−2 In adatoms. c) Magneto-
conductance at T = 12, 20, 33 and 50 K of sample decorated
with 2.5× 1012 cm−2 In adatoms.

decorated sample, respectively.

The data shown in Fig. 5 were obtained from the nar-
row region of the Hall bar. Data taken from the wide
region of the Hall bar display the same cusp-like mini-
mum in ∆σ although it is not as deep as that seen in the
narrow region. Possible explanations for this difference
are discussed below.

The theory of weak localization in graphene29–31 is

more intricate than the corresponding theory for ordi-
nary metal films32–34. A description including only two
time scales, an elastic scattering time τel and a dephasing
time τφ is insufficient to capture the necessary physics.
In graphene, intervalley scattering, sublattice symmetry-
breaking processes, trigonal warping of the Dirac cones,
and weak spin-orbit effects all must be included in a com-
plete theory. Indeed, it is generally believed that inter-
valley scattering explains why weak localization is ob-
served in graphene instead of the weak anti-localization
originally anticipated to arise from the chirality-induced
absence of intravalley backscattering.
In this paper we use a simplified version of the theory

of McCann et al29, including only the elastic scattering
time τel, the dephasing time τφ, and an intervalley scat-
tering time τi. We are thus ignoring sublattice symmetry-
breaking processes, band warping, and spin-orbit effects.
In addition, we approximate the elastic scattering time
τel by the mobility lifetime τµ. This is justified since the
dephasing times τφ, which reflect all inelastic processes,
deduced from our analysis exceed τµ by one and two or-
ders of magnitude at all temperatures studied. In this
simplified approach, the change in the magnetoconduc-
tance, ∆σ = σ(B)− σ(0), is given by

∆σ =
e2

πh
[F (

B

Bφ
)− F (

B

Bφ + 2Bi
)− 2F (

B

Bφ +Bi
)]

F (z) = ln(z) + ψ(
1

2
+

1

z
), Bφ,i =

~

4De
τ−1
φ,i (2)

Here D = v2F τµ/2 is the diffusivity and ψ the digamma
function. Numerical estimates of τφ and τi are obtained
by fitting our data to Eq. 2 over the magnetic field range
|B| ≤ 25 mT. With this relatively narrow field window,
the fits obviously emphasize the cusp-like feature in ∆σ
at B = 0 at the expense of its behavior at larger fields.
This approach is justified, we believe, by several consid-
erations. First, there are observed contributions to the
magneto-resistance at intermediate fields which are not
captured by Eq. 2, notably those due carrier density
inhomogeneity and universal conductance fluctuations.
Second, the applicability of Eq. 2 is limited to fields small
enough that the elastic mean free path ℓµ = vF τµ is much

less than magnetic length27,33 ℓ0 = (~/eB)1/2. For the
clean graphene sample, at a free carrier concentration of
5 × 1012 cm−2, ℓµ = ℓ0 already at B ≈ 25 mT. Finally,
we find that the inclusion of additional fitting parame-
ters (e.g. sublattice symmetry-breaking times) leads to
multiple chi-squared minima in the fitting procedure and
large uncertainties in some of the extracted scattering
times.
Figure 6 a) shows two examples of the fits of Eq. 2

to data obtained from the clean and In-decorated sam-
ple. The fits are clearly good at very low magnetic field.
At higher fields, especially for the clean sample, the fit
worsens. While this is partly a result of the stronger
conductance fluctuations evident in the clean sample, it
might also suggest that we have over-simplified the Mc-
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FIG. 6. (Color online) Results of weak localization data anal-
ysis at n ≈ 5 × 1012 cm−2. a) Examples of fits (dashed) of
Eq. 2 to data (solid) at T = 12 K. Blue: clean graphene sam-
ple; Red: After deposition of approximately 2.5 × 1012 cm−2

indium adatoms. b) Fitted values of τφ (solid circles) and
τi (open circles) for the clean (blue) and In-decorated (red)
graphene sample. Diagonal (horizontal) dashed lines: theory
estimates of τφ (τµ) in graphene at mobilities 5400 (blue) and
2300 (blue) cm2/Vs.

Cann theory in arriving at Eq. 2, or merely violated the
ℓµ << ℓ0 requirement too egregiously.

Figure 6 b) presents the fitted values of the dephasing
time τφ and intervalley scattering time τi for the clean
and In-decorated sample at free carrier density n ≈ 5 ×
1012 cm−2. The diagonal dashed lines are theoretical

predictions of τφ in a diffusive 2D conductor from the
work of Altshuler, Aronov and Khmel’nitski35:

τ−1
φ =

kBT

2π~2Dν
ln(π~νD), (3)

with D again the diffusivity and ν the density of states
at the Fermi level. The upper and lower diagonal lines
represent Eq. 3 with D and ν evaluated for graphene
with mobilities of 5400 and 2300 cm2/Vs, respectively, at
n = 5× 1012 cm−2. These predictions are in reasonably
good agreement with the fitted values of τφ.

The fitted values of τi, the intervalley scattering time,
are essentially temperature independent and statistically
identical for the clean and In-decorated sample. This last
observation is intriguing, for if one assumes that scatter-
ing off of an indium adatom is only intravalley, then τi
should increase after indium deposition owing to the re-
duction in the electron mobility and diffusivity. That τi
instead appears to be unaffected by the indium implies
that the intervalley scattering length ℓi = (Dτi)

1/2 is
shorter, by about a factor of (5400/2300)1/2 ≈ 1.5, in
the In-decorated sample. Thus some fraction, crudely of
order 10%, of the scatterings off of the indium adatoms
appear to be intervalley processes. It seems at least con-
ceivable that the adatoms weakly distort the graphene
lattice in their immediate vicinity (in addition to pro-
viding a long range Coulomb scattering potential) and
thereby enable intervalley scattering. Alternatively, this
somewhat surprising result could be an artifact of our
simplified weak localization analysis.

The dephasing times τφ found here lead to dephas-

ing lengths ℓφ = (Dτφ)
1/2 ranging from ℓφ ≈ 1.0 µm at

T = 12 K in the clean graphene sample to ℓφ ≈ 0.26 µm
at T = 33 K in the In-decorated sample. Since the width
of the narrow region of the Hall bar is W = 1 µm, the
data described above may be in a cross-over regime from
2D to 1D localization. This, in addition to the fact that
boundary scattering is more important in the narrow re-
gion of the device than the wide region, may explain the
why the weak localization signatures are stronger in the
narrow region of the Hall bar.

One motivation for depositing In adatoms onto
graphene is that their strong spin-orbit interaction will
convert graphene from a gapless semi-metal into a topo-
logical insulator 8,10. Weak localization is well-known to
be a sensitive probe of spin-orbit effects in metals1,33,34.
In graphene, the theoretical situation is again more com-
plicated than in ordinary metals31. Although our simpli-
fied analysis omits spin-orbit scattering at the outset, it
seems clear from the data that no weak anti-localization
features analogous to those observed in metal films hav-
ing strong spin-orbit scattering (e.g. Mg:Au1) are seen.
This is perhaps not surprising given the very low In cov-
erages (∼ 0.1%) employed here.
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IV. CONCLUSION

Transport studies of graphene decorated with dilute
concentrations of indium adatoms have been reported
here. Our results reveal that the In adatoms electron
dope the graphene, as evidenced by gate voltage shifts of
the Dirac. The mobility of free carriers in the graphene is
significantly reduced by the indium adatoms. The near-
linearity with density of the graphene conductivity af-
ter indium is deposited shows that the adatoms act pri-
marily as long-range coulombic scatterers. At the same
time, our results reveal a pronounced broadening of the
conductivity minimum and Hall coefficient at the Dirac
point, demonstrating that the In adatoms increase the
level of charge density inhomogeneity in the system.

Analysis of the conductivity and Hall effect data via
the theory of Adam et al. suggests that the In adatoms
reside approximately d ≈ 0.8-0.9 nm from the graphene
surface. This seems surprisingly large given that the In
readily dopes the graphene with electrons. It is also in
disagreement with recent density functional theory cal-
culations which find d ≈ 0.24 nm. Resolving this discrep-
ancy requires additional experimental work.

At intermediate magnetic fields a strong quasi-linear
positive magnetoresistance is observed at the Dirac point.
This finding, which has been reported previously, has
been attributed to the existence of electron and hole
“puddles” at the (net) charge neutrality point. While this
effect subsides rapidly upon moving away from the Dirac
point in the clean graphene sample, it persists to con-

siderably higher density after indium adatoms have been
deposited. This further supports our conclusion that the
In adatoms exacerbate the charge density inhomogeneity
in the graphene.
Obvious signatures of weak localization and universal

conductance fluctuations are seen at low magnetic field.
These signatures are modified when In adatoms are de-
posited in a way largely attributable to the reduced car-
rier mobility which results. A simplified version of the
theory of weak localization in graphene suffices to fit the
magnetoconductance at very low fields and the extracted
values of the dephasing times τφ are in reasonable agree-
ment with theory. Plausible values of the intervalley scat-
tering time τi are also obtained from the analysis, along
with intriguing evidence that the In adatoms, while dom-
inantly sources of long range intravalley Coulomb scat-
tering, occasionally enable intervalley events as well. No
clear-cut evidence for spin-orbit effects is apparent in our
data. We note that similar conclusions have been reached
in the work of Jia et al.36.
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