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The electron-nuclear interaction in optically-pumped NMR of semiconductors manifests itself
through changes in spectral features (resonance shifts, line widths, signal amplitudes) and through
the magnitude of the nuclear spin polarization. We show that these spectral features can provide a
measure of the parameters that govern the optical pumping process: electron-nuclear cross relaxation
rate, Bohr radius and fractional occupancy of the optically relevant defect (ORD), and electron
polarization at the ORD. Applying a model of the spatial and temporal evolution of the nuclear
spins under optical pumping to 31P in semi-insulating InP we find an ORD Bohr radius of 6 nm,
independent of the electron polarization used to fit the data, confirming the ORD is a shallow
donor. For an electron polarization of -0.15, the ORD fractional occupancy is 0.02, leading to an
electron-nuclear cross relaxation time of 0.20 s and a hyperfine frequency shift of 8.1 kHz for super-
bandgap irradiation. Allowing the electron polarization to vary in the model constrained to the
hyperfine shift data, we find the fractional occupancy and electron-nuclear cross relaxation rate to
be approximately inversely proportional to the electron polarization. From the long time evolution
of the nuclear polarization we calculate an ORD density of 5× 1015 cm−3.

PACS numbers: 76.60.Jx, 33.80.Be, 76.60.-k, 78.30.Fs, 76.70.Fz

I. INTRODUCTION

The generation of high nuclear spin polarizations
within bulk semiconductors such as Si, GaAs, and InP by
means of optical irradiation near the bandgap at low tem-
peratures (optical pumping) is a topic of long-standing
interest.1 Achieving a detailed understanding of the fun-
damental physical processes leading to such high polar-
izations has proven very challenging, but considerable
progress has been made in recent decades. In partic-
ular, the direct detection of the enhanced nuclear po-
larization by conventional nuclear magnetic resonance
techniques (Optically Pumped NMR, or OPNMR) has
provided valuable new insights.2–4 The basic process in-
volved in all cases is a dynamic nuclear polarization of
the nuclear spin system by photoexcited electron spins
having a non-equilibrium spin polarization. In experi-
ments involving unpolarized or linearly polarized light
the electron spin system is saturated, resulting in an op-
tical Overhauser enhancement. Much greater deviations
from the thermal equilibrium electron spin polarization
can be achieved by employing circularly polarized light,
whose differing transition probabilities between magnetic
sub-bands of both valence band and conduction band
can result in large electron spin polarizations, and con-
sequently much higher nuclear polarizations. We present
31P OPNMR results for this latter type of experiment,
in a semi-insulating InP sample doped with Fe3+ as ac-
ceptors to compensate for the typically n-type nature of
InP due to P vacancies.

After GaAs, InP has been the semiconductor most ex-
tensively investigated by OPNMR, with NMR detected
from both 31P5–7 and 115In8–10. The 100% naturally-
abundant spin-1/2 nucleus 31P in InP has been pro-

posed as a favorable nucleus for “transferred OPNMR”,
or TOPNMR, in which the hyperpolarization of the sur-
face nuclei of a semiconductor could in principle be trans-
ferred to other nuclei in an adsorbed layer by means
of cross-polarization or cross-relaxation processes.11 Al-
though cross-polarization across such an InP interface
has been demonstrated without optical pumping,12 TOP-
NMR will require knowledge of and control over factors
influencing both electron and nuclear spin polarization in
the semiconductor surface layers at the atomic level.

The photoexcited spin-polarized electrons created by
optical pumping are generally believed to transfer their
hyperpolarization by cross-relaxation to nuclear spins via
localized sites that have, in lieu of precise structural char-
acterization, been termed “Optically Relevant Defects”
(ORDs). The holes associated with these photoelec-
trons are generally neglected because their spin orien-
tation is quickly destroyed through spin-orbit coupling
in unstrained crystals of the GaAs or InP type.1 The
delocalized electrons in the conduction band have been
shown by optically-detected NMR (ODNMR) in GaAs
to undergo spin-exchange with localized electrons at the
ORDs, resulting in an efficiently averaged electronic spin
state.13 Evidence for the existence of localized electrons
at ORD sites comes from the small electron-nucleus hy-
perfine shifts observed with the light on in OPNMR of
both GaAs and InP.7,14–16 The ORD sites with trapped
electrons in the presence of light have generally been as-
sumed to act as shallow donors, with the unpaired elec-
tron in a hydrogenic s-orbital having a Bohr radius, a0,
of many nanometers. The fractional number of ORD
sites having trapped electrons depends on the intensity
of irradiation.

Through the Fermi contact mechanism nuclei that are
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far from the center of the ORD compared to a0 expe-
rience a hyperfine interaction responsible for the cross-
relaxation that polarizes the nuclear spins. We have pre-
viously shown7 in semi-insulating InP that this contact
mechanism, rather than a direct electron-nucleus dipolar
mechanism,8,10 or coupling of nuclei to conduction elec-
trons, is consistent with the experimental results. In this
paper we will present additional evidence of this mecha-
nism. At long pumping times the 31P magnetization is
transported from the region of the ORD by spin-diffusion.
Spin diffusion aids cross relaxation near the ORD by re-
distributing polarization to more distant regions.
In order to assess the influence of photon energy on

the average nuclear polarization generated by OPNMR,
it is insufficient to consider merely the total NMR sig-
nal intensity. This is so because light at lower energies
(e.g. sub-bandgap) penetrates a bulk sample to greater
depths; in such cases the interplay between the (generally
reduced) degree of local polarization and the increased
number of nuclei affected due to the greater penetration
depth determines the resultant overall OPNMR signal
intensity. These two competing effects of local polar-
ization and penetration depth were sorted out by using
stray-field NMR imaging (STRAFI) to measure the 31P
OPNMR signal in InP with micron spatial resolution as a
function of depth from the surface.5 These results, as well
as our own results,7 showed that super-bandgap photons
are more efficient at generating high local nuclear polar-
izations than sub-bandgap photons.
In this paper, we compare experimental results with

theoretical modeling to better understand the tempo-
ral and spatial evolution of 31P nuclear spin polariza-
tion in OPNMR experiments on semi-insulating InP as
a result of the combined effects of cross-relaxation, spin-
diffusion, and spin-lattice relaxation. “Temporal” refers
to the buildup of OPNMR signal intensity and polariza-
tion as a function of irradiation time, with varying pho-
ton energy, light intensity, and temperature. “Spatial”
refers to two distinct spatial scales, the microscopic one
around the ORD and the macroscopic one involving pen-
etration depth. Applying the theoretical model to the
spatio-temporal results at short pumping times, ≤ ca.
64 s, provides a value for the ORD Bohr radius and frac-
tional occupancy which, in turn, allows the calculation
of the cross-relaxation rate and nuclear hyperfine shift.
Results at longer pumping times place a lower limit on
the electron polarization and give information about both
the propagation of nuclear polarization from the ORDs
via spin diffusion and the number density of ORDs.

II. THEORETICAL BACKGROUND

The model for the temporal and spatial development
of nuclear polarization in optically-pumped semiconduc-
tors has been described in detail elsewhere.13,14,17,18 Here
we discuss the features of the model pertinent to our
results. Previous work focused on temporal evolution

through growth of the signal amplitude and nuclear po-
larization. In the present study we add to this the use of
light-induced nuclear resonance shifts to monitor spatial
evolution.
In optically-pumped semiconductors, nuclear polariza-

tion is created via cross relaxation with a polarized elec-
tron. The nuclear polarization extends into the sample
through a combination of direct polarization by the po-
larized electron and nuclear spin-diffusion. In order to
describe how the nuclear polarization evolves both in
time and space under constant irradiation, we define a
normalized nuclear differential polarization,

M(r, τL) =
Iz(r, τL)− Ieq

I∞ − Ieq
, (1)

where r is the distance between the nucleus and the near-
est ORD, τL is the irradiation time, and Ieq is the ther-
mal equilibrium value of the average nuclear spin. The
limiting average nuclear spin, I∞, is given by1,19

I∞ =
Jz − Jeq
1− 4JzJeq

, (2)

where Jeq is the thermal equilibrium average electron
spin. Using the InP conduction electron g-factor20,21 we
obtain Jeq = -0.08 at 2.35 T and 6 K. The average elec-
tron spin, Jz is given by19

Jz =
J0 + Jeqτ/τs
1 + τ/τs

, (3)

where τ is the electron lifetime in the conduction band, τs
is the electron spin lifetime, and J0 is the initial average
electron spin from optical pumping. An upper limit is
placed on Jz by J0, usually taken to be ±0.25 depending
on light helicity22, although recent calculations suggest
that significant deviation from this value is possible.23

With knowledge of I∞ a lower limit can be placed on Jz
through Eq. 2.
The model we use is based on the premise that opti-

cal pumping creates spin-polarized photoelectrons, some
of which become trapped at ORDs, and includes these
simplifying assumptions about the ORDs:

1. the ORDs are unoccupied when the light is off;

2. the ORDs are uniformly distributed throughout the
material and are surrounded by a sphere of influ-
ence within which only one ORD is responsible for
polarizing the nuclei, either directly or through spin
diffusion;

3. spheres of influence are of uniform size with radius
rmax, and touch at the edges, resulting in the ORD
number density of (2rmax)

−3;

4. interactions within the spheres of influence are
isotropic.



3

These assumptions lead to the boundary condition that
there is no spin diffusion across rmax, i.e., nuclear polar-
ization does not leak out of the sphere of influence.

So far, we have described ORDs that are identical. In
reality we expect polarization to build up around ORDs
differently, depending on the distance of the ORD from
the surface. The drop in light intensity with distance,
d, from the surface will alter the local photoexcited elec-
tron density. If rmax is much smaller than the charac-
teristic distance for light falloff from the surface, the two
distances can be treated separately. Therefore, the nor-
malized nuclear differential polarization depends on three
parameters, r, d, and τL. In subsequent discussion we
use M to denote M(r, d, τL) or the dependence of M on
any of the reduced forms of these parameters introduced
later.

The time evolution of M can be written as a sum of
terms due to diffusion, electron cross-relaxation, and nu-
clear spin-lattice relaxation in analogy with the equation
for nuclear spin relaxation due to paramagnetic impuri-
ties originally written by Bloembergen:24

∂M
∂τL

=D∇2M+
1

T1C(r, d†)
[1−M]− M

T1L(d†)
, (4)

where D is the nuclear spin diffusion constant,
1/T1C(r, d

†) is the electron-nuclear cross relaxation rate,
and 1/T1L(d

†) is the spin-lattice relaxation rate due to all
other mechanisms, where the subscript “L” refers to the
light being on, thus possibly providing addtional relax-
ation pathways to the lattice.22 Any dependence of these
relaxation times on the normalized distance, d† = d/d0,
from the surface, will be determined by the relaxation
mechanism, as discussed below. The variable d0 is the
optical absorption depth and is photon energy depen-
dent. For definiteness we will assume the electron is in
a 1s hydrogenic orbital around the ORD, with a Bohr
radius of a0, and that cross-relaxation proceeds through
the contact hyperfine interaction. The hyperfine interac-
tion contains both a contact term and a through-space,
or dipolar, term.25 Bagraev and Vlasenko26 showed that
the dominant hyperfine term at a distance from the ORD
where the spin diffusion rate equals the cross relaxation
rate corresponds to the interaction that dominates po-
larizations of the spins. We will show that, for InP,
spin diffusion should dominate at distances greater than
2 nm from the center of the ORD, which is less than
the Bohr radius if the ORDs are comprised of shallow
donors; calculations of the relative size of the hyper-
fine terms at this distance suggest the contact mecha-
nism is expected to be the dominant hyperfine term.27

Then at a distance r from the closest ORD, and a dis-
tance d† from the surface, the cross relaxation rate is
1/T1C(r, d

†) = e−4r/a0/T1C(0, d
†) with an associated hy-

perfine frequency shift of f(r, d†) = f0(d
†)e−2r/a0 .

From Eq. 4 we see that in order to have high macro-
scopic nuclear polarization we need the electron polariza-

tion to be high and for

1

T1C(0, d†)
,

D∗

r∗2max

≫ 1

T1L(d†)
. (5)

This highlights the competition between localized
buildup of polarization, 1/T1C(0, d

†), diffusion of polar-
ization, D∗/r∗2max, and loss of polarization through spin-
lattice relaxation, T1L(d

†). From this one can see there
are many possible combinations of constants that would
yield a high nuclear polarization. The spin-diffusion coef-
ficient for the particular crystal orientation used, D, and
Bohr radius, a0, are properties of the material, but the
latter might vary across different types of ORDs, while
sub- and super-bandgap irradiation might populate dif-
ferent sites depending on their energy levels. Different
types of ORDs would also have different spacing from one
another, i.e., lead to variations in rmax. The two time
constants, T1C and T1L will depend both on the inten-
sity of light and the magnetic field strength. In general
one wants to obtain high nuclear polarization rapidly, so
choosing conditions which maximize the build-up rate,
yet under the constraints of Eq. 5, is desirable.
For short pumping times, we can neglect the spin-

lattice relaxation, and Eq. 4 can be simplified to

∂M
∂τL

=D∗∇∗2M+
f2

f2
0 (d

†)T1C(0, d†)
[1−M] , (6)

where * indicates we have scaled the distance by a0 such
that D∗ = D/a20. Furthermore, we can treat the exte-
rior boundary condition at r∗max as being very far away
compared to the length scales of interest at these short
pumping times. Using the 31P NMR spectra in which
frequency shifts reflect the distance from the ORD to
give spatial evolution and using experiments at differ-
ent pumping times to give the temporal evolution, we
analyze the simultaneous evolution of M and f to find
D∗ and the combined constant f2

0 (d
†)T1C(0, d

†). By cal-
culating D,28 we can further obtain a0. The combined
constant f2

0 (d
†)T1C(0, d

†) is independent of a0 since both
1/T1C(0, d

†) and f2
0 (d

†) are proportional to the square of
the electron density,1,13 but is proportional FJ2

z where
F is the fractional occupancy of the ORD.
After a few minutes of pumping the light-induced fre-

quency shifts disappear. At longer pump times a small,
but significant, frequency shift due to the nuclear magne-
tization emerges and grows. The measurement of these
shifts gives us the average nuclear polarization.7 Mea-
suring the net signal and absolute polarization, coupled
with the constants determined from short pumping time
behavior, permits constraints on the possible values for
Jz (and therefore F ), rmax and T1L.

A. Nuclear Relaxation Mechanisms

Turning now to relaxation mechanisms for cross-
relaxation between nuclei and the electron at the ORD,
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the contact hyperfine interaction29 with an r dependence
based on a hydrogenic 1s orbital is given by13

1

T1C(r∗, d†)
=

[

(

A0

2~

v0
π

)2
2τc

1 + ω2
j τ

2
c

]

F (1− 4JzJeq)

a60
e−4r∗ .

(7)

In the above equation ωj is the precession frequency of
the electron spin in the external field, τc is the correlation
time of the electron at the ORD, i.e., the time constant of
the hyperfine interaction fluctuation, and v0 is the unit
cell volume. The fundamental hyperfine coupling con-
stant, A0, is

30,31

A0 = γP
8π

3

µ0

4π
gµB̺~, (8)

where g is the g-factor of the free electron and ̺ =
3.26× 1031/m3 is the electron density at the phosphorus
nuclei.30 Using a hyperfine interaction fluctuation time
constant of τc = 6 picoseconds,8 a value which is close to
the optimal value of τc = 1/ωj for our field, we calculate
the term in brackets in Eq. 7 to be 12× 106 nm6/s. As-
suming negligible change in temperature with change in
light intensity, the dominant variation in T1C with d† will
appear through F . For a shallow donor, the predicted
Bohr radius32 is ǫ(me/m

∗
e)(0.529 nm) = 7.7 nm, where,

at our experimental temperature of 6 K, the ratio of the
effective mass of the electron in the conduction band m∗

e

to that of the mass of the electron me is 8.05× 10−2 and
the dielectric constant ǫ is 11.8.33

At low temperature the most likely mechanism for nu-
clear spin-lattice relaxation is through interaction with
paramagnetic electron spins associated with impurities
and defects:

1

T1
∝ 1

r6e

2τs
1 + ω2

Iτ
2
s

, (9)

where ωI is the nuclear Larmor frequency.25 The distance
from the nucleus to the paramagnetic center is re. The
nuclear T1 of Fe-doped InP is 41,000 s at 8 K and 9.4 T.5

We previously measured it to be 8760 s at 2.35 T and 5-
6 K.7 Using the ratio of the measured T1’s, and assuming
the electron relaxation time to be field independent, we
predict τs = 2.3 ns, in good agreement with the literature
value of 2.7 ns for τs at high field and low temperature
in InP,34 confirming the relaxation mechanism.
The mechanism of nuclear relaxation by paramagnetic

electron spins is not inherently dependent on light inten-
sity; however, D’yakonov and Perel’ proposed that new
paramagnetic centers can be created when optically ex-
cited conduction electrons are captured at deep traps.29

This mechanism has the same field dependence as for the
native paramagnetic centers discussed above. The relax-
ation rate from this mechanism will depend on the frac-
tional occupancy of the trap sites in a manner similar to
the cross-relaxation rate. We further assume that the po-
sitions of the paramagnetic centers are uncorrelated with

the positions of the ORDs; therefore, averaging over all
ORDs, the resultant spin-lattice relaxation time under il-
lumination, T1L, will be independent of r∗, varying only
with d†.

B. Light Intensity

We now consider the possible effects of light intensity
on the nuclear relaxation rates and polarization buildup.
We identify several general mechanisms by which light
intensity may affect the buildup of nuclear polarization,
in addition to simple heating. First, we consider the pos-
sibility that the electrons that are energetically allowed
to undergo transitions to the conduction band, given the
photon energy, are depleted under the highest intensities
of irradiation. A calculation35 of the density of such en-
ergetically favorable valence electrons for super-bandgap
irradiation at 1.428 eV that can be excited from the top
4 meV of the valence band yields an estimate of 1017

valence electrons/cm3. This is two orders of magnitude
larger than the steady-state density of conduction elec-
trons produced under typical optical pumping conditions,
1015 cm−3, estimated for 1.428 eV light with an intensity
of 3.4 W/cm2, a photoelectron lifetime of 10 ns, and an
absorption depth of 1 µm. Therefore, depletion of ener-
getically favorable valence electrons can be ruled out.
Second, the light intensity may affect the electron life-

time and spin relaxation time. The lifetime of photoelec-
trons in the conduction band has been observed to de-
pend on the number of electrons in the conduction band,
Nc, with the functional dependence varying with the re-
combination mechanism.36 The interdependence of pho-
toelectron lifetime and the concentration of conduction
photoelectrons will affect the cross relaxation rate not
only through the ORD fractional occupancy, but also po-
tentially through the dependence of Jz on τ (Eq. 3). Like-
wise, the photoelectron spin relaxation time may also de-
pend on Nc and therefore have an effect on Jz (Eq. 3).37

Third, variations in light intensity will alter the lo-
cal conduction electron density, which in turn can af-
fect the fractional occupancy, of the ORD’s, thus alter-
ing T1C(r

∗, d†). Fourth, variations in light intensity can
affect the number of paramagnetic centers created, thus
altering T1L(d

†).
To arrive at a quantifiable understanding of the effects

of light intensity on the time constants T1C(r
∗, d†) and

T1L(d
†), we return to Eq. 4 and integrate over a single

sphere of influence to find the net signal from that sphere:

d
∫

⊙
MdV

dτL
=D

∫

⊙

∇2MdV

+

∫

⊙

1

T1C(r∗, d†)
[1−M] dV (10)

− 1

T1L(d†)

∫

⊙

MdV .

We assume M is independent of d† over the volume
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of integration, i.e., that M only depends on r∗ in the
volume of integration, which is reasonable if rmax is
much smaller than d0. Using the divergence, or Gauss’s,
theorem, in conjunction with the boundary condition
[

∂M
∂r∗

]

r∗=r∗
max

= 0 we find the diffusion term of Eq. 10

to be zero, and therefore when the system has reached
the steady state,

∫

⊙

1

T1C(r∗, d†)
dV =

∫

⊙

M∞

(

1

T1C(r∗, d†)
+

1

T1L(d†)

)

dV ,

(11)

where M∞ ≡ M(r∗, d†, τL = ∞). Using Eq. 11 and the
definition of T1C(r

∗, d†) = T1C(0, d
†)e4r

∗

, we can rewrite
Eq. 10 as:

dm⊙

dτL
=

d
∫

⊙
MdV

dτL
=

1

T1C(0, d†)

∫

⊙

[M∞ −M] e−4r∗dV

(12)

+
1

T1L(d†)

∫

⊙

[M∞ −M] dV .

where m⊙ is the magnetization from a single sphere.
Following Lowe and Tse,38 the distribution of magne-

tization in the sphere is taken such that m⊙ recovers
exponentially with a time constant TB(d

†),

m⊙(τL, d
†) = m⊙(∞, d†)(1− e−τL/TB(d†)). (13)

We can then write the following:

dm⊙

dτL
=

d
∫

⊙
MdV

dτL
=

1

TB(d†)

∫

⊙

(M∞ −M)dV . (14)

Equating the r.h.s. of Eqs. 12 and 14 finally gives:

1

TB(d†)
=

1

T1L(d†)
+

1

T1C(0, d†)

∫

⊙
(M∞ −M)e−4r∗dV
∫

⊙
(M∞ −M)dV

.

(15)

This equation shows that 1/TB(d
†) is not extremely sen-

sitive to the detailed shape of M.38

Tycko introduced a phenomenological equation11,14 re-
lating light intensity to the nuclear signal intensity result-
ing from optical pumping:

m⊙(Φ, d
†) = mS

⊙

(

1− e−Φ/ΦSe−d
†
)

, (16)

where m⊙(Φ, d
†) emphasizes the dependence of m⊙ on Φ

and d† in the limit of τL ≪ TB(d
†). Here, Φ is the light

intensity, ΦS is the saturation light intensity, and mS
⊙

is the saturation signal intensity. For optical pumping
times τL ≪ TB(d

†), Eq. 13 simplifies to:

m⊙(τL, d
†) =

m⊙(∞, d†)τL
TB(d†)

, (17)

which then allows us to write

1

TB(d†)
∝ 1− e−Φ/ΦSe−d

†

. (18)

From Eq. 15 we obtain the expressions

1

T1C(r∗, d†)
=

1

T1C(0, 0)
e−4r∗

(

1− e−Φ/ΦSe−d
†
)

(19)

and

1

T1L(d†)
=

1

T1L(0)

(

1− e−Φ/ΦSe−d
†
)

. (20)

C. Frequency Shifts

At short pumping times, the polarized nuclei are rel-
atively close to the ORD. Therefore, we study the spec-
tra at early times to gain insight into the ORD and the
growth of the signal at these early times. To elucidate
the behavior of the spectra due to the presence of the po-
larized electron7,14–16 we compare spectra in which the
light is left on during data acquisition to spectra in which
the light is turned off shortly before data acquisition.
The frequency shift experienced by a 31P atom due to

the hyperfine interaction with a 1s electron at position
r∗ is1

f(r∗) =

[

1

2π

A0

2~

v0
π

](

2JzF

a30

)

e−2r∗ . (21)

We calculate the term in brackets to be 280 MHz− nm3.
Comparing Eqs. 7 and 21 we see that the hyperfine shift
and the cross-relaxation rate are well correlated.29 Both
quantities have a very strong dependence on a0, to the
negative third power for f and the positive sixth power
for T1C(r

∗, d†).
In addition to the isotropic frequency shift due to the

hyperfine contact interaction, there would also be a shift
due to the non-contact dipole interaction between the
electron and nucleus. This shift, however, is anisotropic
with an average of zero over a spherical volume around
the electron; see Appendix A. Therefore, the net effect
of the non-contact interaction would be to broaden the
spectrum. As shown in Appendix A, for a 1s orbital,
the broadening due to the non-contact interaction ap-
proaches that of the central shift due to the contact hy-
perfine interaction only when r∗ is about 3;27 closer to
the ORD the broadening would be less than the central
shift.
The hydrogenic wavefunction approximation, however,

is only reasonable for shallow donors, such as those aris-
ing from substitutional donor atoms.32 It has been shown
that in addition to these shallow donors, there can be
PIn antisites in InP with highly localized (“deep”) wave-
functions.39,40 From studies on Zn-doped InP, there is
some indication that nuclear polarization builds up at
PIn antisites.40 In addition, it has been suggested that
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the Fe impurities in our sample could act as ORDs,5 and
these would also be highly localized. Such high localiza-
tion could significantly increase the broadening due to
the non-contact dipolar interaction beyond that of the
central shift due to the contact interaction, particularly
at the shorter pumping times.

It has been suggested in fact that nuclear polarization
builds up at multiple types of ORDs,34 so that one might
expect to see a combination of purely hydrogenic wave-
functions, and those with a more localized distribution
with a 1s tail outside the central cell. The short pumping
times would be particularly sensitive to the exact nature
of the electron distribution.

III. EXPERIMENTAL DETAILS

All experiments were performed at 2.35 T (40.5 MHz
for 31P) using a Tecmag console. The pulse sequences
and data analysis methods were described previously.7

A key aspect of all experiments was the saturation of
both 31P and 115In nuclei before acquisition of the 31P
NMR signal. Whereas for most measurements a single
light helicity, σB

+ , was used along with spin echoes with
pulse separations of 100 µs, for the determination of the
31P polarization a string of small flip angle free induction
decays were acquired for σB

+ and σB
− polarized light and

the data were combined as described previously.7 The
photon energies were limited to two cases, sub-bandgap
irradiation at 1.408 eV and super-bandgap irradiation at
1.428 eV;41 these are represented by the subscripts sub
and super respectively.

The semiconductor used in this work was a fragment of
348 µm thick (100) orientation Fe-doped semi-insulating
InP (Showa Denko lot 60706, carrier concentration 5.8−
6.3 × 107 cm−3, mobility 2500 − 2600 cm2/V · s, resis-
tivity 3.3 − 3.6 × 10−3 Ω · cm),5 prepared as described
previously.7

The sample was maintained at 6 K in a Janis gas
flow cryostat containing a home-built double resonance
NMR probe. A Spectra Physics model 3900S Ti:Sapphire
laser with typical intensity at the cryostat window of 3.4
W/cm2 was used for all experiments.

Equation 4, with Eqs. 19 and 20, was solved numer-
ically in Matlab using the built-in function pdepe with
spherical symmetry. For the number of nuclei at a dis-
tance r∗ from the ORD, a simple r∗2 dependence was
assumed. The solutions for 25 values of d† ranging from
0 to 5 were averaged to obtain the final fractional nu-
clear polarization as a function of r∗. First and second
moments of the spectral line shapes were calculated from
Eq. 21 weighted with the signal intensities from Eq. 4.
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FIG. 1. (Color online) Plot of normalized 31P NMR signal am-
plitude (blue circles) and nuclear polarization (red squares),
defined as 〈Iz〉/I , versus temperature for 800 s irradiation
with σB

+ light at 1.428 eV.

IV. RESULTS

A. Temperature dependence

The temperature dependence of signal and polariza-
tion buildup is important because of potential interest
in optical pumping at higher temperatures, and because
of the effects of laser heating of the sample. In partic-
ular, to quantify light intensity effects on the OPNMR
signal, we must separate out the temperature effects of
laser heating.

To probe these effects the temperature dependences
of the signal amplitude for irradiation with σB

+ light,
and the nuclear polarization difference between irradi-
ation with σB

+ and σB
− light were measured with a laser

power of 3.4 W/cm2 and 800 s irradiation time (Fig. 1).
We observe that the signal amplitude decreases linearly
with increasing temperature. There is more scatter in
the polarization data, but it too decreases with increas-
ing temperature. For σB

+ irradiation the signal decreases
by 1.8%/K with the fit normalized to the extrapolated
signal amplitude at 0 K, and the polarization decreases
by 0.7%/K. These values indicate that sample heating
by a few Kelvins from irradiation would not have a large
effect on the measured signal amplitude or nuclear polar-
ization.

Previous studies of optical pumping in Fe-doped semi-
insulating InP (Showa Denko, carrier concentration 7 ×
107 cm−3) at 6.3 T found that the temperature depen-
dence of the signal intensity was very photon-energy de-
pendent.6,10,42 The 31P signal disappeared above 20 K at
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FIG. 2. (Color online) Plot of normalized 31P NMR signal
amplitude as a function of laser power normalized to the sat-
uration laser power. The signals (open circles, 1.428 eV; filled
circles, 1.408 eV) were obtained by illuminating the sample for
200 s with σB

+ light. The normalization parameters were ob-
tained by fitting the data to the integral over d† of Eq. 16. The
saturation parameters, ΦS , are 0.3 W/cm2 and 1.6 W/cm2 at
1.428 eV and 1.408 eV, respectively. (Inset) Polarization as
a function of normalized depth, from Eq. 16, for Φ/ΦS of 2
(dashed red line) and 11 (solid blue line) corresponding to the
typical experimental situation 3.4 W/cm2 pumping power for
1.408 eV and 1.428 eV, respectively.

all photon energies except near 1.407 eV (sub-bandgap),
where the signal was observed to persist above 50 K.
In contrast, Fig. 1 shows that the 31P signal persists to
above 50 K above the bandgap (1.428 eV) at 2.35 T. Pre-
sumably, this is a consequence of the difference in band
structure at the two fields.23 It suggests that, in addition
to the observed faster cross relaxation rate7, lower mag-
netic fields may provide a more favorable temperature
dependence for optical pumping in the photon-energy
regime desired for high surface polarization.

B. Light intensity dependence

Eq. 16 predicts that above a certain incident light
power, the signal amplitude will not increase linearly with
increased light intensity. This effect is demonstrated in
Fig. 2, where normalized signal amplitude as a function
of light power normalized to the saturation light power is
plotted. Data were obtained for absolute light intensities
spanning the range 0.3 - 7 W/cm2. For sub-bandgap irra-
diation the signal grows nearly linearly with laser power,
whereas super-bandgap irradiation results in markedly

nonlinear growth. The saturation parameters, ΦS , were
obtained by fitting the data to Eq. 16 integrated over
d†: S(Φ/ΦS) =

∫

m⊙(Φ, d
†)dd†. The saturation light

powers are 0.3 W/cm2 and 1.6 W/cm2 at 1.428 eV and
1.048 eV, respectively. Our value at 1.428 eV is simi-
lar to our smallest applied power, and comparable to the
value for undoped InP (0.1 W/cm2).11 The higher value
of ΦS at 1.408 eV is consistent with the reported greater
optical penetration depth below bandgap.5

C. Frequency shifts

As shown in Fig. 3, we compared spectra from data
taken with light on during acquisition and the light off
during acquisition for short pumping times. As a func-
tion of pumping power, “light-off” spectra were very sim-
ilar in central frequency and shape both for sub- and
super-bandgap irradiation. The “light-on” spectra were
shifted in frequency and broadened compared to the
“light-off” spectra, particularly at short pumping times.
These spectral differences are due to the polarized elec-
tron.
It was with this in mind that we studied the change
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FIG. 3. (Color online) The top two graphs show complex 31P
NMR echo data starting with the midpoint of the echo and the
graphs below give the corresponding spectra; for clarity only
the real spectral data are shown. For long pumping time data,
as shown in the rightmost graphs, the signals are very similar
for data acquired with the laser light off (blue circles) and on
(orange stars). In contrast, for short pumping time data, as
shown in the leftmost graphs, the light-on signal decays more
quickly than the light-off signal and is shifted in frequency,
revealing the effects of the polarized electron. While the data
shown here are for sub-bandgap irradiation, super-bandgap
irradiation shows similar trends. The solid lines in the upper
graphs correspond to fits to the data, as described by Eqs. 22
and 23.
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in the spectra with pumping time τL. In order to isolate
just the contribution to the spectra from the hyperfine
coupling, we simultaneously fit all of the light-on, Son,
and light-off, Soff , complex data in time t to the follow-
ing functions:

Soff(τL) = S0(τL) exp
(

−
{

t2/(2T 2
G) + t/T2e

})

×
exp(i {2πfoff t+ φ}), (22)

Son(τL) = Soff exp(−i2π∆ft) exp(−tΓ), (23)

where T2e is the exponential decay constant character-
istic of T2 processes, TG is the Gaussian decay con-
stant characteristic of T ∗

2 that defines the echo envelope
shape, Γ is the additional light-induced broadening, and
∆f ≡ foff − fon is the frequency shift due to hyper-
fine coupling. For the light-off data we found the Gaus-
sian time constant, TG = 90 ± 1µs for sub-bandgap and
TG = 84 ± 1µs for super-bandgap pumping, dominates
the decay behaviour; the exponential decay constant,
T2e = 1.4± 1.0 ms (sub-bandgap) and T2e = 1.7± 1.1 ms
(super-bandgap), makes little, if any, contribution to the
decay.
Using the results of fitting the spectra to Eqs. 22 and

23, we compare the dependence of ∆f and Γ to numerical
solutions to Eq. 4. To facilitate the numerical solution
to Eq. 4, we calculate D = 3.3 nm2/s for the particular
orientation of our single crystal in the magnetic field.28

For Jz we choose to use the lower limit of -0.15 obtained
from Eq. 2 and I∞ = −0.07 (see Sec. IVD); we will find
that the choice of Jz does not have a large effect on our
results. T1L(0) is not expected to contribute to the signal
evolution at these short pumping times and is set to an
arbitrarily long time of 5000 s.
As shown in Fig. 4 (bottom and middle plots), for

longer pumping times most of the polarized nuclei are
far from the polarized electron so that both frequency
shifts and broadening are greatly diminished. The black
line in the bottom plot represents the calculated abso-
lute first moment of the line shape for our super-bandgap
data, obtained from Eqs. 4, 19, and 20. The best fit of
the temporal evolution of the first moment of the line
shape from Eq. 4 to ∆f , super-bandgap, is obtained with
a0 = 6 nm and F = 0.02, resulting in f0 = 8.1 kHz and
T1C(0, 0) = 0.20 s. (The choice of Jz has only a modest
effect on the parameters: increasing Jz to -0.3 increases
T1C(0, 0) by roughly a factor of two and leaves a0 un-
changed.) In the middle plot the black line represents
the square root of the second moment of the calculated
NMR line shape (super-bandgap). We note that the sec-
ond moment of the function chosen for the light-induced
broadening in Eqs. 22 and 23 does not converge to a
finite value. The square root of the calculated second
moment is reduced by a factor of 2 to show the qualita-
tive agreement between the results of Eqs. 4 and 21 and
the measured data, particularly with regard to the line
width. The amplitude of the echo signal, S0(τL) (top
plot), scales linearly with τL, consistent with a exponen-
tial recovery curve with a long time constant as observed
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FIG. 4. (Color online) Plots of 31P NMR spectral data as a
function of pumping time for sub-bandgap data (orange filled
circles) and super-bandgap data (black open squares). The
lines, from top plot to bottom plot, represent scaled nuclear
polarization, scaled square root of the second moment of the
line shape (÷2 super-bandgap, ×2 sub-bandgap), and abso-
lute first moment of the line shape (×2 sub-bandgap), respec-
tively, obtained from the model. As shown in the top figure
the amplitude of the echo signal is linear with pumping time.
In contrast, for pumping times on the order of 20 seconds
or less, the spectral behaviour changes quite dramatically as
a function of pumping time. The narrowing of the spectral
line with pumping time is demonstrated in the middle graph,
while the bottom graph shows how ∆f decreases for increas-
ing τL. While sub-bandgap data and super-bandgap data
show similar behaviour, the broadening, defined as Γ/(2π),
for sub-bandgap behaviour is more pronounced.
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experimentally. The lines represent the calculated scaled
integrated fractional nuclear polarization obtained from
Eq. 4. Calculating signal amplitude requires accurate
knowledge of d0 as a function of photon energy.

We also compare spectral results to numerical solutions
to Eq. 4 for our sub-bandgap data in Fig. 4. The differ-
ences in the numerical solutions sub- and super-bandgap
arise from differences in the saturation factor and light
intensity as they enter Eq. 19. The measured values of
∆f , sub-bandgap, are larger than the values of the first
moment obtained from Eq. 4: the dashed line in the plot
is scaled by a factor of 2 to show the numerical solution
predicts the correct time dependence of ∆f . Likewise,
the measured values of the line width, sub-bandgap, are
larger than the values of the square root of the second
moment: the dashed line is scaled by a factor of 4 relative
to the values calculated for super-bandgap.

It should be noted that the intensity of light for the
two experiments was quite different. Using the defini-
tion Φ = P/(πw2), where P is the optical power and w
is the waist of the pump beam, Φsub = 2 W/cm2 and
Φsuper = 7 W/cm2. Looking at the signal versus pump
power (Fig. 2) leads us to conclude that we are operating
in a saturated regime for super- and sub-bandgap irradi-
ation, although we are further into the saturated regime
for the super-bandgap irradiation . Data taken with the
same intensity light, 4 W/cm2, and the same pumping
time of a half second, show a similar net light shift for
sub- and super-bandgap irradiation; this is in contrast
to the data in Fig. 4 where the light shift is larger for
super-bandgap irradiation.

One can observe that while light broadening under
sub-bandgap irradiation is significantly larger than under
super-bandgap irradiation, the central frequency shift is
smaller. In fact, for sub-bandgap irradiation the broad-
ening is larger than the central frequency shift. This
unusual feature indicates that there is another broaden-
ing mechanism at work for sub-bandgap irradiation, one
that adds broadening but not a shift, such as the broad-
ening due to the non-contact dipolar coupling interac-
tion, as discussed in more detail in Appendix A. It is
observed for sub-bandgap irradiation, where the broad-
ening is the greatest, that the broadening monotonically
increases with decreasing pumping time, while the central
frequency plateaus. This is indicative of the wavefunction
for the relevant ORD in sub-bandgap irradiation deviat-
ing from the 1s electron wavefunction; in particular the
electronic density is more localized around the ORD than
in the case of super-bandgap irradiation. Such tight lo-
calization would correspond to “deeper” trap sites. The
existence of deep trap sites serving as ORDs has been
observed in GaAs.43
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FIG. 5. (Color online) The 31P NMR signal grows with ir-
radiation time; the nuclear polarization, defined as 〈Iz〉/I ,
grows at an even faster rate. Sub-bandgap (blue filled circles)
irradiation leads to slower signal build up compared to super-
bandgap (blue open circles),for the same power, 3.4 W/cm2.
Higher power irradiation, 6 W/cm2 (green triangles), results
in faster build-up and lower power irradiation, 1 W/cm2

(red squares), results in slower build-up of signal. Signal-
weighted polarization buildup for super-bandgap irradiation
at 3.4 W/cm2 is plotted as shaded blue stars. The signal (nor-
malized) and polarization share the same axes. Inset: Plot
of the resonance frequency difference between signals from ir-
radiation with σB

+ and σB
− light versus total pulse angle for

3200 s irradiation time at 3.4 W/cm2. The slope of the line
gives an initial signal-weighted polarization of 12%.

D. Signal amplitude and polarization as a function

of pumping time and light intensity

Signal amplitude was measured for τL in the range of
1 s to 3200 s sub-bandgap at 3.4 W/cm2, and super-
bandgap at 1.0, 3.4, and 6.0 W/cm2. Polarization was
measured for pumping times in the range of 400 s to
3200 s super-bandgap at 3.4 W/cm2, with both light he-
licities. Experimentally, we find that signal amplitude
data (Fig. 5) fit well to exponential recovery curves such
as Eq. 13, which is given for a single sphere of influence.
The time constant, TB , obtained from fitting the signal
amplitude, comes from a signal-weighted average of all
the spheres of influence, and is not simply related to the
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time constants TB(d
†). The signal amplitude time con-

stants for 1.428 eV light and 1.0 W/cm2, 3.4 W/cm2, and
6.0 W/cm2 are 890± 10 s, 820± 10 s, and 670± 10 s, re-
spectively. We observe that TB decreases with increasing
Φ, as expected based on Eq. 18. We also observe that S
increases with increasing Φ, and that the saturation ef-
fect appears more pronounced at longer pumping times.
For 1.408 eV light at 3.4 W/cm2 the time constant is
1170 ± 30 s, longer than the values for super-bandgap
irradiation, as expected based on Eq. 18. Over the range
of times the polarization was measured the temporal evo-
lution is almost flat; therefore, it is not possible to obtain
a reliable time constant for the polarization evolution, al-
though clearly the buildup time is shorter than that for
the signal under identical conditions.
From fitting our data to exponential recovery curves

(Fig. 5) we observe that the time constant, TB, is 1.4
times longer at 1.408 eV, compared to 1.428 eV. Eq. 18
relates 1/TB at depth d† to light intensity. Our measured
value of 1/TB is averaged over all d†:

1

TB
∝

∫∞

0
m⊙(Φ, d

†)2dd†
∫∞

0
m⊙(Φ, d†)dd†

, (24)

for small τL. We note that Eq. 24 is independent of
d0. We can calculate the ratio of the buildup time con-
stants at 1.428 eV and 1.408 eV by numerically evalu-
ating Eq. 24 at each energy, obtaining a value of 1.5, in
good agreement with our measured value of 1.4.
Our method of measuring polarization relies on the de-

velopment of a polarized disk. Above a certain thickness
threshold, the thickness of the disk does not greatly affect
the determination of polarization. If the growth of po-
larization is faster closer to the surface than farther into
the InP, then a polarized disk will develop that grows
in thickness. Once the threshold thickness is exceeded,
the polarization will stop “growing” even while the signal
amplitude continues to grow. Additional signal growth
after this time occurs deeper in the InP.
Eq. 4, in combination with Eqs. 19 and 20, suggests

that a single set of parameters can be used to fit the sig-
nal buildup data as a function of time, light intensity,
and photon energy. Based on the short pumping time
frequency-shift results, for a given value of Jz, we ob-
tain values of T1C(0, 0) and F ; we showed earlier that
ΦS = 0.3 W/cm2 at 1.428 eV and 1.6 at 1.408 eV.
We integrate over the range 0 ≤ d† ≤ 5. Signal and
polarization are then modeled with parameters in the
range 1 ≤ r∗max ≤ 15, 100 s ≤ T1L(0) ≤ 3000 s and -
0.30 ≤ Jz ≤ -0.15. The model predicts that the polariza-
tion (and signal) build up most rapidly near the surface
of the InP and more slowly at greater depths. Therefore,
we assume that the polarization values are dominated by
the near surface region, which we define as d† ≤ 1.
A set of signal buildup curves was calculated for

1.428 eV light with intensities of 1.0 W/cm2, 3.4 W/cm2,
and 6.0 W/cm2. Signal buildup data for each of the
three laser intensities were scaled and compared to the
buildup curves by calculating least squares residuals. The
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FIG. 6. (Color online) Plot of least squares residuals between
the signal buildup model (Eq. 4) and measurements of 31P
NMR signal amplitude for 1.428 eV irradiation at 3.4 W/cm2

as a function of r∗max and T1L(0) for Jz = −0.15. The area be-
tween the red contours is the area of minimum residuals. The
shaded area is the region where the model predicts nuclear
polarization between 10% and 14%, for 3200 s of irradiation
at 1.428 eV, consistent with the measured value (Fig. 5). In-
set: The shaded regions are where the model predicts nuclear
polarization between 10% and 14%, for 3200 s of irradiation
at 1.428 eV for several values of Jz. The value of r

∗
max remains

between 5 and 6 for all values of Jz.

residuals for 3.4 W/cm2 light intensity and Jz = −0.15
are plotted in Fig. 6. The minima in the residuals fol-
low an “L”-shaped trough outlined by the red contour
lines. The “vertical” part of the “L” is centered around
r∗max ≈ 5 and is independent of T1L(0). The “horizontal”
part of the “L” is centered around T1L(0) ≈ 500 s and
is almost independent of r∗max. The transition region
between the “horizontal” and “vertical” regions is sensi-
tive to both T1L(0) and r∗max. Plots of the residuals for
other laser intensities and values of Jz (not shown) are
similar to Fig. 6, with the “vertical” region centered at
r∗max ≈ 5 and the “horizontal” region centered around
T1L(0) ≈ 500 s. The shape of the minima in the resid-
uals describes two limiting cases for the signal buildup.
In the “vertical” region of the trough the buildup time
constant is determined by the time it takes to fully po-
larize the sphere of influence around the ORD, whereas
the buildup time constant in the “horizontal” region is
limited by T1L(0) and results in lower polarization.

The signal buildup behavior alone cannot distinguish
between the two limiting cases which determine the
buildup time constant; however, polarization buildup
may separate the two cases. We calculate polarization
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from the model by summing over the region d† ≤ 1.
We model the polarization for Φ = 3.4 W/cm2 and
τL = 3200 s, looking for polarization values between 10%
and 14%, as determined by the data in Fig. 5. The shaded
region of Fig. 6 meets the criterion for nuclear polariza-
tion between 10% and 14%. The shaded region clearly
shows that the signal buildup cannot be limited by T1L(0)
for Jz = −0.15. For larger absolute values of Jz the re-
gion where nuclear polarization values fall between 10%
and 14% shifts toward lower values of T1L(0) (inset to
Fig. 6) but remains close to a value of 5 for r∗max.
In Fig. 6, the inner-most contours (shown in red)

bound the region where the residual is less than or equal
to two times the minimum residual. In this region we fit-
ted the calculated buildup curves to Eq. 13 to find TB to
be 920±50 s, 740±30 s, and 670±20 s, for light intensities
of 1.0 W/cm2, 3.4 W/cm2,and 6.0 W/cm2, respectively,
consistent with the data of Fig. 5. The model also pre-
dicts polarization buildup time constants for the three
light intensities of 440 ± 2 s, 440 ± 10 s, and 460 ± 3 s,
respectively.
With r∗max = 5 determined from the temporal evolu-

tion of signal and polarization, and a0 = 6 nm, we could
estimate the average distance between ORDs, 2rmax.
However, the value of r∗max also depends on D∗, which
has not been determined experimentally for InP. The
value D∗ = 0.092 s−1 used above was calculated using
the method of Khutsishvili,28 and is broadly consistent
with estimates of D based on the 31P-31P homonuclear
dipolar second moment.44 In the limit

√
TBD ≫ a0, spa-

tial evolution of nuclear polarization is driven by spin
diffusion, resulting in

r∗max ∝
√

TBD∗; (25)

therefore, estimates of rmax depend only on the square
root of D. For r∗max = 5 we find 2rmax ≈ 60 nm, leading
to a number density of ORDs of 5 × 1015 cm−3, which
is not unreasonable given the typical shallow donor con-
centrations in similarly prepared InP materials.45

We can compare our experimental super-bandgap re-
sults at 2.35 T to published results from the same sample
at 9.4 T5 by using the model to fit a exponential recovery
curve with the reported time constant of 4090 s. Scaling
T1C(0, 0) by a factor of 15.2 (Eq. 7), a plot of the resid-
uals as a function of T1L(0) and r∗max (not shown) again
has an “L”-shaped minimum trough with the “vertical”
region centered about r∗max ≈ 4, similar to the results at
2.35 T. The intersection of the “horizontal” and “verti-
cal” sections of the trough occurs around T1L(0) ≈ 3600 s
at 9.4 T compared to 500 s at 2.35 T (Fig. 6). The ratio
of these values is 7.2, comparable to the predicted value
of 5.8 (Eq. 9).
We have also applied the signal buildup model to data

obtained at 1.408 eV and 3.4 W/cm2 irradiation, using
the same parameters as for the 1.428 eV data adjusted
for the different light saturation parameters. This choice
is justified by the close similarity in the time evolution
of the hyperfine shift sub- and super-bandgap (Fig. 4).

The shape of the residuals surface (not shown) is quali-
tatively the same as that in Fig. 6: the region of mini-
mum residuals is “L”-shaped with the “vertical” region at
r∗max ≈ 5, and the “horizontal” region at T1L(0) ≈ 500 s.
The nuclear polarization sub-bandgap is too small for us
to measure directly; therefore, either Jz is much smaller
sub-bandgap than it is super-bandgap, or signal buildup
is limited by T1L for sub-bandgap irradiation. However,
a large difference in Jz would seem to be at odds with
the observed similarity in the magnitudes of the hyper-
fine shifts at the two photon energies (Fig. 4). Having
a large change in Jz while maintaining similar hyperfine
shifts would require an offsetting large change in F .
If the values of Jz and F are similar sub- and super-

bandgap, the growth of signal must be limited by T1L.
This, in turn, argues that the magnitude of Jz must be
large to account for the significant steady state nuclear
polarization under super-bandgap irradiation. Then, the
large difference in steady state nuclear polarization sub-
and super-bandgap arises from differences in r∗max. A
larger r∗max would be consistent with only a subset of
ORD’s being accessible under sub-bandgap irradiation.

V. CONCLUSIONS

We have obtained OPNMR data for InP for two pho-
ton energies, sub- and super-bandgap, as a function of
pumping time from less than one second to nearly one
hour. For short pumping times we acquired 31P NMR
data with and without light irradiation during the acqui-
sition to gain insights into the initial buildup mechanism.
For longer pumping times we acquired data as a function
of laser power to gain insights into saturation effects and
the propagation of polarization through the sample.
We use a simple model in which optical pumping cre-

ates spin-polarized electrons which become trapped at
ORDs. The buildup of polarization within the material
is then described by a single master equation, Eq. 4, con-
taining terms associated with cross-relaxation, diffusion,
and spin-lattice relaxation. We also make use of two
additional phenomenological equations: i) the OPNMR
polarization buildup at times longer than a few seconds
follows the functional form of exponential recovery with
time constant TB and ii) OPNMR signal as a function
of light intensity follows Eq. 16, first proposed by Tycko.
All of our OPNMR data were analyzed by solving these
fundamental equations numerically.
The OPNMR data for pumping times, τL, less than

100 s acquired with and without light during acquisition
revealed large spectral shifts and broadening due to the
polarized electrons nearby those nuclei which had been
polarized via cross-relaxation. From the magnitude of
the frequency shift as τL approaches zero, we put a lower
limit on f0(0), the maximum frequency shift of a 31P nu-
cleus, of 8.1 kHz for super-bandgap irradiation. Fitting
the time evolution of the hyperfine shift to our model,
for Jz = −0.15, we calculate the Bohr radius, a0, of the
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ORD to be 6 nm, and the fractional occupancy, F , to
be 0.02. Further analysis gives the cross relaxation time
T1C(0, 0) = 0.2 s. For fits to our super-bandgap hyper-
fine shift data, in the range −0.30 ≤ Jz ≤ −0.15, F and
1/T1C(0, 0) are inversely proportional to Jz; a0 is inde-
pendent of Jz . While our model fits the super-bandgap
data quite well, there is a significant discrepancy for the
sub-bandgap data where we observe larger-than-expected
broadening and shifts, although the model does repro-
duce the temporal evolution of the shifts. A possible
explanation is a more localized non-hydrogenic electron
density for the ORDs in a deeper level associated with
sub-bandgap cross-relaxation.

From the longer pumping time super-bandgap OP-
NMR data, using parameters determined from the short
pumping-time analysis, T1C(0, 0) in particular, we deter-
mine that the number density of accessible ORDs super-
bandgap, 5 × 1015 cm−3, is insensitive to the value of
Jz. Again the sub-bandgap results, where the polariza-
tion density is significantly smaller, are more difficult to
interpret. Nevertheless, for long optical pumping times,
the differences in the optical saturation factors derived
from Eq. 16 provide a reasonable explanation for the dif-
ferences in the signal buildup time constants sub- and
super-bandgap. Assuming Jz , F , and a0 are similar sub-
and super-bandgap, as suggested by the hyperfine shift
results, our results are consistent with the buildup be-
ing limited by the spin-lattice relaxation time, T1L, and
the lower steady state nuclear polarization under sub-
bandgap irradiation arising from a larger rmax. This
argument does not take into consideration the localized
non-hydrogenic electron density for ORDs sub-bandgap;
however, if the localized electron density falls well inside
the radius at which spin diffusion becomes the dominant
mechanism for polarizing nuclei, polarization of the bulk
of the nuclei will come from cross relaxation in the wings
of the electron distribution which may be more hydro-
genic in nature.This slower cross-relaxation process could
reduce the overall nuclear polarization.

Our study of the buildup of OPNMR in InP provides a
deeper understanding of the physical parameters which
underlie the buildup process. It should be emphasized
that the parameters derived from the numerical solu-
tions to Eq. 4 depend strongly on the value of a0, de-
termined using our calculated value of the spin diffusion
constant. Our results confirm that super-bandgap irra-
diation is most effective at creating high nuclear polar-
izations near the surface. Achieving high polarizations
at the surface, as is necessary for polarization transfer
from the semiconductor to another material, will require
control of these parameters via a better understanding of
the true nature of the ORDs.
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FIG. 7. (Color online) The left set of graphs shows the
frequency shift in terms of f0 expected at a given radius,
r/a0, and cos θ, for contact dipolar interaction (top) and non-
contact interaction (bottom). The right graph shows a com-
parison of the two shift contributions for θ = 0.

Appendix A: Contact and non-contact frequency

shifts

To understand the relative contribution to the fre-
quency shifts from the contact and non-contact cou-
pling, we treat the problem as one of finding the mag-
netic field from a smooth magnetization distribution
M = −gµBF 〈J〉n, where n is the trapped electron proba-
bility density around an ORD. Taking n as radially sym-
metric, we can build up M as a series of magnetized
spheres and shells; using the principle of superposition
we can sum their field contributions to get the field at a
particular location. At a given radius r′, we model the
magnetic field as coming from: (1) a sphere of uniform
magnetization of value M(r′) and extending to a radius
R = r′ + dr/2, (2) uniformly magnetized spherical shells
of thickness dr with radii R < r < ∞; by symmetry each
of these shells contributes no field at r′, (3) a series of
uniformly magnetized spheres with radii r < (r′ − dr/2).
The magnetic field from the last is equivalent to that
from a single magnetic dipole m centered at the origin,

m(r′) = −gµBF 〈J〉
∫ r′−dr/2

0

[n(r)− n(r′)] d3r (A1)
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with the corresponding field

Bd(r
′) =

µ0

4π

(

3r′(r′ ·m)

r′5
− m

r′3

)

(A2)

Note that this term is anisotropic. Only the z component
of the field, along the direction of the main field, will
contribute to the broadening of the the spectrum. Also
taking m = mz ẑ, or 〈J〉 = 〈Jz〉ẑ, we find

Bd · ẑ =
µ0mz(r

′)

4π

3 cos2 θ − 1

r′3
, (A3)

where cos θ is the directional cosine between r
′ and ẑ.

With
∫

(3 cos2 θ − 1)dΩ = 0, and assuming isotropic nu-
clear polarization, there would be no net shift due to this
contribution; there would however be a broadening of the
spectrum.

Now the only remaining contribution to the magnetic
field at r′ is from the sphere with uniform magnetization
M(r′). This sphere is representative of the contact, or
hyperfine, interaction. However, on a microscopic level it
must be considered that in fact the electron probability
density is not smooth; rather the electron is to be found
preferentially close to the nuclei; the associated degree of
localization26 for 31P in InP is ρv0 = 6.6×103. Therefore
the contact field is

Bcontact(r
′) = −2

3
µ0gµBF 〈Jz〉 [ρv0n(r′)] ẑ. (A4)

This field is isotropic and negative for all possible values
of r′. Under the influence of this field, the spectrum
would shift downwards and broaden, but in such a way
that the distribution contains only negative frequency
shifts. This is in contrast to the dipole field in which
negative and positive frequency shifts are expected.

To compare the two effects’ strength, we can examine
the ratio Bd

Bcontact
, at the angle at which the dipole field is

the strongest, θ = 0◦, as a function of r′ and in the limit
tha dr′ approaches zero,

Bd(r
′)

Bcontact(r′)
=

1

ρv0





∫ r′

0

(

n(r)
n(r′) − 1

)

d3r

4πr′3/3



 (A5)

where the expression in square brackets represents the
average deviation of the smoothed electron probability
density within r < r′ from the density at r = r′. For
large values of r′, the dipolar term will dominate. The

radius at which this occurs depends on the exact nature
of the electron probability distribution.
For a 1s electron probability density, as is associated

with a shallow donor,

n(r) =
1

πa30
e−2r/a0 . (A6)

The frequency shifts for both the contact and non-contact
fields are show in Fig. 7, for 31P in InP. For radii less than
2a0, the contact field clearly dominates.
For a “deep” trapping site the electron distribution

may have a significant fraction in the central cell.46 We
estimate such a distribution as

n =
α

πa30
e−2r/a0 +

(1− α)

πb30
e−2r/b0 (A7)

where b0 is on the order of the central cell, a0 ≫ b0, and α
gives the relative weighting of the two distributions. The
net effect of having a more localized distribution would
be to effectively reduce the filling factor by α, since the
more localized distribution would not contribute to the
cross-relaxation. For b0 ≪ r′ < a0 and θ = 0◦

Bd(r
′, θ = 0◦)

Bcontact(r′)
=

3

4ρv0

a30
r′3

(1− α)

α
(A8)

For sub-bandgap irradiation we see in Fig. 4 a ratio of
broadening to shift, Γ/(2π∆f), of 1.7, as opposed to the
super-band gap irradiation where the same ratio is 0.4.
These ratios are for the shortest pumping time observed,
τL = 1/2 s, when the nuclear polarization would have
limited spatial extent. The relatively large sub-bandgap
ratio could be explained by a small α, that is a large frac-
tion of the electron probability is highly localized around
the ORD. For instance if the spatial extent is limited to

a0/6 and α = 0.02, the ratio of Bd(a0/6,θ=0◦)
Bcontact(a0/6)

would be

1.2. This value can be be compared to Γ/(2π∆f) = 1.7
where the broadening is taken as a metric of the non-
contact interaction and the shift as a metric of the con-
tact interaction.
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