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Above the Kondo temperature, the Kohn-Sham zero-bias conductance of an Anderson junction
has been shown to completely miss the Coulomb blockade. Within a standard model for the spectral
function, we deduce a parameterization for both the onsite exchange-correlation potential and the
bias drop as a function of the site occupation that applies for all correlation strengths. We use our
results to sow doubt on the common interpretation of such corrections as arising from dynamical
exchange-correlation contributions.

I. INTRODUCTION

Electron transport [1] through molecular junctions is
usually formulated using non-equilibrium Green’s func-
tion (NEGF)[2] or an equivalent scattering formalism [3].
In atomistic simulations of electron transport [4, 5], den-
sity functional theory (DFT) [6, 7] is often used in com-
bination with NEGF, producing the standard model[8]
in which the interacting one-body Green’s function and
coupling matrices are replaced by their Kohn-Sham (KS)
counterparts [4, 5]. Whether or not ground-state KS-
DFT can in principle, under certain conditions, produce
the exact conductance remains open[8], even at zero tem-
perature and in the linear response regime. Thus there
are two sources of error which can be difficult to dis-
entangle: (i) replacing the interacting one-body Green’s
function with the KS Green’s function, and (ii) replacing
the exact KS Green’s function by one from an approxi-
mate functional[9].

Model Hamiltonians provide excellent testbeds for this
purpose, especially when highly accurate results are
known and can serve as benchmarks for larger KS-DFT
calculations. The Anderson impurity model [10] has at-
tracted much attention recently[11–18]. Due to its gener-
ality, broad applicability, and exact solvability, studying
transport through an Anderson junction is useful in un-
derstanding errors in atomistic calculations and in con-
structing accurate functionals for electron transport.

The KS system is defined as a junction with U = 0 (see
below), but whose onsite energy is chosen to make its site
occupation match that of the interacting junction, which
can be found exactly using the Bethe ansatz[19]. At
zero temperature and in the linear response regime, the
KS conductance, i.e., the conductance of non-interacting
electrons in the KS potential, is exact[11, 12, 14], i.e., the
first error is zero. This can be attributed to the Friedel-
Langreth sum rule [20, 21], which implies the transmis-
sion is a simple function of occupation. By reverse en-
gineering of the exact solution[12], one can study which
features must be present in any approximation in order
to generate an accurate transmission[13]. For example,
the derivative discontinuity[22] is crucial as correlations

grow, and how rapidly it is approached as U grows is
determined by the charge susceptibility of the system at
particle-hole symmetry [13]. This derivative discontinu-
ity has also been shown to be related to more general
blockade phenomena [23, 24].

However, all this changes above the Kondo
temperature[25], when the Kondo transmission peak is
negligible, and the sum rule no longer applies. Accurate
solutions are available [1], and the spectral function
exhibits two Coulomb peaks in the strongly correlated
regime. Between the two peaks, the linear-response
conductance is very low due to Coulomb blockade.
This temperature regime better mimics what happens
in real molecular junctions than the zero-temperature
limit where a Kondo plateau dominates. But the low-
temperature KS conductance always satisfies the sum
rule even when the physical conductance does not, and
so is qualitatively incorrect between the two Coulomb
peaks. Having spent years figuring out how to get the
Kondo plateau into DFT, the difficulty is now to get rid
of it at finite temperature[26].

It has long been argued[27–29] that time-dependent
DFT produces dynamic corrections to the KS conduc-
tance, and that these are necessary to produce an accu-
rate transmission. Making this identification, Ref. [15]
shows that a simple model for the exchange-correlation
(XC) kernel of time-dependent density functional theory
(TDDFT) reproduces the right corrections, at least in
the strongly correlated limit. This was further shown to
depend, somewhat surprisingly, on the onsite occupation
alone.

Here, we argue that the corrections that turn the
KS conductance into the true conductance of an An-
derson junction can plausibly be considered as a non-
local static correction that in principle could be extracted
from ground-state DFT. This possibility was suggested
long ago [28] as the only alternative to dynamic TDDFT
effects for altering a resonance in the transmission of
such a junction. The origin of such an effect, within
ground-state DFT, is the well-documented counteracting
XC field that is significant for certain molecules and solids
in response to a long-range electric field. The origin of
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this field is the localization of orbitals on specific sites
and the appearance of step-like features in the induced
exchange-correlation potential that (correctly) reduce the
polarization, relative to that of standard local, semilocal,
and hybrid functionals[30]. These steps are reasonably
accurately given by Hartree-Fock or optimized effective
potential (OEP) calculations, because of their explicit
orbital dependence[31]. They are in fact a field-induced
derivative discontinuity.

To make this argument, we first accurately parametrize
the onsite XC potential for temperatures that are low,
but at which there is no Kondo plateau in the con-
ductance, i.e., in the Coulomb blockade regime. Our
parametrization is designed to work for all correlation
strengths, not just for strong correlation. Next, we ac-
curately parametrize the XC bias drop that ensures that
a static KS calculation reproduces the physical conduc-
tance, again including both weak and strong correlation
regimes. Finally, we explain how this can be interpreted
in terms of the known counteracting XC fields.

II. ANDERSON JUNCTION AT LOW
TEMPERATURE LIMIT

To begin, the Hamiltonian for the Anderson
junction[10] consists of an interacting impurity site cou-
pled to identical featureless left and right leads:

H = ε n̂+ U n̂↑n̂↓ +Hleads +HT (1)

with ε the on-site energy and U the Coulomb repulsion
when the site is doubly occupied, n̂ = n̂↑ + n̂↓. Here
Hleads is the Hamiltonian of the two leads, andHT is their
coupling to the site. In the wide band limit, the effect
of tunneling is incorporated into an energy-independent
constant Γ [32]. There are two dimensionless parame-
ters: (µ − ε)/U , with µ the chemical potential of the
leads, which moves the system on- and off-resonance, and
u = U/Γ, which switches the system between weakly and
strongly correlated. Below the Kondo temperature TK,
a characteristic temperature dependent on u, the exact
spectral function has two Coulomb peaks and one Kondo
peak whose width is related to TK[33], and the sum rule
applies. Above TK, the Kondo peak disappears, the sum
rule is violated, and the conductance comes from the two
Coulomb peaks only [33].

Although no exact solution is available above TK, the
Green’s function on the central impurity site can be ac-
curately approximated as [1]

G(ω) =
∑
i=1,2

ni
ω − εi + iΓ/2

, (2)

where ε1 = ε, ε2 = ε + U, n1 = 1 − n/2, and n2 = n/2,
with n ≡ 〈n̂C〉 the occupation on the impurity site, and
the coupling to the leads causes the broadening of Γ/2.
Throughout this work, we use Eq. (2) as an ansatz for
the exact solution, as it captures the right physics and

accurately mimics the numerical exact solution above
TK[1]. We also introduce a specific low temperature limit,
namely β−1 → 0, but β−1 � kBTK, where β is the in-
verse temperature and kB the Boltzmann constant. Be-
cause TK depends exponentially on the parameters, it is
typically much smaller than any other temperature scale.
We are in a regime above TK, but at temperatures far
smaller than any of the other energy scales of the prob-
lem. For example, Kurth and Stefanucci [15] discussed
a case where U = 10,Γ = 1, and temperature τ = 0.1
(TK = 0.06). We have checked that by taking our low
temperature limit, one obtains essentially the same nu-
merical results as using τ = 0.1 in the Fermi function. In
the rest of this work, we consider only this limit, which
greatly simplifies the derivation and analytical forms are
then available for the quantities of interest. We note that
we use the same Eq. (2) as Ref. [15] for the benchmark
solution above TK, to facilitate comparison of our ap-
proach (static correction) and that in Ref. [15] (dynamic
correction). Ref. [15] studied these effects for a range
of temperatures but only for strong correlation; here we
are interested in all correlation strengths, and find that
low temperatures are well approximated by a specific low-
temperature limit. In this limit, we find accurate analytic
parametrizations with relative ease.

The spectral function A(ω) = −2ImG(ω) depends on
the occupation n on the impurity site. Therefore n must
be determined self-consistently:

n =
1

π

∫ µ

−∞
dωA(ω) =

π − 2θ1
π + θ2 − θ1

, (3)

where tan θi = 2(εi − µ)/Γ and, in the low temperature
limit, levels are fully occupied up to µ. Thanks to this
limit, Eq. (3) is a closed-form for n in terms of the pa-
rameters. The linear-response transmission is then [15]:

T = −Γ

2

∫ ∞
−∞

dω

2π

df

dω
A(ω)

β−1→0−−−−−→ Γ

4π
A(ω = µ). (4)

In Fig. 1, n and T are plotted as a function of µ, for
several values of u. For U � Γ, a plateau in n develops,
i.e., a Coulomb blockade, which corresponds to the low
conductance region between the two Coulomb peaks at
µ ≈ ε and µ ≈ ε + U . This is very different from the
Kondo regime, where there is always a Kondo plateau in
conductance, as discussed in Ref. [12].

III. KOHN-SHAM ANDERSON JUNCTION

We now construct a KS Anderson junction, i.e., one
with U = 0, that generates the same occupation n as the
interacting system by replacing ε with εS[n] = ε+vHXC[n],
and analyze its conductance. Because the occupation on
the impurity site is a number, the functional dependence
is simply a function of n. The KS Green’s function has
only one pole:

GS(ω) =
1

ω − εS[n] + iΓ/2
. (5)
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FIG. 1. Upper panel: Conductance T as a function of (µ −
ε)/U , plotted in unit of G0 = 2e2/h = 1/π, the conductance
quantum. lower panel: n as a function of (µ−ε)/U . Different
u = U/Γ are used.

The Hartree-exchange-correlation (HXC) potential
vHXC[n] is defined such that:

n =
1

π

∫ µ

−∞
dωAS(ω), (6)

where AS(ω) = −2ImGS(ω) is the spectral function of
the KS system. By definition[34], the KS occupation
matches the physical one, i.e., the left hand sides of Eqs.
(3) and (6) are identical, for a given set of µ, ε, U, and Γ.
Applying this condition yields:

vHXC = µ− ε− Γ

2
tan

[π
2

(n− 1)
]
. (7)

Note that this is insufficient to define vHXC[n] because of
the presence of µ− ε [If Eq. (3) could be inverted to find
µ−ε as an explicit function of n, as is trivial numerically,
this would suffice]. In Ref. [15], reverse engineering to
find vHXC[n] is done at three different temperatures above
TK, but for a fixed large u (=10). Here the low tem-
perature limit simplifies the algebra, and we study the
u-dependence explicitly. Following the ideas of Ref. [13],
we parametrize vHXC[n] as

vappHXC[n] =
U

2

(
1 +

2

π
tan−1[σ(u)(n− 1)]

)
, (8)

where σ(u) is a parameter, determined by the ex-
act condition of charge susceptibility at particle-hole
symmetry[35]:

χ = U
∂n

∂µ

∣∣∣∣
n=1

=
4u

(1 + u2)(π + 2 tan−1 u)
, (9)

where Eq. (3) was used. The derivative is taken at
the particle-hole symmetry point, n = 1, or equivalently

where ε = µ − U/2. Imposing this condition fixes the
parameter σ in Eq. (8) as σ(u) = π/χ − π2/(4u). This
procedure could be simply generalized to finite temper-
ature, by using the finite-temperature susceptibility, but
this is not the main concern of the present work. We
briefly show and discuss finite-temperature effects in Sec-
tion VI using the numerical solution, without analytically
parametrizing the temperature-dependent functional.
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FIG. 2. vHXC[n] as a function of n for various u = U/Γ. Solid
lines are results from Eq. (7) with n calculated from Eq. (3),
dashed lines are the approximation of Eq. (8).

In Fig. 2, both the vHXC[n] that precisely reproduces
the onsite occupation determined from Eq. (3) and the
parametrization of Eq. (8) are plotted as a function of
n, for different u. For U � Γ, a step in vHXC devel-
ops, reflecting the onset of the derivative discontinuity
as u → ∞[34]. These kinds of features were discussed
in Refs. [12, 13], at zero temperature. In the low tem-
perature limit discussed in this work, these rules still ap-
ply. An important point is that, unlike Ref. [15], our
parametrization applies for all values of U (both weak
and strong correlation), and appears to fail only when
the site is almost entirely empty or doubly-occupied. Our
results match those of Ref. [15] when the temperature is
low and the correlation is strong.

The KS conductance has the same form as in Eq. (4),
but with A replaced by AS. We compare the two quan-
tities in Fig. 3. Here the KS conductance always satis-
fies the Friedel-Langreth sum rule, i.e., TS = sin2(πn/2)
in the low temperature limit, and the plateau is always
present, regardless of whether the physical system is in
the Kondo regime (Ref. [12]) or not (this work). However
the conductance from Eq. (4) has two peaks and is very
small between the two peaks for U � Γ due to the ansatz
of Eq. (2). For U � Γ, the KS conductance is quite accu-
rate, but for larger U , it is wildly inaccurate. Whenever
correlation is significant (or, equivalently in this model,
the coupling to the leads is weak), the KS conductance is
a large overestimate of the physical conductance. In par-
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FIG. 3. Physical conductance (solid lines) from Eq. (4) and
KS conductance (dashed lines) for various values of u = U/Γ,
plotted in unit of G0 = 2e2/h = 1/π, the conductance quan-
tum.

ticular, it misses entirely the Coulomb blockade effect,
producing no drop at all between the Coulomb peaks.
All this was beautifully shown in Ref. [15] for strong cor-
relation for several temperatures. Although the Friedel-
Langreth sum rule does not apply at finite temperatures,
the discrepancy remains qualitatively the same.

IV. STATIC CORRECTION TO KOHN-SHAM
CONDUCTANCE

It is no surprise that the KS conductance is not cor-
rect under such conditions, as it is extracted entirely from
equilibrium DFT[36]. One can formally identify the cor-
rections to the KS conductance[8], and capture them in
terms of an XC correction to the applied bias:

δI = T δV = TS δVS, (10)

where δV is an applied bias, δVS = δV + δVXC is the bias
experienced by the KS system, and δI is the induced cur-
rent in both. The formal result of Ref. [12] can be stated
that δVXC = 0 due to the sum rule at zero temperature
when the Kondo peak is present, and the pioneering work
of Ref. [15] interpreted the XC corrections in δVS as dy-
namical corrections arising from TDDFT, i.e., corrections
that would not appear in any static DFT calculation.

Here we suggest that a static correction from ground-
state DFT can explain the results of Kurth and
Stefanucci[15] which they interpreted solely in terms of
TDDFT. We propose the following approximation for a
non-local XC bias:

δV app
S

δV
=
n1[1− cos(2ζ)] + 2n2/

[
1 + (2u+ cot ζ)2

]
2 sin2(n2π)

(11)

for n < 1, where ζ = n2(π+ 2n2 tan−1 u/n1) and n1 and
n2 are swapped if n > 1. This specific choice will be
justified shortly. For the present, we simply plot it in
Fig. 4. For weak correlation at any filling, or for n1 or
n2 < 0.5, this KS bias is close to the applied bias. But
for n near 1 and U � Γ, δVS is noticeably smaller than
δV .
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FIG. 4. δV app
S as a function of n for various correlation

strengths u = U/Γ. Solid lines are “exact”, as defined by
Eq. (12). Dashed lines are approximate, as in Eq. (11).

Using δV app
S in Eq. (11) with n calculated self-

consistently from Eq. (8), we now plot the approximate
conductance in Fig. 5. We see that it gives us essen-
tially the correct conductance of the Anderson junction,
including the severe corrections needed to reproduce the
Coulomb blockade.

 0

 0.2

 0.4

 0.6

 0.8

 1

-2 -1  0  1  2  3

T

(µ-ε)/U

u=0.1
u=1

u=10

FIG. 5. Solid lines: physical conductances from Eq. (4).
Dashed lines: conductances using approximations for both
the local HXC potential Eq. (8) and non-local XC bias Eq.
(11).
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To understand how this was achieved, i.e., to derive
δV app

S , we first ask what XC drop would exactly repro-
duce the conductance implied by Eq. (4). From Eq. (10),
we see

δVSAS(ω = µ) = δV A(ω = µ). (12)

The δVS/δV is an implicit functional of n via (µ− ε)/U .
For example, at particle-hole symmetry, we find explicitly

δVS

δV

∣∣∣∣
n=1

=
1

1 + u2
, β−1 → 0. (13)

This “exact” δVS is plotted in Fig. 4 as a function of n.
The KS bias is close to the applied bias when the site
is nearly empty or doubly-occupied. But near n = 1, as
U increases, δVS/δV drops rapidly from 1 to 0, i.e., the
applied bias is almost entirely screened by the Coulomb
blockade.

To use δVXC to correct the KS conductance, one needs
to express it as an explicit functional of the density n.
The conductance is proportional to A(ω = µ), which
depends explicitly on ε, the external onsite potential (the
strength of electron-electron interaction, u = U/Γ, enters
into the formula as a parameter). We start with Eq. (3),
and propose the following approximation:

θ2(n) ≈ (n1 −
1

2
)π + 2n2 tan−1 u, (14)

for n < 1, and n1 and n2 are swapped if otherwise. Then
Eq. (3) can be inverted to find ε[n] = µ + Γ cot ζ/2.
After substituting ε[n] into Eqs. (2) and (4), we find
our expression for δVS/δV . One can verify that Eq. (11)
satisfies the relation Eq. (13). The approximation used
in Ref. [15] corresponds to θ2 ≈ π/2 [compared to Eq.
(14)], which is accurate only in the large u limit, whereas
Eq. (14) works wherever δVXC is significant, even for
small u or weak correlation [In the language of Ref. [15],
R = 2n2 tan−1 u/(πn1)].

V. ORIGIN OF NON-LOCAL CORRECTION

To understand how the XC bias drop might be ex-
tracted from a ground-state DFT calculation, we review
the origin of Eq. (10). Start with Kubo response of the
system to the external field, and here we follow the no-
tation in Refs. [28] and [37]:

δj(r;ω) =

∫
dr′ σ̂irr(r, r

′;ω) δEtot(r
′;ω) (15)

where the left-hand side is the current density in response
to a perturbing external electric field at frequency ω, and
σ̂irr is the irreducible, frequency-dependent, nonlocal con-
ductivity tensor of the many-electron problem. Since,
in time-dependent current DFT (TDCDFT), the time-
dependent KS system must produce the same current-

density response, we also have

δj(r;ω) =

∫
dr′ σ̂S(r, r′;ω) [δEtot(r

′;ω) + δEXC(r′;ω)] ,

(16)
where δEtot contains both the external and Hartree elec-
tric fields. Here σ̂S is the KS conductivity tensor and
δEXC is the exchange-correlation contribution to the field
felt by the KS system.

The current is defined as an integral of the current den-
sity over a cross section: δI(z;ω) =

∫
S
dS δj(r;ω), where

z is the direction along the current flow. Great care with
the order of limits must be taken when applying this for-
mula to our problem[37]. The response formula is true for
any ω, but we wish to deduce the steady-state current.
Thus ω is kept finite, but reduced to 0 at the end of the
calculation. In that limit, the nonlocal conductivity and
the current become coordinate-independent[28, 37, 38],
and are just the transmission T in Eq. (10). Integra-
tion of the fields over a large region including the de-
vice just yields the net voltage drop across the device,

δV = limL→∞
∫ L
−L dz

∫
S
dS δE(r;ω). Thus we recover

Eq. (10).
Now comes the tricky part. For any local (or semilo-

cal) approximation to XC, if the density deep inside the
leads is symmetric far from the molecule, the XC fields
must be also symmetric, so that there can be no net XC
bias drop. This is the case in all standard DFT calcula-
tions of transport[8, 28, 39]. But Ref. [28] argues that
there are two possible sources of δVXC: either highly non-
local ground-state effects (ω = 0) or dynamical TDDFT
corrections which fail to vanish as ω → 0 (For any finite
system, the dynamical effects must vanish in this limit,
but our system is infinite).

Difficulties for DFT dealing with extended systems in
electric fields first arose almost two decades ago. The
famous GGG papers[40, 41] showed that there was, in
principle, a long-range XC counterfield in insulators, that
is missed by local and semilocal approximations. This is
the same contribution that is needed to produce accurate
exciton peaks in the optical response of solids[42, 43].
Contemporaneously, a similar effect was found in long
chain polymers, whose polarizabilities and hyperpolar-
izabilities are greatly overestimated by LDA and GGA
calculations[44–47].

This counteracting field is easily and accurately
approximated by orbital-dependent functionals, such
as Hartree-Fock or exact exchange using the OEP
formalism[31]. It has also been found that the Vignale-
Kohn approximation in TDCDFT, even taking the low-
frequency limit, produces a finite correction, although
the quantitative accuracy of such corrections has been
questioned in some cases[48, 49]. The work of Ref. [50]
suggests that either formalism might lead to approxima-
tions to the same feature.

For DFT calculations of transport through molecular
junctions, the TDCDFT correction has been considered
in several calculations and approximations, and differ-
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ences between the KS and true conductance are often
attributed to this. But there is no a priori reason to dis-
count a non-local static contribution, which has proved
much more straightforward (if expensive) to implement
for both the optical response of insulators and polariz-
abilities of long-chain polymers. Thus it is important to
understand if the effects seen in Ref. [15] can be under-
stood in this manner. If so, then they can be searched
for in orbital-dependent calculations of transport, such
as GW, etc.

While TDCDFT can be used to derive Eq. (10), the
establishment of the steady current is done by the time-
dependence of the KS equations themselves, without any
need for dynamic XC contributions. As shown by Ref.
[37], a steady current is established within even a simple
Hartree calculation, i.e., one including no XC effects at
all. This shows that the basic feature of a steady cur-
rent occurs with the time-dependent KS equations in the
absence of any dynamical XC contributions. Even non-
interacting particles in a finite bias can produce a steady
current[39].

The crucial element for producing the counteract-
ing XC field is not whether or not the system is a
metal or insulator (traditional definitions based on bulk
conductance[51] break down for nanoscale systems), but
rather whether or not charge is localized on a site, an ef-
fect that is modeled in the Anderson junction. Although
the Anderson model has only featureless leads, we deduce
the existence and size of the counteracting field from the
effect on the current.
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FIG. 6. δVXC as a function of µ for various correlation
strengths u = U/Γ. Solid lines are “exact” as defined by
Eq. (12) and dashed lines are approximations using both
Eqs. (11) and (8).

To illustrate how this interpretation makes sense, we
also plot δVXC in Fig. 6 as a function of µ − ε. For
large U the XC bias almost completely cancels the ap-
plied field, just as happens for well-separated molecules
in response to applied fields[30]. Because we have per-

formed our analysis for all U , we see that this remains
true at all correlation strengths, for all ε < µ < ε+U , i.e.,
in the region between the Coulomb peaks. Thus there is
always an opposing field in this region, which can be un-
derstood as the origin of Coulomb blockade in terms of
density functionals. Finally, we note that outside this re-
gion, we see regions where the XC bias has the same sign
as the applied bias. We suspect this is an artifact of the
simplicity of the model. Either the Anderson junction
itself is oversimplified so its results cannot be trusted in
this region, or possibly this is the non-applicability of our
simple model for the spectral function [Eq. (2)] in this
regime. In either case, this effect should be treated with
caution unless it is also seen in a real-space calculation.

VI. FINITE TEMPERATURE EFFECTS

The primary focus of our work has been the low-
temperature limit, because of its relevance to standard
electronic structure calculations. However, it is relatively
straightforward to repeat our calculations at higher tem-
peratures, as was done in Ref. [15]. To do that, Eq. (3)
needs to be modified as:

n = 2

∫ ∞
−∞

dω

2π
f(ω)A(ω), (17)

where f(ω) is the Fermi function: f(ω) = 1/(1+exp[(ω−
µ)/τ ]), with τ being the temperature. Also, the finite
temperature version of Eq. (4) needs to be used, i.e.,

T = −Γ

2

∫ ∞
−∞

dω

2π

df

dω
A(ω). (18)

At finite temperature, we have no simple closed-form
parametrization for the density or HXC potential and
everything we show in this section is numerical. For ease
of comparison, we use the same temperatures as those of
Ref. [15], namely τ = 0.1, 0.2, and 1.0, respectively, with
u = 10. We also show our low-temperature limit result.

In Fig. 7, we show conductance and occupation of
the impurity site as a function of (µ− ε)/U for different
temperatures (similar results can be found in Fig. 1 of
Ref. [15]). In the lower panel, we see that for tempera-
tures below about 0.2, our low-temperature limit result
is indistinguishable from the numerical result. On the
other hand, the conductance shows substantially greater
sensitivity, both exactly and at the KS level, due to the
presence of the Fermi function in Eq. (18). The Friedel-
Langreth sum rule applies only in the low-temperature
limit. However, the figure also shows that our low-
temperature result is approached as the temperature is
reduced.

Finally, in Fig. 8 we show the XC drop δVXC/δV as
a function of n, for different temperatures. One can see
that large temperatures wash out the sharp effects of the
derivative discontinuity in the strongly correlated limit,
as expected. The XC drop is less sensitive to temperature
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FIG. 7. Upper panel: conductance T as a function of (µ −
ε)/U , plotted in unit of G0, for different temperatures τ at a
fixed u = U/Γ = 10. Solid lines are “exact” and dashed lines
are (uncorrected) KS conductance. The black line is for the
low-temperature limit and is the same as the red line in Fig. 1.
Lower panel: n as a function of (µ− ε)/U . By definition, the
KS occupation always matches that of the exact occupation
at all temperature.
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FIG. 8. Finite temperature generalization of Fig. 4 (but with
δVXC plotted instead of δVS): δVXC as a function of n, for
different temperatures τ at a fixed u = U/Γ = 10. Black line
is the low-temperature limit result.

than the conductance. Overall, the qualitative features
of the XC counterfield remain, but are weakened by in-
creasing temperature, as the derivative discontinuity is
rounded off.

VII. CONCLUDING REMARKS

We conclude with a discussion of the relevance of these
results for DFT calculations of transport. First we note
that we have provided accurate parametrizations for both
the onsite potential and the XC bias for the junction
at low (but above TK) temperatures, that apply for all
junctions, not just those strongly coupled to the leads.
These are available for any future calculations of impu-
rity models of transport. If the parameters (Γ, U , ε) can
be extracted from standard ground-state DFT calcula-
tions, the results could be compared with the accompa-
nying DFT transport calculations to identify limitations
of the pure DFT approximations. If U/Γ is large, the
standard DFT approach will often yield a large overesti-
mate of the conductance, as is often seen in comparison
with experiment[8].

But, possibly more importantly, we have suggested
that an alternative origin of the corrections to the KS
conductance is non-local static XC effects. This is very
important for understanding the limitations of standard
DFT calculations of conductance and finding ways to
improve them. Our reading suggests that, rather than
looking to TDCDFT for corrections to the conductance,
one could look instead at orbital-dependent ground-state
approximations[30, 47, 52–54]. Such calculations can
yield two important improvements in calculations in this
area: (i) the correct positioning of orbital energies in the
molecular region relative to the leads, as is already well-
known[55], and (ii) a finite XC bias drop that corrects
the KS conductance.

Unfortunately, due to the structureless nature of the
leads in the Anderson model, there is no way at present
to distinguish between the interpretation of the XC cor-
rections presented in Ref. [15] and those presented here.
In a more realistic model, the charge is depleted from
the end of one lead and is increased at the end of the
other, producing a net dipole. Such a dipole contributes
to the net bias drop in the Hartree potential. But, with
an orbital-dependent functional, a counteracting effect
occurs in the exchange bias. This can be seen mostly
clearly when the molecule is only weakly coupled to the
leads. Then the form of this counteracting field is steps
that are proportional to the applied field but that inhibit
charge from moving from the molecule to the leads. Such
steps are well-known in the absence of an applied field,
between two distinct species, where they ensure dissocia-
tion into charge neutral fragments, and are consequences
of the derivative discontinuity [22]. Our steps are field-
induced versions of the same thing. Only a more detailed
calculation, such as those of Refs. [56] and [17], can yield
such information, e.g., the spatial dependence of XC po-
tential. But at least we have provided a reason to look
for such corrections when non-local ground-state approx-
imations are being applied, and in the particular example
of Anderson junction, we express the non-local XC bias
drop in terms of the occupation on the central impurity
site.
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To conclude, we have shown that, in the case of the An-
derson junction, simple parametrizations of both the on-
site HXC potential and the XC bias in linear response can
reproduce the low-temperature Coulomb blockade, for
all correlation strengths, not just the strongly correlated
regime discussed in Ref. [15]. Furthermore, the XC bias
can be interpreted as a non-local XC response to an ap-
plied electric field, and is not necessarily a dynamic TD-
CDFT effect. Qualitatively similar effects should occur
in more realistic descriptions of molecular transport[55].
Our approximate formulas could prove useful in other
contexts, or as a check on XC approximations applied to
transport problems.

While this manuscript was under review, Ref. [57] ap-
peared as a preprint, which discusses these XC bias con-
tributions more generally.
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