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We study the effect of interactions on the properties of a model 2D topological Kondo insulator
phase. Loosely motivated by recent proposals where graphene is hybridized with impurity bands
from heavy adatoms with partially filled d-shells, we introduce a model Hamiltonian which we believe
captures the essential physics of the different competing phases. We show that there are generically
three possible phases with different combinations of Kondo screening and magnetic order. Perhaps
the most dramatic example of many-body physics in symmetry protected topological phases is the
existence of the exotic edge states. We demonstrate that our mean field model contains a region
with a time-reversal invariant bulk phase but where TR symmetry is spontaneously broken at the
edge. Such a phase would not be possible in a non-interacting model. We also comment on the
stability of this phase beyond mean field theory.

I. INTRODUCTION

The discovery of topological insulators in “inverted”
semiconductors with strong spin orbit coupling led to an
explosion of interest in topology in condensed matter sys-
tems. The combination of topology and strong correla-
tions of electrons is a subject of major current activity,
and systems in which both are at play suspected to host a
variety of unique phenomena.1 “Heavy fermion” and re-
lated materials with heavy lanthanide elements are nat-
ural places to seek such phenomena, as the electrons on
these atoms experience strong spin-orbit coupling (SOC)
– which is a driving force for non-trivial topology in many
systems – and are strongly correlated. Theory recently
suggested a concrete role for topology in these systems
in the form of Topological Kondo Insulators (TKIs)2,3.
A TKI is a Kondo lattice system involving rare earth
ions which at low energies hybridize with lighter conduc-
tion electrons forming a topological insulator. SmB6 is
strongly suspected to be such a TKI4–6 .

While SmB6 and indeed any Kondo lattice system
is indisputably a strongly correlated electronic system,
the low energy description of a TKI in terms of effec-
tive bands seems indistinguishable from that of an un-
correlated topological insulator. This is disappointing
in view of the hope for new phenomena in correlated
strong SOC systems. The aim of this article is to con-
sider the possibility of competing states, and seek out
new effects arising from electronic correlations in a sys-
tem which may host a TKI. We do this in the context
of a model motivated by the recent proposal of realiz-
ing a TKI in graphene doped with heavy adatoms. In
this model, described in detail in Sec. I A, we obtain a
zero temperature phase diagram which embeds the topo-
logical insulator physics into the classic Doniach phase
diagram7 for Kondo lattice systems, with its magnetically
ordered and Kondo screened phases. The magnetic or-
dering quantum phase transition is discussed in this con-
text. We also consider the characteristic behavior of the
boundary of the TKI, and show that this model is prone

to surface magnetic ordering, even within the TKI state.
Such spontaneous and intrinsic time-reversal breaking at
the surface of a TKI could be the desired hallmark of
correlations in the TKI state.

A. The Model

We study a tight-binding model of graphene, with a
localized d-orbital electron site at the center of each face
on the honeycomb lattice. Such a model was studied ex-
tensively in [8–11], via a combination of first-principle
calculations on a tight binding model and density func-
tional calculations. There it was shown that the strong
onsite spin-orbit term for the localized d-electrons, when
hybridized with the conduction electrons, c, conspire to
create a band insulator with a nontrivial topology. This
topological phase on graphene is reminiscent of the orig-
inal proposal of topological order in graphene by Kane
and Mele in 200512,13. Our goal is to study explicitly the
effect of interactions on such a model.

In [8], the DFT calculations show that the most im-
portant angular momentum states of the d electron are
those with Lz quantum number m = ±1. These arise
from the dxz and dyz adatom states, and so we restrict
our model to states with these angular momenta. We in-
clude a spin-orbit coupling term for the d-electrons, but
not for the conduction electrons where the small mag-
netic moments are expected to lead to a negligibly small
amount of spin-orbit coupling. The chemical potential of
both the c and d electrons is set so that there are two
c and two d electrons per unit cell. This is a necessary
condition if the hybridization is to lead to a band insu-
lator.

The complication comes when we include an interac-
tion term between the local d moments and the nearby
conduction electrons. In order to write down this interac-
tion, need to know the spin state formed by the compos-
ite two-body state sitting at each d-site. We assume that
within the m = ±1 subspace, a Hund’s rule type coupling
makes it energetically unfavorable for both d-electrons to



2

have the same angular momentum quantum number. We
therefore ignore the possibility of the d-electrons forming
spin-2 states, |+ ↑,+ ↓〉 and |− ↑,− ↓〉, when writing the
form of the interaction. The remaining states are

~Stot = 0 : |+ ↑,− ↓〉 − |+ ↓,− ↑〉
~Stot = 1 : |+ ↑,− ↑〉

|+ ↑,− ↓〉+ |+ ↓,− ↑〉
|+ ↓,− ↓〉.

Within this subspace the Kondo interaction is a spin-spin

interaction which occurs between the ~Stot = 1 states,
while the S.O. coupling term favors the |+ ↓,− ↑〉 state,
which is a linear combination of the singlet and triplet
Sz = 0 states.

We define the operator Ci,p,σ, which is a linear combi-
nation of ciσ operators which carry angular momentum
p = ±1.

CR,p,σ =
1√
6

6∑
j=1

e−i(π/3)p(j−1)cR+ej ,σ

=
∑
k

(
Vp(k)cA,k,σ + V ∗−p(k)cB,k,σ

)
(1)

where A and B denote the two sublattices of the hon-
eycomb lattice, and ej are the nearest-neighbor lattice
vectors connecting the c and d sites.

We can now construct a spin-1 operator for both the c
and d electrons from two spin- 1

2 operators as follows,

~S1 =
1

2

∑
m=±1

d†m,α~σαβdm,β (2)

s1 =
1

2

∑
m=±1

C†m,α~σαβCm,β , (3)

where ~σ is the usual spin-1/2 Pauli vector. The Kondo
interaction is then an antiferromagnetic spin-spin inter-
action between the spin-1 particle on the d-sites and the
effective spin-1 formed by a linear combination of the con-
duction electrons near this d-site. The 4 fermion Kondo
interaction is therefore

HK = J
∑
i

~S1,i · ~s1,i. (4)

We also include an RKKY spin-spin interaction in our
model. This is an interaction term between the d-electron
states on different sites which is mediated through con-
duction electrons. Performing second order perturbation
theory in the Kondo interaction, the d-spin on one site
interacts antiferromagetically with the conduction elec-
trons near that site which in turn act antiferromageti-
cally with a neighboring d-site. We assume this creates
an effective ferromagnetic interaction between the two d-
sites and parameterize this term with the variable Jm.
Although in principle the RKKY interaction is included
in Eq. (4), it is difficult to derive both the Kondo and

RKKY effects together14,15. Therefore, in our model we
include as a separate parameter the RKKY interaction

HRKKY = −Jm
∑
〈ij〉

~S1,i · ~S1,j . (5)

Therefore, the simplest interacting model that we be-
lieve captures the essential many-body physics of the TKI
system is

H =
∑
k,σ

εkc
†
kσckσ + λ

∑
i,p,σ

(d†ipσdipσ − 2) + µ
∑
i,σ

(c†iσciσ − 2)

+Λ
∑
i

(d†i+ασ
z
iαβd+β − d†i−ασ

z
αβdi−β)

+J
∑
i

~S1,i · ~s1,i − Jm
∑
〈ij〉

~S1,i · ~S1,j (6)

The goal of this paper is to examine at the mean field
level the effects of the two interaction terms.

II. MFT AND THE BULK PHASE DIAGRAM

A. Outline

In this section we will describe the general phases
which exist in our model. This allows us to embed the
TKI phase within the standard phase diagram for the
Kondo lattice16. We show that there is in general a first
order phase transition from a phase with no Kondo order
(where the d-spins order magnetically) to a TKI phase
at some nonzero value of the Kondo exchange J . Fur-
thermore, this phase can be destroyed by RKKY type
spin-spin interactions which are present in the fully in-
teracting theory and so we include as a separate term in
our mean-field Hamiltonian. If the system orders mag-
netically, time-reversal symmetry is broken and any dis-
tinction between the topological phase and a trivial in-
sulator loses meaning. A similar MF phase diagram was
calculated in Ref.’s [17,18] for 3D TKIs, which did not
consider the role of RKKY interactions.

B. Methods

We would like the study our fully interacting model at
the mean field level. This means we should decouple our
Kondo and RKKY interaction terms into the appropriate
channels. This amounts to an assumption, which must be
checked self-consistently, about the type of order in the
interacting groundstate. To this end, we assume that the
Kondo interaction,

~Si · ~si =
∑
m,m′

~σαβ · ~σγδC†m,αCm,βd
†
m′,γdm′,δ (7)

induces a nonzero expectation value for the opera-

tor 〈C†i,p,σdi,p,σ〉, and the RKKY interaction causes a
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nonzero expectation value for the magnetic order param-

eters 〈~Si〉.
We can now perform the standard mean-field analysis

by decoupling the interactions into the channels

J C†αdαd
†
βCβ → J(φαd

†
βCβ + φ∗βC

†
αdα)− Jφαφ∗β .

Jm(SxSx + SySy) → 2Jm〈Sx〉Sx − Jm〈Sx〉2 (8)

Where α and β denote the two types spin-orbit coupled
single particle states.

Notice that the interaction in Eq. (4) contains terms

like C†+d−C+d
†
−, but these terms vanish after the above

substitution since the resulting c-d hopping process does
not conserve angular momentum. Also, we assumed that
the spin-spin interaction favors magnetic order in the XY
plane. We will justify this assumption in the next section.

We are therefore left with a non-interacting Hamilto-
nian for which the parameters φ+, φ− and 〈Sx〉 must be
determined self-consistently. We use the parameters µ
and λ in Eq.(6) to enforce the conditions that there are
2 electrons per d-site and one electron per graphene site,
ensuring that the system is a band insulator when there
is a full gap at the Fermi energy.

Performing these substitutions, the MF Hamiltonian
becomes

H =
∑
k,σ

εkc
†
kck + λ

∑
i,p,σ

(d†ipσdipσ − 2) + µ
∑
i,σ

(c†iσciσ − 1)

+Λ
∑
i

(d†+ασ
z
αβd+β − d†−ασzαβd−β)

−J
∑
i

∑
p,σ

(φ+ + φ−)(C†ipσdipσ + h.c.)

−2Jm
∑
i

〈Sx〉(d†+↑d+↓ + d†−↑d−↓ + h.c.)

+J(φ+ + φ−)2 + Jm〈Sx〉2 (9)

We then diagonalize the mean-field Hamiltonian and
write the bare electron operators in terms of the free
excitations of the system

d†k,ασ =
∑
n

α
(ασ)
k,n a†k,n

c†k,ασ =
∑
n

β
(ασ)
k,n a†k,n, (10)

which are linear combinations of c and d electrons. Since
H is diagonal in the a†n operators, knowledge of the co-
efficients αn and βn allow us to numerically determine

the values of 〈C†±d±〉, 〈S〉, 〈d
†
idi〉 and 〈c†i ci〉. By averag-

ing over all occupied states of the mean-field model we
can then find the parameters of H where the mean field
constraints are satisfied.

In general, for each order parameter, 〈X̂〉 there are two

self-consistent solutions. These are 〈X̂〉 = 0 and 〈X̂〉 =
x 6= 0. The solution with a nonzero order parameter

breaks a symmetry of the interacting Hamiltonian and
is therefore a distinct phase from the case where 〈X̂〉 =
0. Furthermore, notice that the mean field Hamiltonian
H = H0(J

X
x) is only a function of the product J

X
and

x. Therefore, for any value of x there will always be a
value of J

X
such that 〈X〉 = x. At this J

X
there are two

solutions to the mean-field conditions, x = 〈X〉 6= 0 and
x = 0.

The mean field solution is equivalent to the lowest
energy noninteracting variational state |x〉. Evar =
〈x|H|x〉. Evar is a local minimum for the eigenstate |x〉
of HMF when the self consistency equation x = 〈X〉 is
satisfied. In this case 〈x|H|x〉 = 〈x|HMF |x〉. This argu-
ment allows us to compare the energies of the different
self consistent solutions. Since these energy of solutions
equals the variational energy, the solution with the low-
est energy must be the best mean field approximation to
the true groundstate.

If the order-disorder transition is continuous, then ev-
ery solution with nonzero x must be of lower energy than
the disordered solution where x = 0. However, near a
first order transition, there will exist solutions with small
〈X〉 that are of higher energy than the disordered state
〈X〉 = 0. This gives us an easy way to distinguish be-
tween the two types of phase transitions in our calcula-
tion.

Note that model (9) does not conserve particle hole
symmetry, whereas the fully interacting model (6) does,
so that in order to ensure there are the same number of
conduction electrons we need to adjust µ so that each
site on the graphene lattice is filled to nc = 2.

C. Phases

There are three distinct phases in model (9), which
occur when a) 〈C†d〉 = 0, b) 〈C†d〉 6= 0 and 〈S〉 = 0 or
c) 〈C†d〉 6= 0 and 〈S〉 6= 0.

The first case occurs when 〈C†+d+〉 = 〈C†−d−〉 = 0 and
there is no Kondo screening of the d-electrons. This is the
“Fully Polarized” or Magnetic phase. This phase may be
considered uninteresting as there is no interplay between
the c and d electrons, which know nothing about each
other at the mean field level. The conduction electrons
are thus completely noninteracting and form a semimetal
exactly like graphene with a pair of gapless Dirac cones in
the band structure. The d-electrons still contain the spin-
orbit term and interact through the spin-spin interaction
Jm. In principle the spins could order in any number of
phases depending on the exact form of the Heisenberg
interaction, however the most likely result is that they
order magnetically.

Now, if the spins ordered magnetically in the z-
direction, the S.O. term favors the state |+ ↓,− ↑〉, while
the Jm term favors the state |+ ↑,− ↑〉. These states are
completely orthogonal, therefore the spins will order in
one of these two states depending on which interaction
is stronger. If Λ > Jm, the first state will be chosen and
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the energy per site is EΛ = −Λ. On the other hand if
Jm > Λ, the spins will align in the Sz = +1 state and
the energy per spin will be EZ = −Jm. On the other
hand, if the spin order in the XY plane, the spins order
depending on the Hamiltonian

Hd = ~v†

 Λ JmS
x 0 0

JmS
x −Λ 0 0

0 0 −Λ JmS
x

0 0 JmS
x Λ

~v
where ~v = ( d+↑d+↓d−↑d−↓ ). (11)

The energy of the groundstate with nd = 2 is EXY =

−
√

Λ2 + (JmSx)
2
, where the self-consistent value of

Sx = 〈Sx〉 depends on the ratio Jm/Λ. Clearly, by the
variational principle, EXY ≤ EZ and EXY ≤ EΛ for all
Λ and Jm. So ordering in the XY plane allows the spins
to partially satisfy both the S.O. and RKKY terms in
the Hamiltonian, so that we can safely assume that the
spins order this way. Therefore, in the fully polarized
phase the c and d electrons behave independently, with
the d electrons ordering magnetically according to the
Hamiltonian in (11)

The second phase we consider occurs when 〈C†±d±〉 6= 0
and 〈S〉 = 0. We will call this phase the topological
Kondo insulator (TKI), or simply the Kondo phase. The
nonzero value of φ causes the c and d electron states to
hybridize. Since 〈S〉 = 0, the RKKY interaction has
no effect on the mean-field groundstate. This regime
can be thought of as the many-body analog of the sin-
gle impurity Kondo problem. In that problem when a
single magnetic impurity is immersed in a metal, at low
enough temperatures the magnetic moment is screened
via the formation of a singlet pair with the nearby con-
duction electrons. In our model, there is a dense lattice
of magnetic moments, and every moment is completely
screened by the nearby graphene conduction electrons.
In ref. [20], it was shown that such a phase is the sta-
ble solution to the Kondo lattice problem in the large N
limit, and that in this limit the phase is indeed equivalent
to a conduction sea screening a dilute set of magnetic im-
purities. The result of the screening at each lattice site
is that the conduction electrons and local moments hy-
bridize to form a single composite object. Therefore the
Kondo phase is a free electron system where the resulting
free electrons are linear combinations of the bare c and d
electrons and are the eigenstates of (9) with 〈Sx〉 = 0.

The hybridization between the c and d electrons opens
a gap at the K and K ′ points in the graphene band
structure (that is at the gapless nodes in the Brillouin
zone). However, the form of the coefficient, V±(k), en-

sures that there is no hybridization at ~k = 0. Therefore,
when Λ = 0, the d-electron like band in the band struc-

ture remains gapless at ~k = 0. However, a nonzero Λ
opens a gap at the B.Z. center and creates a full band
gap. The presence of the spin-orbit coupling also gives
the band structure a nontrivial topology. This can be
seen by calculating the parity eigenvalues at the special

time-reversal invariant momenta in the B.Z.. According
to ref. [21], a topological invariant ν can be defined by

(−1)ν =
∏

bands

4∏
j=1

P (kj) (12)

whereby ν = 0 corresponds to the topologically triv-
ial phase and ν = 1 the nontrivial phase. The parity
eigenvalues can be calculated directly by diagonalizing
the mean-field Hamiltonian. This was done in Ref. [8]
and we have repeated this calculation, verifying that the
TKI phase is indeed topologically nontrivial. We have
also solved the model self-consistently on a finite width
strip with armchair edges, and have shown that in the
Kondo phase when Λ 6= 0, at every energy within the
band gap there exists a single Kramers pair of gapless
edge states. In section III, we will study the effect of the
RKKY interaction on these edge states and comment on
the possibility there exists a phase where time-reversal
symmetry is broken on the edge while preserved in the
bulk.

The final, distinct, phase that can occur is one where
there is incomplete Kondo screening of the d moments,
so that there is a mixture of magnetic order and Kondo
order. It is important to note the previous Kondo phase
is only a mean-field state and that the fully interacting
many-body phase contain additional correlations. In our
model we deal with these correlation by including the
RKKY term in our Hamiltonian. That is, both φ =
〈C†d〉 and 〈S〉 are nonzero in this phase. In this case,
time-reversal symmetry is broken everywhere in the bulk.
In the presence of such spontaneous symmetry breaking
there is no distinction between the trivial band insulator
and the topological insulator phases.

D. Phase Diagram and Transitions

In this section we give the results of our mean-field
calculation for the bulk system.

Kondo Order– We start with the simplest case, where we
set Jm = 0 so that spin-spin interactions do not compete
with the tendency for Kondo order. However, even this
simplest case shows interesting physics. First studied by
Withoff and Fradkin in Ref. [22], who showed that the ef-
fect of a vanishing density of states in the band structure
creates a critical point Jc below which the Kondo effect
does not take place. Careful renormalization group cal-
culations on the spin- 1

2 pseudogap Kondo model23 have
since shown that, in the case of graphene, there are signif-
icant corrections to the large-N result near such a critical
point and that these results depend on the presence or ab-
sence of particle-hole symmetry in the model23–25. Tran-
sitions between trivial and topological insulators have
also recently been studied in various models26,27.

Our mean field calculation, however, is similar to other
large-N studies of the pseudogap Kondo problem28. Here
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FIG. 1: a) The Kondo order parameter for three values of Λ, ranging from Λ = 0 to Λ = 0.5 (left) and the corresponding
energy gain compared to the φ = 0 solution (right) . When Λ = 0 the transition is continuous but becomes first order when
Λ 6= 0. b) The magnetic (left) and Kondo (middle) order parameters for fixed J = 0.3, Λ = 0.5. The onset of magnetic order
with increasing Jm shows the transition from the Kondo phase into the mixed phase. Further increasing Jm to the point where
the Kondo order parameter drops to zero this signals the transition into the fully polarized phase. The energy crossover of this
mixed phase with the fully magnetic (top-right) and TKI (bottom-right) phases show that both these transitions are first order.

the large-N mean field approach is used in order to ac-
curately describe the physics within the Kondo phase, at
the cost of not being able to accurately describe the crit-
ical point of this phase transition. In the following we
describe the complete solution of the mean-field calcula-
tion, including all phase transitions. We should keep in
mind, however, that the quantitative details of any con-
tinuous transition are valid only as N →∞ and are not
expected to hold beyond the mean field level.

When Λ = 0, all d-electron sites are equivalent

and there is only a single order parameter 〈C†+d+〉 =

〈C†−d−〉 = φ. In Ref. [22] it was shown that the ef-
fect of a non-constant density of states leads to a critical
Jc = 1

ρ0D
, which signals the onset of Kondo order in this

model.
We will see how this works in the mean field calculation

of our graphene model. Consider the Lagrangian form of
Eq. (9),

L =

∫
dωdk

[
v†α(HMF

αβ (k)− iωδαβ)vβ + Iαvα + v†αĪα
]
.

(13)

Integrating out the fermions, ~v = (cA, cB , d+, d−), pro-
duces the generating function,

Z = exp

[∫
dω

2π
dk Īα

(
HMF
αβ (k)− iωδαβ

)−1

Iβ

]
. (14)

The desired correlation functions can then be derived
from the generating function using the expression

〈v†αvβ〉 =

∫
dkdω (Gαβ(k, iω)) =

δ2Z
δĪαδIβ

∣∣∣∣
I=0

(15)

This is analytically tractable for small values of φ±,
where we can easily take the inverse in Eq. (14) and throw
out all terms of O(φ3) or greater. This gives

〈C†+d+〉 =

∫
dkdω

J(φ+ + φ−)(V+e
iθ − V ∗−)

(λ+ Λ− iω)(−|f(k)| − iω)

〈C†−d−〉 =

∫
dkdω

J(φ+ + φ−)(V−e
iθ − V ∗+)

(λ− Λ− iω)(−|f(k)| − iω)

〈d†±d±〉 =

∫
dk

∫
dω

(|f | − iω)(−|f | − iω)

(λ± Λ− iω)(|f | − iω)(−|f | − iω) + b1φ2(−|f | − iω) + b2φ2(|f | − iω)
(16)

where we have written the graphene dispersion as f(k) =
|f(k)|eiθ(k). We perform the ω integral by contour in-
tegration and exchange the momentum integral for an

integral over energy,
∫
kdk =

∫D
0
ρ0εdε, where D is the

bandwidth and ρ0 is the density of states near the Fermi
energy.
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The conditions 〈C†+d+〉 = φ+, 〈C†−d−〉 = φ− and

〈d†d〉 = 2 lead to the three equations

(λ− Λ) log

[
λ− Λ

D + λ− Λ

]
∼ −D +

1

ρ0J(1 + φ+/φ−)

(λ+ Λ) log

[
λ+ Λ

D + λ+ Λ

]
∼ −D +

1

ρ0J(1 + φ−/φ+)

φ2 ∼ λ− Λ (17)

where we ignored the constant factor from the k depen-
dence of V± and θ, and the third relation comes from
looking at the shift in the residue iω due to small but
nonzero values of λ and φ.

When Λ = 0, then φ+/φ− = 1. In this case there only
exists a solution for Λ when J > 1

ρ0D
. Near Jc = 1

ρ0D
,

Eq’s (17) give the solution λ = J − Jc. Therefore, φ =
〈C†d〉 =

√
J − Jc, and there is a second order transition

at J = Jc.

When there is a nonzero spin-orbit coupling Λ 6= 0,
the ratio φ+/φ− 6= 1, changing the solution to the first
two equations in (17). Therefore, the value of the critical
J for one of these equations is increased while the other
decreases. Since both equations must be satisfied the
overall effect of Λ is to push the transition back to larger
values of Jc(Λ) > Jc(0).

We verify these results is Fig. 1, through the method
detailed earlier. We see that our results agree with the
general argument just presented. In particular, we see
that when Λ = 0, φ decreases continuously to zero im-
plying that there is a second order transition at a finite Jc
between the phase with no Kondo order and the Kondo
phase.

We also consider case where Λ 6= 0, where we show
the numerical data for Λ/t = 0.1 and 0.5. As expected,
we now see a splitting between the φ+ and φ− order pa-
rameters. We also see that the phase transition becomes
first order. In fact we can always find a self-consistent
solution for any value of the order parameters down to
φ± = 0, but as shown in Fig. 1, these solutions are of
higher energy than the disordered phase. This is easy to
understand, as a finite Λ lowers the variational energy
of the fully polarized phase more than it lowers the en-
ergy of the Kondo phase. This is because d-electron-like
bands in the Kondo phase are necessarily linear combi-
nations of both d+ and d− electrons, while in the fully
polarized phase every d-site is filled with d− electrons.
This causes an energy crossing between the two possible
phases, which occurs away from the critical point. This
pushes the fully polarized phase into Kondo regime as
you increase Λ, and causes a first order transition. Fig. 2
a) shows the phase diagram in the J−Λ plane for Jm = 0.
The transition at Λ = 0 is continuous with the critical
point described above, while for Λ 6= 0, the transition is
driven first order.

E. Magnetic Order

Next, we ask what happens when we include the spin-
spin interactions between the d-electrons. In this case,
there is an interplay between three competing forces, the
spin-orbit coupling, the Kondo interaction and the mag-
netic interaction. Despite this competition, there exists a
phase in which both Kondo and magnetic orders coexist.
This is characterized by a nonzero value of both 〈C†d〉
and 〈S〉. Here we will look at the stability of the Kondo
phase to both the fully polarized phase and this mixed
order phase.

First consider the fully interacting Hamiltonian. Deep
within the Kondo phase, the mean field solution to
HMF (〈C†d〉 6= 0) is a saddle point of the action. When
Λ 6= 0, there is a band gap separating the highest oc-
cupied band from the lowest unoccupied band so that
there are no gapless excitations. We can then treat the
spin-spin interaction as a perturbation around this solu-
tion, but it will obviously have no effect if the interaction
strength is smaller than the gap. At the mean field level,
the energies of some occupied states will shift down while
an equal number of states will have their energy shifted
up. Since all states are a finite energy below the Fermi
level due to the band gap, all these states will remain oc-
cupied and to lowest order in perturbation theory there
will be no effect.

The situation is slightly less obvious when Λ = 0 and
the band structure is gapless. In the Kondo phase the
bands touch at the Fermi level only at the Γ point in the
Brillouin zone. This gapless band touching is guaranteed

by the fact that V±(~k = 0) = 0. In this case, a perturba-
tion on the Jm = 0 MF solution will raise the energy of

some states near ~k = 0 above εF . The change in energy
due to this shift is given by ∼ J〈S〉, while the number
of states is limited to ∼ J〈S〉N(εF ). Meanwhile, from
HMF , such a perturbation has a constant energy cost of
Jm〈S〉2. To first order, the total change in energy would
be

∆E ∼ −c1(Jm〈S〉)2N(εF ) + Jm(〈S〉)2. (18)

Since N(εF ) → 0 , it seems likely that even in the pres-
ence of gapless states near the Γ point, a perturbation in
Jm will have a very small effect on the Kondo phase. We
verify both these claims by explicit calculation.

Fig. 1 b) shows this behavior for a cut in the phase
diagram along J = const and Λ = const. For Jm small,
there is no magnetic order and the Kondo phase is sta-
ble. If the gap to single spin excitations is smaller than
the energy cost of destroying the Kondo phase, then the
mixed phase is stable for some regime of Jm. The nu-
merical calculation shows the spin order parameter 〈S〉
turning on for some finite Jm and coexisting with the
Kondo order parameter φ. As the spin-order increases
there is a corresponding drop in the Kondo order param-
eter. At some points in phase space, for small J , the
energy of the fully polarized phase is always lower than
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FIG. 2: Cuts showing the 3D phase diagram. a) The J − Λ plane when Jm = 0. b) The J − Jm plane when Λ = 0. c) The
J − Jm plane when Λ = 0.5. See text for the description of the three phases.

the energy of the mixed phase. In this case, there is a
direct transition from the Kondo phase to the magnetic
phase. The energy crossings in Fig. 1 b) show that the
transitions both into the mixed phase and into the fully
polarized phase are first order.

F. 3D Phase Diagram

Fig. 2 shows 2D cuts of the phase diagram at Jm = 0
and at two different values of Λ. Taken together these
gives us the full 3D mean field phase diagram of our in-
teracting model.

When Jm = 0, there is no competing magnetic inter-
action. At Λ = 0 there is a second order transition into
the Kondo phase at J = Jc. As discussed, this critical
point is a result of the vanishing density of states near
εF . In the non-Kondo phase the d-electrons have no or-
der but are unstable to any infinitesimal interaction. For
Λ 6= 0, the d-levels are split and a full gap opens in the
Kondo band structure which gives the phase a nontriv-
ial topology. Here, the transition between the polarized
phase and the Kondo phase is driven first order.

We also show cuts in the J − Jm plane along Λ = 0
and Λ = 0.5. The main difference between these is that
when Λ 6= 0, Kondo phase is destroyed suddenly at small
J . Further, when Λ 6= 0 the Kondo phase has a full band
gap with a nontrivial topology, while the Kondo phase
for Λ = 0 is a semimetal. The similarity of the two cuts
is due to the stability of the Kondo phase against Jm in
both cases. At the points in phase space where there is
nonzero magnetization, Jm is generally large enough that
the effect of Λ only slightly moves the boundaries.

III. EDGE STATES OF THE TKI PHASE

Perhaps the most dramatic consequence of symmetry
protected topological states is the necessary existence of
nontrivial edge states in systems with a boundary. In two
dimensions the allowed edge states are either A) gapless
or B) spontaneously break the symmetry, while the sys-
tem remains gapped with unbroken symmetry within the
bulk29. In three dimensions a third allowed possibility is
a surface with topological order30–32. It would be very

interesting if such a surface state could be achieved with
a topological Kondo insulator, however in our 2D system
we must restrict ourselves to the first two possibilities. It
has been shown that on the surface of 3D TKIs, fluctua-
tions around the mean-field state can lead to strongly in-
teracting surface theories33. We take a similar approach
below for 2D TKIs where we first discuss the mean-field
solution and then go beyond MFT to look at the true low
energy theory of our edge states.

A. Mean Field Analysis

We now show that at the mean field level, when the
system is studied on a finite strip, so that the noninteract-
ing TKI phase contains gapless edge states, the edges are
always unstable to magnetic perturbations at the Fermi
level. In this way, the TKI is a simple way to realize a
time-reversal invariant insulator with spontaneous break-
ing of the TR symmetry on the edges.

In the bulk system, deep within the Kondo regime, the
effect of an infinitesimal RKKY interaction is negligible
due to the presence of a gap to any spin-1 excitations.

Our argument for the MF edge theory is similar to
the Peierls argument34–36 whereby in one dimension, if
we ignore the dynamics of the phonons, logarithmically
more energy can always be gained by the electrons or-
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FIG. 3: The energy gained by opening a gap at the Fermi level
near k = π is logarithmic in JS in the mean-field calculation.
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FIG. 4: (top) The single-particle band structure on a finite
strip shows in gap edge states and a gap opening in the edge
spectrum for small Jm. (bottom) Measuring the symmetry
breaking shows that the magnetic order is localized near kx =
π (left) , and at the edges of the strip y = 0, Ly (right).
(y = 0 and y = Ly/2 gives the largest and smallest peaks
respectively.)

dering. The mean field 〈S〉 plays the role of the static
phonon fields, and the periodic lattice distortion is in-
stead replaced by a coupling between right and left mov-
ing electron fields. The effect of the magnetic interac-
tion is to open a gap at the Fermi level, replacing the
edge spectrum εk ∼ vkk with εk ∼

√
(vkk)2 + ∆2 where

∆ = Jm〈S〉. Following the standard argument, one di-
mensional gapped systems contain a singularity in the
density of states, and a proper estimate for the change in
energy due to the magnetic ordering is

δE ∼
∫ Λ

0

dk(
√

(vkk)2 + ∆2 − vkk) =
1

4
∆2 log[4eΛ2/∆2].

(19)

We verify this argument with an explicit mean-field
calculation in the same vein as in section II for the bulk
phase diagram. We perform the mean-field calculation in
the same way as for the bulk system. The Hamiltonian
now has an 8Ny site basis, where Ny is the number of
unit cells of our finite strip in the y direction. We use
different order parameters for sites on the edge and in
the bulk and find the self-consistent values of these order
parameters. For the bulk order parameter we average the
order over all sites that are not on the edge. In Fig.4, we
have tuned J and Λ to a point deep within the Kondo
phase. We saw in the previous section that this phase
is extremely robust against the formation of magnetic
order. An important point is that in order to satisfy the
conditions 〈d†d〉 = 〈c†c〉 = 2 on every site, the edge states
need to intersect the Fermi level, εF , at exactly k = π.
This is the time-reversal invariant momentum at which,

due to Kramer’s theorem, the two edge states intersect.
In the mean field, the spin-spin interaction term couples
fermions of opposite spin at the same momentum. At k =
π, these two fermions modes are degenerate with energy
ε = εF . The spin interaction breaks this degeneracy,
sending one state above εF and one below εF . Consider
the Hamiltonian describing the edge states near kF ,

Hedge =
∑

−Λ<k−π<Λ

(
c†k↑c

†
k↓

)[
εk Jm
Jm −εk

](
ck↑
ck↓

)
.(20)

The eigenvalues of H are ε± =
√
ε2k + J2

m. When
εk � Jm, the corresponding eigenstates are given by
v± = ck↑ ± ck↓ + O( εJ ). Meanwhile, for J � εk, to
first order the eigenstates are just the original states
v+ = ck↑ + J

2εk
ck↓ and v− = ck↓ − J

2εk
ck↑. In the first

case, the conduction electrons are almost completely po-
larized in the XY plane, while in the second case the
eigenstates have very little magnetic order. Therefore, it
is only in the regime where εk � Jm, that a small Jm
creates a significant magnetization. But since the edge
states are gapless there will always be some finite region
where this condition is true, and it is these small number
of states which contribute to the spontaneous breaking
of TR symmetry on the edge.

In Fig. 3, we verify that the energy of a self-consistent
solution of the MF Hamiltonian as a function of the input
parameter JS is

∆E ∼ (JmS)2| log(JmS/∆̃)| − JmS2 (21)

where ∆ is an arbitrary cutoff. Therefore, for any value
of Jm, there is an S for which the energy gain is positive,
making this TR broken state favorable. Since the self-
consistent point S = 〈S〉 is the variational minimum, it
must therefore also have a positive gain in energy. Fig. 4
c) and d) show that the symmetry breaking is localized to
momenta near the TRIM k = π and is localized in space
to the edge of the strip. Meanwhile, Fig.’s 4 a) and b)
show the band structure of the finite strip. In particular,
they show the opening of a gap at the Fermi level due to
a small nonzero Jm.

B. Luttinger Liquid Physics

The Peierls argument and mean-field calculations in
the previous section are only valid in the limit of a static
spin field (similar to how the lattice Peierls argument
is only valid for static phonons). For a one-dimensional
system, however, we can solve the low-energy theory ex-
actly using bosonization techniques. In gapless 1D sys-
tem, the low-energy excitations are bosonic degrees of
freedom which are localized near the Fermi points. For a
non-interacting topological insulator it is well known that
each edge contains a time-reversed pair of chiral fermion
modes12, for example a right-moving spin up mode and a
left-moving spin-down mode. Taken together these com-
prise a single bosonic degree of freedom, so that the prob-
lem maps onto a spinless fermion problem. In the absence
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of interactions, which may couple the right and left mov-
ing modes, the bosonic action for the edge of our TKI is
just the action of a free bosonic particle

S = vk

∫
dxdτ

[
K(∂xφ)2 +

1

K
(∂τφ)2

]
. (22)

In our case, the neutrality condition

1

N

∑
k

〈d†d〉 =
1

N

∑
k

〈c†c〉 = 2 (23)

ensures that the edge states cross the Fermi level at ex-
actly k = π. Near this Fermi level, the right and left mov-
ing modes can be bosonized to give a single free bosonic
degree of freedom which describes the low-energy dynam-
ics of the system. This allows us to give a rather simple
interpretation of the mean-field result in terms of the al-
lowed interaction between the low-energy modes of our
theory. We will further see how the mean field result
fails to properly capture the fluctuations of the 1D edge
modes.

At the Fermi point we have a single right moving spin
up mode and a left moving spin down mode. The spin-
spin interaction, Jm, couples these modes together. We
can expand the fermion creation and annihilation oper-
ators in terms of bosonic operators. The most relevant
terms in this expansion are

ψ†R/L ∼ e
i(θ±φ). (24)

At the mean field level, the spin-spin interaction is

Jm〈S〉Sx, where Sx = (d†+↑d+↓ + d†−↑d−↓ + h.c.). ψR
is a linear combination of all spin up c and d operators,
and likewise for ψL and spin down operators. There-
fore, writing this interaction in terms of ψR/L produces
a number of terms. The most relevant allowed terms is,

g
MF

(
ψ†RψL + ψ†LψR

)
∼ cos(2θ), (25)

where gMF ∼ Jm〈S〉. The scaling dimension of such an
operator is well known from the form of the free bosonic
correlation function to be

dim[cos(pθ)] =
p2

4K
, dim[cos(pφ)] =

p2K

4
. (26)

Therefore the operator cos(2θ) is a highly relevant pertur-
bation at the noninteracting point K = 1. This implies
that for the mean-field model, an infinitesimal pertur-
bation Jm will flow under RG to strong coupling. The
resulting model is a sine-Gordon model, in which the θ
field is pinned at strong coupling, breaking TR symme-
try.

However, this type of naive analysis ignores the fluctu-
ations of the spin order parameter 〈S〉, which can drasti-
cally affect the physics. In particular, we can write down
all allowed interactions involving a single right and a sin-
gle left moving mode. These interactions are

H
(1)
int = g1ψ

†
RψRψ

†
LψL (27)

H
(2)
int = g2ψ

†
Rψ
†
RψLψL (28)

where the umklapp operator g2, can only exist in systems
with a single fermion species if there is point splitting

g2 ∼ ψ†R(x)ψ†R(x+ a)ψ†L(x)ψL(x+ a). This introduces a
derivative upon taking the continuum limit, making this
operator less relevant.

The most relevant bosonized expressions contained in
Eq.’s (27) and (28) are

H
(1)
int ∼ g1

[
(∂xφ)2 − (∂xθ)

2
]

(29)

H
(2)
int ∼ g2 cos(4θ). (30)

The g1 term can be absorbed into the action, Eq. (22),
by renormalizing the value of the Luttinger parameter
K. The g2 term, however, will attempt to pin the field θ,
thus opening a gap in the energy spectrum at the Fermi
level. This process is relevant if the scaling dimension for
the g2 operator is less than 2. In that case, the cosine
operator will flow to strong coupling and pin the θ field.
By Eq. (26), the scaling dimension of the g2 operator is
dim[g2] = 4/K. This implies that at the noninteracting
point K = 1, the cosine term is irrelevant and the action
of the edge states remains gapless. It is only when the
g1 term pushes the value of K past K = 2 that the
cosine operator becomes relevant. At this point there is
a Kosterlitz-Thouless transition into a phase where the
θ field is pinned. The θ field in this case acts like the Sx

spin operator since, by the bosonization rules above

Sx ∼ ψ†↑ψ↓ + ψ†↓ψ↑ = ψ†RψL + ψ†LψR = cos(2θ). (31)

Pinning θ at θ = 0, implies that 〈Sx〉 6= 0, and so time
reversal symmetry is broken on the edge.

The stability of edge states in the spin-quantum Hall
effect has been studied previously, focusing on the effect
of a screened Coloumb interaction38,39. The results in
those works similarly find that a single Kramer’s pair
of edge modes are stable at weak coupling, but may be
driven into a gapped phase by sufficiently strong inter-
actions. In our problem, the analogous interactions are
included naturally in the form of the RKKY interaction
term.

This result leaves two possibilities for the full phase
diagram in the presence of edge states. The first case is
that the strength of RKKY interactions, Jm, required to
gap the edge modes for a given value of J is less than
that required to drive the edge into a magnetic phase. In
this case, time-reversal symmetry will be broken sponta-
neously on the edge of the system while being preserved
within the bulk, and the edge properties of the TKI in
this phase will differ dramatically from that of the un-
correlated 2D topological insulator of Ref’s [9,12].

The second possibility is that for all J , the required
Jm to drive the edge to a gapped state is greater or equal
to that required to drive the bulk into the magnetic or
mixed phases. In this case, the low energy theory of
the TKI is qualitatively similar at weak coupling to the
noninteracting TKI phase of Ref. [9]. However, even in
this case, the low-energy edge theory, while gappless, is
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still governed by the action in Eq. (22) and controlled by
the Luttinger parameters vF and K and thus will show
quantitative differences from the noninteracting theory.

We may also ask, in what case is the mean-field anal-
ysis of the previous section valid. If we generalize our
model to one with Nf flavors of fermions on each lattice
site we enter a regime where the large-Nf and slave-boson
approaches to the Kondo problem become justified17,20.
In the limit Nf →∞, the mean-field result becomes ex-
act as fluctuations, even on the edge, are strongly sup-
pressed. Within the Luttinger liquid framework, we now
need to study a system with Nf time-reversed pairs of
gappless modes on each edge. In the topologically non-
trivial phase, Nf must be odd. It is mentioned in Ref. 38
that the Nf = 3 case is less stable to interactions than
the Nf = 1 case. This is due to the enlarged number
of allowed interactions which appear when we include
terms which couple different modes together. We there-
fore spectulate that as Nf →∞, the huge number of al-
lowed interactions in the low-energy picture will always
gap out all edge modes in order to agree with the high-
energy mean field picture. The large-Nf theory should
always fall under the first case discussed above where TR
symmetry is broken on the edge but preserved within the
bulk.

IV. CONCLUSIONS

In this paper, we have discussed the role of interac-
tions in the physics of 2D topological Kondo insulators.
To this end, we wrote down a realistic theory for a sys-
tem of graphene doped with 5d adatoms where there are
two localized d-electrons on each adatom which form a
composite spin-1 magnetic moment and interact with the
nearby conduction electrons on the graphene lattice. We
performed a mean-field calculation on this model where
we were careful to note that included within the Kondo
interaction is an RKKY type spin-spin term between the
localized d-electron states, which appears at second order
in perturbation theory in this interaction. Including both
the Kondo and RRKY couplings as separate parameters
allows us to decouple our theory into both the Kondo
and magnetic ordering channels.

First, we found that the bulk phase diagram is sep-
arated into three distinct regions. For sufficiently large
values of the Kondo coupling and weak RKKY interac-
tions the Kondo insulator phase is stabilized and posseses

the same low-energy theory as a noninteracting topologi-
cal insulator. As the relative strength of the RKKY term
is increased the localized moments break time-reversal
symmetry by either becoming fully polarized or enter-
ing a mixed phase with both magnetic and Kondo order.
The nontrivial topological distinction of the TKI phase
is completely lost in both of these magnetic phases.

The TKI phase is fully gapped and so we expect that
any fluctuations around the mean-field result can be ne-
glected. Therefore, to look for nontrivial correlation phe-
nomena we further studied the effects of the Kondo in-
teraction on the gappless edge states of this topological
phase.

We find that in the large Nf limit, where the mean
field treatment becomes exact, a gap is always opened in
the edge spectrum and TR symmetry is spontaneously
broken locally at the edges. At weak coupling, when the
RKKY parameter Jm is small, there exists a critical 1/Nf
which marks a qualitative change in behaviour whereby
strong fluctuations at the edge destroy the magnetic or-
der of the MF solution. For Nf = 1, as in our original mi-
croscopic model, this leads to a phase with gappless edge
states which are described by the Luttinger liquid Hamil-
tonian with interaction dependant Luttinger parameter
K. This 2D TKI therefore provides a natural system
where interactions cannot be ignored if one is to properly
describe the edge phenomena quantitatively. At interme-
diate values of the coupling Jm, an edge transition into
the gapped phase occurs independantly of the magnetic
transition in the bulk which may lead to a qualitative
deviation from the noninteracting edge theory. Indeed,
there two possibilities within the TKI phase at interme-
diate coupling. The first is that the edge states remain
gappless everywhere in this phase. The second is that
there is a transition into a phase with magnetic order
on the edge but not in the bulk. While we cannot rule
out either of these two cases within our analysis, the sec-
ond possibility represents a dramatic departure from the
edge theory of the noninteracting topolgical insulators
and thus is a possible avenue to search for correlation
effects in topological phases.
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