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We investigate the Hubbard model on the anisotropic triangular lattice as a suggested effective
description of the Mott phase in various triangular organic compounds. Employing the variational
cluster approximation (VCA) and the ladder dual-fermion approach (LDFA) as complementary
methods to adequately treat the zero temperature and the finite temperature domain, we obtain a
consistent picture of the phase diagram as a function of anisotropy and interaction strength. The
metal-insulator transition substantially depends on the anisotropy, so does the nature of magnetism
and the emergence of a non-magnetic insulating phase. We further find that geometric anisotropy
significantly influences the thermodynamics of the system. For increased frustration induced by
anisotropy, the entropy of the system increases with interaction strength, opening the possibility of
adiabatically cooling a frustrated system by an enhancement of electronic correlations.

PACS numbers: 71.30.+h, 71.10.Fd

I. INTRODUCTION

Single crystals of organic charge transfer salts have
recently received substantial interest, where fascinat-
ing phenomena such as several emergent many-body
phases are observed. κ-(BEDT-TTF)2Cu[N(CN)2]Cl
and κ-(BEDT-TTF)2Cu2(CN)3 are two prototypical ex-
amples of such organics: As similarities are concerned,
Fermi liquid, Mott insulator behavior, and the crossover
between the two phases are similarly detected in both
materials1,2. The metal-insulator transition is found
to be associated with unusual critical exponents which,
face value, do not fall into any established universal-
ity class3. The main difference between these com-
pounds, however, which sparks even more substan-
tial interest, shows up in their magnetic behavior.
κ-(BEDT-TTF)2Cu[N(CN)2]Cl displays long-range mag-
netic order at low temperatures, which is in sharp con-
trast to the strongly magnetically frustrated behavior
of κ-(BEDT-TTF)2Cu2(CN)3. The bulk spin suscepti-
bility4 of κ-(BEDT-TTF)2Cu2(CN)3 reflects this strong
frustration, as it displays no indication of long-range an-
tiferromagnetic order at temperatures significantly lower
than the magnetic exchange scale, as inferred from the
Heisenberg coupling estimated from high-temperature se-
ries expansions5. Together, these findings highlight the
similarity of the two compounds in the charge sector,
but also the clear difference regarding the spin degrees of
freedom, which also manifests itself in the effective field
theory description of the problem6–9. Separating charge
from spin paves the way for the investigation of effec-
tive spinon theories in the Mott insulating phase, with
or without gapless spinon modes yielding a potentially
unstable spinon Fermi surface10.

Such effective field theories, however, are not strin-
gently specified and can take on different forms. For
example, the low-T thermal conductivity is found to
be contributed by the spin-1/2 spinons in a theory of
a U(1) gauge field coupled to a spinon Fermi surface6,
but associated with visons in a Z2 theory7. A simi-

larly puzzling situation as in theory likewise exists on
the experimental side. There, the interpretation of the
given evidence is far from settled, as specific heat11 and
thermal conductivity12 experiments may yield different
conclusions on the nature of the fermionic excitations in
κ-(BEDT-TTF)2Cu2(CN)3. On top of all these compli-
cations, even if we assume a spin liquid state in the latter
compound, it is still debated whether this state would be
fully gaped or not13,14.

What are the microscopic parameters whose variations
impose such a diversity of exotic many-body phenom-
ena in the organic compounds? While the interaction
strength is probably rather comparable in all these com-
pounds, a clear difference that catches the eye lies in the
anisotropy strength inherently determined by the under-
lying crystal structure and chemical components. The
anisotropy strength can be obtained from ab initio cal-
culations15–17. Assuming the Hubbard model on a trian-
gular lattice to be the correct model for describing the
interplay of geometric frustration with electronic correla-
tions, it is a natural further step of complexity to consider
the lattice anisotropy.

In this paper, we study the Hubbard model on the
triangular lattice with varying anisotropy strengths,
devising methods to treat both the zero- and finite-
temperature regime. The Hamiltoinan is given by

Ĥ = −
∑

<ij>,σ

tijc
†
iσcjσ −µ

∑
iσ

c†iσciσ +U
∑
i

ni↑ni↓, (1)

with 〈ij〉 denoting nearest neighbor bonds, tij = t′ for
the horizontal hopping, and tij = t for the diagonal hop-
ping as shown in Fig. 1. Varying the anisotropy t′/t
from the limiting values 0 to 1, we effectively change the
lattice geometry from square to triangular type. Unless
stated otherwise in the paper, we choose the phrasing
of small and large anisotropy according to the value of
t′/t. The most interesting regime for the organic com-
pounds is located around the isotropic triangular limit
t′/t = 1, where only small variations can yield crucially
different scenarios. It is instructive to see how the phase
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diagram evolves from the square limit towards the trian-
gular limit, which is why we analyze the complete domain
0 ≤ t′/t ≤ 1.1. For t′/t > 1.1, the system quickly evolves
towards an effectively one-dimensional scenario of weakly
coupled chains, quickly rejecting magnetic order18. This
is neither a relevant regime for the organic compounds
we focus on, nor particularly suited for the methods em-
ployed in this work, which is why the regime t′/t > 1.1
will not be further addressed.

The paper is organized as follows. Sec. II briefly in-
troduces the methodology of the VCA and the LDFA.
For the VCA, we elaborate on several recent method-
ological refinements to enhance its quantitative accuracy
such as by treating the hopping as a variational parame-
ter and by avoiding artificial broadening to obtain the ex-
act poles of the single particle Greens function. The zero
and finite temperature phase diagrams are obtained by
VCA and LDFA, respectively, providing a complemen-
tary and consistent perspective of the Hubbard model
on the anisotropic triangular lattice. Our results are dis-
cussed in Sec. III. As a function of the anisotropy param-
eter from the square to the triangular limit, we find a
magnetic phase transition from Néel-AFM to 120◦-AFM
order along with a growing metallic regime for weaker
Hubbard U . Furthermore, already close to the triangu-
lar limit, the onset of a non-magnetic insulating regime
is found, which is the candidate domain for possible spin
liquid states, where the charge degree is frozen without
spin ordering. The LDFA additionally offers the possi-
bility of addressing questions of thermodynamics in the
Hubbard model. In particular, we find indication for
adiabatic cooling caused by the change of frustration as
a function of interaction strength, which might be ob-
served in highly tunable scenarios such as triangular op-
tical lattices loaded with ultra-cold fermionic isotopes.
In Sec. IV, we conclude that our analysis sets the ini-
tial stage for further investigations of the many-body
phases in the Hubbard model on the anisotropic trian-
gular lattice, for which we can identify the promising
non-magnetic insulating regime. Whatever the uncon-
ventional phases may be that are found in this regime,
and by which effective theories they are best described,
the lattice anisotropy is likely to be a crucial microscopic
parameter.

II. METHODOLOGY

In this section, we briefly review the methods we em-
ploy in this paper, namely the VCA and the LDFA. These
two methods will be subsequently applied for zero and fi-
nite temperature, respectively, focusing on the quantum
phase diagram and certain thermodynamic properties.

A. T=0: Variational Cluster Approach

The VCA19 is based on the self-energy-functional the-
ory (SFT)20,21, which provides an efficient numerical
technique for studying strongly correlated systems, es-
pecially in the presence of different competing orders.
VCA simplifies the lattice problem, as defined in Eq. (1),
to an exactly-solvable problem defined in a reference
system consisting of decoupled finite-size clusters. The
thermodynamic limit is recovered by reintroducing the
inter-cluster hopping to the decoupled cluster via a non-
perturbative variational scheme based on SFT. The VCA
has been successfully applied to many interesting prob-
lems, including the high-Tc cuprates22–26 and topological
insulators27–29.

In particular, the VCA has already been employed to
analyze the Hubbard model on the anisotropic triangu-
lar lattice by Sahebsara and Sénéchal in Ref. 30. It is a
method that is particularly suitable for such a study, as
the anisotropy induces several phase transitions in the ge-
ometrically frustrated system which can be conveniently
described within VCA. In Ref. 30, however, the speci-
fications chosen within the VCA, such as the choice of
the finite size cluster, were inadequate to correctly re-
solve a significant range of the phase diagram. In the fol-
lowing, we will present our VCA in an independent and
self-contained fashion. The most important refinements
we employ for the VCA to obtain an accurate phase di-
agram, as well as a detailed comparison to Ref. 30, is
explicated in Appendix A.

In the SFT, the grand potential of a system is defined
by H = H0(t) + H1(U) and written as a functional of
the self-energy Σ:

Ω[Σ] = F [Σ] + Tr ln
(
G−10 − Σ

)−1
, (2)

where F [Σ] is the Legendre transform of the Luttinger-
Ward functional and G0 = (ω + µ − t)−1 is the non-
interacting Green’s function. It can be shown that the
functional Ω[Σ] is stationary at the physical self-energy,
i.e. δΩ [Σphys] = 020. As the Luttinger-Ward functional
is universal, it has the same interaction dependence for
systems with any set of single particle operators t′ as
long as the interaction U remains unchanged. Note that
the functional Ω [Σ] itself is not approximated by any
means; we restrict, however, the “parameter” space of
possible self-energies to the self-energies of the reference
system. Thus, the stationary points are obtained from
the self-energy Σ′ = Σ [t′] of a system defined by H ′ =
H0(t′) + H1(U), which we name the reference system.
After defining V = t − t′ we are able to conveniently
define the VCA-Green’s function,

G−1VCA = G′−1 − V . (3)

The VCA grand potential is

Ω[Σ′] = Ω′ + Tr ln
(
G−10 − Σ′

)−1 − Tr ln(G′) , (4)
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FIG. 1. Anisotropic triangular lattice with diagonal hoppings
t(black) and vertical hopping t′(green). The reference clusters
are shown for Lc = 3, Lc = 6, and Lc = 12, where the larger
clusters are mirrored to recover the lattice geometry. Hop-
pings between the cluster and its mirror cluster are indicated
by the dotted links.

with Ω′, Σ′, and G′ denoting the grand potential, the
self-energy and the single-particle Green’s function of the
reference system, respectively. The reference system is
chosen such that it can be solved exactly, i.e. Ω′, Σ′, and
G′ should be readily obtained numerically. We choose
the reference system as a set of decoupled clusters and
solve them with open boundary conditions via exact di-
agonalization. In this sense, the short-range correlations
within the reference system are fully taken into account
in the VCA. The correlation beyond the reference sys-
tem size will be treated in a mean-field fashion via the
variational scheme.

The choice of the reference system, i.e. the cluster
shape and size, has to respect the fact that tuning the
anisotropy from 0 to 1 effectively modifies the system ge-
ometry from square to triangle. Thus, a reference system
is needed which incorporates both the Néel and spiral or-
der in the VCA in a commensurate fashion, in order not
to bias the variational procedure (see also App. A 3). In
this paper, two reference systems are explored with the
cluster size of Lc = 6 and Lc = 12. They are mirrored
in our calculation to recover the lattice translation sym-
metry with a supercluster31. The Green’s function of
this supercluster G′ consists of the cluster and mirrored
cluster given as,

G′−1 =

(
G′−11 0

0 G′−12

)
+

(
0 t21
t12 0

)
, (5)

where G′1 is the reference cluster Green’s function and G′2
is the Green’s function of the mirrored cluster, which is
a simple transformation of G′1 (in the simplest case, it is
just a copy of G′1). The reference and the mirrored clus-
ters are connected through the single-particle hopping

t12, as indicated by the dotted links in Fig. 1.

B. Finite-T: Ladder Dual-Fermion Approach

For the finite-temperature study, we employ the dual-
fermion approach32,33, considering only the 2-particle
vertex and ladder-type diagrams for the self-energy. The
dual-fermion approach decouples a correlated lattice de-
fined in Eq. (1) into a group of impurities which cou-
ple to each other through an effective interaction medi-
ated by auxiliary dual-fermions. The local problem can
be well described within the dynamical mean-field the-
ory (DMFT)34. The perturbation expansion over the ef-
fective interaction of the dual-fermion variables can sys-
tematically generate non-local corrections to the DMFT.
The basic idea of the dual-fermion approach is schemat-
ically shown in Fig. 2, where the lattice problem defined
in Fig. 2a is decoupled into an impurity problem as in
DMFT (Fig. 2b). The difference between the lattice and
the decoupled impurity problem is treated perturbatively
in the dual-fermion approach (Fig. 2c).

Let Fig. 2a denote the Hubbard model on a square
lattice where the yellow spheroids represent sites on the
lattice. The bond connecting two yellow spheroids rep-
resents the hopping between these two sites. When two
electrons with different spins stay on the same site, local
Hubbard U act upon them. In the DMFT approximation
Fig. 2b, the bonds between different sites are effectively
removed, in the sense that each site becomes an impurity
coupled to a dynamical bath ∆(ω). In Fig. 2b, ∆(ω) is
shown as a purple sphere around each site. tij − ∆(ω)
associated with the blue bonds in Fig. 2c represents the
difference between the lattice model in Fig. 2a and its
DMFT approximation in Fig. 2b. The DF method then
performs a perturbative expansion in terms of this differ-
ence, and as such restores momentum dependence start-
ing from the DMFT limit.

Let us formulate the above idea by starting with
the lattice action corresponding to the Hamiltonian in
Eq. (1):

S[c, c∗] =
∑
i

Siloc[c, c
∗] +

∑
n,k,σ

[εk −∆(iωn)]c∗kσckσ. (6)

Siloc[c, c
∗] = −∑n,σ c

†
kσ(iωn)[iωn+µ−∆(iωn)]ckσ(iωn)+

U
∫
ni↑(τ)ni↓(τ)dτ is the action of an impurity coupled to

a continuum bath. The dynamics of the bath is described
by the hybridization function ∆(iωn). The second sum
in Eq. (6) is the term that is treated perturbatively.

If the local action Sloc is already a good description of
the original system, the second term in the r.h.s. of Eq.
(6) will effectively be a small parameter. An expansion
in this small term, i.e. εk − ∆(iωn), generates further
corrections to Siloc and can be calculated order by order.
A convenient way for such an expansion is to rewrite the
second term in the r.h.s. of Eq. (6) with a dual variable
f, f∗ through Gaussian integration. After integrating out
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the c-variables, the original lattice problem described in
Eq. (6), now can be equally written as an action that
only depends on the f variables:

FIG. 2. As a non-local extension of the DMFT, the dual
fermion method perturbatively expands the difference of the
single-particle hopping and the DMFT hybridization function,
i.e. εk − ∆(iωn), which generates systematic non-local cor-
rections to the DMFT solution. Ideally, with all the expan-
sion terms taken into account, the lattice problem defined in
Fig. 2a can be exactly solved by the dual fermion method.

S[f, f∗] = −
∑
n,k

ln[∆(iωn)− εk]−
∑
i

lnZiloc +
∑
i

Vi[f
∗, f ] +

∑
n,k,σ

{
[∆(iωn)− εk]−1 + g(iωn)

}
f∗ωkσfωkσ . (7)

The interaction between the f -variables, i.e. Vi in
Eq. (7), is the reducible multi-particle vertex of the c-
variables, which can also be obtained by solving Siloc with
an appropriate impurity solver, such as the continuous-
time quantum Monte Carlo method35.

Eq. (6) and Eq. (7) are two equivalent ways to describe
the same problem, as no approximation is introduced in
the transformation. Thus, the lattice Green’s function
Gk(iωn) can be equally constructed from this new action:

Gk(iωn) = [∆(iωn)−εk]−2gdk(iωn)+[∆(iωn)−εk]−1 , (8)

where gdk(iωn) is given as

gdk(iωn) = [g−1(iωn) + ∆(iωn)− εk − Σdk(iωn)]−1 . (9)

It becomes transparent that the problem of solving an in-
teracting many-body problem defined in Eq. (1) is equiv-
alent to solving an Anderson impurity problem, i.e. self-
consistently determine g(iωn) and ∆(iωn), and addition-
ally calculating Σdk(iωn) from the perturbation expansion
of Vi[f

∗, f ] in Eq. (7). In the following calculation, we
will impose the approximation to consider ladder-type
diagrams of Σdk(iωn) up to infinite order which only con-
tain the 2-particle vertex33 in the particle-hole channel.
With such a simplification employed, the dual-fermion
approach is now denoted as LDFA in the following. The

LDFA approximation33, and even the stronger approxi-
mation of considering only selective self-energy diagrams
from the 2-particle vertex36, have proven fairly accurate
in studying strongly correlated electron systems.

Eq. (8) sets up an exact relation for the single-particle
Green’s function of the original c-variables and the dual
f -variables. Similar exact relations can also be found for
higher-order correlators. For example, for the spin sus-
ceptibility, which is employed to identify different mag-
netic phases in this work, we have

χQ(k, k′) = χ0
Q(k, k′) + hkhk+Qχ̃

d
Q(k, k′)hk′hk′+Q .

(10)

Here, hk = [∆(iωn) − εk]−1, χ̃dQ(k, k′) = χdQ(k, k′) −
χd,0Q (k, k′) stands for the reducible vertex of the dual vari-
ables. The high momentum-resolution of the spin sus-
ceptibility calculated from the dualf-fermion approach is
very hard to achieve in other approaches. In turn, this
resolution is vital to studying the spin structure at differ-
ent anisotropy strengths, as the magnetic order changes
from Néel-type (with magnetic wave vector Q = (π, π))
to a 120◦-type (with Q = (2π/3, 2π/3)).
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III. RESULTS

A. VCA

Fig. 3 summarizes the zero temperature phase diagram
as a function of anisotropy and interaction strength as
obtained by our VCA calculations. As stated before, the
geometrical frustration is parametrized by the size ratio
t′/t of the horizontal and diagonal hoppings in Fig. 1.
In the strongly correlated limit, Eq. (1) is equivalent to
the Heisenberg model, and the system develops the Néel-
AFM at t′/t = 037 and the 120◦-AFM at t′/t = 138–40.
Varying the anisotropy strength, i.e. changing the value
of t′/t, we observe a transition between these two magnet-
ically ordered states. The Néel-AFM state is surprisingly
stable against geometric frustration, which, among other
methods, has also been found in more sophisticated func-
tional renormalization group studies18: Within the VCA,
t′/t has to be larger than 0.89 in order to destroy the
collinear antiferromagnetic order to establish the 120◦-
AFM. In contrast, in the weak-coupling limit, the geo-
metric frustration plays a much more significant role al-
ready for small t′/t, as it stabilizes the metallic phase in
the entire range of t′/t > 0 for sufficiently small U/t. (On
the square lattice and nearest neighbor hopping, due to
the Fermi surface nesting, the ground state of the system
is Néel-ordered already for infinitesimal Hubbard U . The
small offset found in Fig. 3 is a minor finite size artefact
in the VCA.) With the increase of t′/t, the metallic state
is stabilized and extends up to larger values of U/t. For
small t′/t, the metal-insulator transition (MIT) coincides
with the development of antiferromagnetic order.

With larger anisotropy, the MIT as a function of cou-
pling strength acquires a different character. In Fig. 3,
we observe a transition from a metallic ”phase” to a non-
magnetic insulating (NMI) phase. Approximately for
5.2 < U/t < 9, the system opens up a charge gap with-
out developing long-range magnetic order when t′/t > 0.7
(see Fig. 3 for the precise boundaries of the metal-NMI
and NMI-magnetic transition.) The NMI phase is the
natural regime where one or several kinds of quantum
spin-liquid (QSL) phases might be located. Strong ge-
ometric frustration combined with charge fluctuations
suppresses the magnetic ordering in this coupling region.
Note that since our numerical methods are adjusted to
the computation of single-particle quantities, it is im-
possible for further analyze the specific properties of the
NMI phase, which would be indispensable to make con-
crete predictions for the spin liquid states to be expected.

The appearance of the NMI phase in the intermediate
coupling region qualitatively agrees with other theoret-
ical investigations30,31,41–48. In these works, including
ours, the emergence of the NMI phase is consistently
shown to be due to the competition of electronic cor-
relation and geometric frustration. However, the size of
the NMI phase differs. For VCA, this is partially due to
the fact that the lower bound of the NMI phase slightly
depends on the cluster size. The metal to NMI phase

transition occurs at U/t = 5.4 for Lc = 3, U/t = 5.25
for Lc = 6, and at U/t = 6.3 for Lc = 12. As electrons
gain more mobility in a larger cluster, the kinetic energy
of the ground state will become lower in this case.

Recently, we realized that for the hexagonal lattices in
particular, this mobility enhancement can be efficiently
simulated by introducing another variation parameter,
i.e. t, to the VCA procedure28, see also Appendix A 1.
Hopping t describes the itinerancy of a single electron.
The variation of t, thus, allows to minimize the kinetic
energy, which largely recovers the same physics in a small
cluster that would emerge in a larger cluster. In contrast,
the upper bound of the NMI phase, i.e. the NMI to
120◦-AFM phase transition boundary, is determined by
the collective behavior of all electrons in the system, and
thus is less affected by the variation of single electron
hopping. As a result, we find that, by varying t, the
lower bound of the NMI phase becomes U/t = 7.5 for
the isotropic triangular lattice with Lc = 6, while the
upper bound U/t = 9.4 is unchanged. This is affirmed
by calculations on a larger cluster Lc = 12 where we find
the MIT at U/t = 7.2.

In our VCA calculations, the MIT boundary is deter-
mined by the opening of the single particle gap ∆sp. It
is directly obtained from the poles of the Green’s func-
tion with non-zero weight. As such, no broadening of the
spectral function and further extrapolation is employed,
see Appendix A 2 for more technical details. This allows
us to accurately determine the charge gap size from the
energy difference between the top of the valence and bot-
tom of the conduction band. We find, as also displayed
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FIG. 3. Zero-temperature VCA phase diagram as a function
of anisotropy t′/t and interaction strength U/t. Changing t′/t
from 0 to 1 interpolates the system geometry from square to
triangular type. Four regimes are identified: paramagnetic
metal, Néel-AFM insulator, 120◦-AFM insulator, and non-
magnetic insulator (NMI). The phase diagram is based on
calculations on a Lc = 6 cluster without hopping variation.
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FIG. 4. (a) Single particle gap as a function of the interaction
strength. The opening of the gap marks the phase boundary
of the metal and is the lower bound of the NMI phase. (b)
The grand potential of the 120◦-AFM and the NMI phases as
a function of different interactions for t′/t = 1.0. The crossing
of the grand potential of different phases marks the transition
and indicates its first-order nature.

in Fig. 4a, that the charge gap ∆sp opens at U = 5.25
for t′/t = 1, indicating a MIT at Uc = 5.25. In addi-
tion, we also determined the boundary between different
magnetic phases as well as the nature of the phase tran-
sitions from the comparison of the VCA grand potential
for different phases in Fig. 4b. Around a transition, the
preferred phase possesses the lower grand potential en-
ergy, and the transition is characterized by the crossing of
the grand potential energy of different phases. In Fig. 4b,
we show an example of the 120◦-AFM to NMI transition
for t′/t = 1.0. The two VCA grand potentials cross at
U/t = 9.4, which indicates that this transition is of first
order. (If the two grand potentials smoothly change from
one to another without any crossing, the transition is of
second order or higher.)

B. LDFA

The stabilization of the metallic state due to geometric
frustration can also be seen from the finite-temperature
LDFA calculations displayed in Fig. 5a. There, the Néel
temperatures are displayed as a function of interaction for
different anisotropy strengths. Strictly speaking, there is
no finite-temperature magnetic transition in two dimen-
sion, according to the Mermin-Wagner theorem50. The
transition still appears in a method that includes certain
implicit IR cutoffs, such as given by the partial mean field
character in DMFT and LDFA. The numerical finding is
useful anyway, as the magnetic correlations are correctly
described in this type of calculations. Furthermore, the
finite-temperature magnetically ordered phase can be re-
alized in a slab of multilayer triangular systems, where
the mean field character of DMFT and LDFA can mimic
the generic effect of 3d coupling. In our study, the Néel
temperatures are obtained from the extrapolation of the
inverse spin susceptibility. Following Eq. (10), we cal-
culate χsQ(iΩm = 0) in the entire first Brillouin Zone

(BZ) and extrapolate the inverse of the leading value of
the temperature-dependent χQ(iΩm = 0) to T/t = 0.
The Néel temperature is given by the temperature where

0.01

0.1

1

0.1 1
χ
−
1

sp
in
(K

)
T/t

(b)

0

0.1

0.2

0.3

0.4

2 4 6 8 10 12 14

T
/t

U/t

(a)
t′/t = 0

0.4

0.6 0.8 1.0

U/t = 5.5
U/t = 6.0
U/t = 6.5
U/t = 7.0
U/t = 7.5
U/t = 8.0
U/t = 8.5
U/t = 9.0

FIG. 5. (a) Néel temperatures as a function of interaction
U/t for five different anisotropy strengths (t′/t). The maxi-
mum Néel temperature appears to shift to higher U/t values
as a function of anisotropy. The errobars represent the uncer-
tainty of the numerical extrapolation. The t′/t = 1.0 curve
is a replot of the result from Ref. 49. (b) Example for the
determination of the Néel temperature via the extrapolation
of the inverse spin susceptibility for t′/t = 0.6.

the extrapolated χ−1Q (iΩm = 0) becomes zero. Examples
of the spin susceptibilities and the extrapolation can be
found, in Fig. 5b for t′/t = 0.6.

As shown in Fig. 5a, increasing the anisotropy strength
greatly suppresses the Néel temperature, especially in the
weak-coupling region. At t′/t = 0, the square lattice is
recovered and the Néel temperature is non-zero for any
finite interaction (Uc = 0), indicating that long-range
magnetic correlations are well established for U/t > 0.
Increasing t′/t results in the suppression of the Néel tem-
perature, as a result Uc increases. This coincides with
what is obtained from the T = 0 VCA calculations shown
in Fig. 3. Still, we cannot expect an exact quantitative
agreement on Uc from these two methods, as both of
them are subject to certain approximations. On the cur-
rent level of approximation (see Sec. II for more details
about the reference system size and the self-energy di-
agrams considered), Fig. 5a and Fig. 3 converge to the
same conclusion, that the enhanced spatial anisotropy
stabilizes an extended metallic phase and suppresses the
propensity to magnetic ordering.

When the system approaches the antiferromagnetic
state as a function of U or T , the magnetic correlations
drive the spin susceptibility divergent, but also leave fin-
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FIG. 6. Momentum dependence of the spectra for the tri-
angular Hubbard model calculated from (a) DMFT and (b)
LDFA with anisotropy strength t′/t = 0.8 at T/t = 0.154
and U/t = 9.0. Due to the development of antiferromagnetic
correlations, a shadow band appears above the Fermi-level
around Γ point, as shown in the circle in (b). The arrow in-
dicates the symmetry shift induced by the appearance of the
shadow band. This shadow band is absent in the DMFT cal-
culatio. The coherent peak at the Fermi energy E = 0 is not
suppressed due to the missing of non-local correlations.

gerprints in the single-particle spectra. In the case of the
square lattice, with the development of commensurate
Q = (π, π)-antiferromagnetism, the effective magnetic
unit cell becomes twice of the size of the original unit
cell. The single-particle spectra then pick up the new
symmetry associated with the magnetic unit cell, which
results in a “shadow band” around the Γ point51. In the
fully isotropic triangular case, the magnetic correlation
is of 120◦ type. The resulting magnetic unit cell is then
three times the size of the original unit cell. The original
band will further be folded with respect to the magnetic
zone boundary, which would also generate a shadow band
around Γ. Thus, detecting the appearance of the shadow
band can help to track the magnetic correlations of the
system from the analysis of single-particle spectra.

Comparing DMFT and LDFA data is instructive to
highlight the additional non-local corrections kept in
LDFA. A detrimental problem of the DMFT lies in the
local approximation, making it incapable of describing
long-range correlations. Thus, the shadow band induced
by the magnetic correlation should be less obvious or
even absent in a DMFT calculation. In Fig. 6, we show
the single-particle spectra for t′/t = 0.8, U/t = 9 and
T/t = 0.154. The LDFA calculations were performed
on the Matsubara axis, and the transformation to real-
frequency axis is accomplished by using the stochastic
analytical continuation52. The chosen temperature is
slightly above the Néel-temperature, where the magnetic
correlations are about to fully unfold. We thus would
expect new folded bands to appear in the single particle
spectra. In Fig. 6b, as indicated in the circle, there is a
band with less intensity to develop around Γ. This band
is absent in the tight-binding model of Eq. (1) and is a
direct result of the band backfolding with respect to the
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FIG. 7. Spin susceptibilities χQ(iΩm = 0) for T/t ∼ 0.286
and U/t = 9 with different anisotropy strengths in (a)-(d).
The temperature is chosen to be low enough so that all spin
susceptibilities remain finite. The divergence of χQ(iΩm = 0)
indicates the development of magnetic order with the corre-
sponding ~Q. Fig. 7(e) shows the formation of the antifer-
romagnetic correlation with the decrease of temperature for
t′/t = 0.8 and U/t = 9. From bottom up, temperatures vary
as T = 1.0, 0.5, 0.33, 0.25.

magnetic zone boundary. The symmetry shift induced by
the enlarged magnetic unit cell is indicated by the arrow
in Fig. 6b. This “shadow band” locates at a finite en-
ergy at the Γ point, resulting a slope change of the band
above the Fermi level, as indicated by the blue dashed
line in Fig. 6b. This magnetic ordering-induced shadow
band is not correctly resolved in the DMFT calculation.
As displayed in Fig. 6a, the band close to Γ is not a band
folded from the emergent symmetry, i.e. the 120◦ sym-
metry, it is only the reminiscence of the band between
M and K. It gradually approaches to zero energy at Γ
point, as can be seen by following the blue dashed line in
this figure. Another clear difference between the DMFT
and the LDFA result lies in the suppression of the quasi-
particle peak at the Fermi-level. This is again due to
the non-locality missed in the local approximation of the
DMFT, which is accurately kept in LDFA.

The transition between the two types of magnetic or-
der in Fig. 3 is also observed at finite temperature.
Fig. 7 shows the momentum-dependent susceptibilities
χQ(iΩm = 0) in the entire first BZ at U/t = 9 and
T/t ∼ 0.286, for four representative values of t′/t. As
discussed in Sec. II, the instability of the paramagnetic
solution reveals the formation of a magnetically ordered
phase. As shown in Fig. 7a,b, with smaller anisotropic
strengths, χQ(iΩm = 0) shows a single-peak located at
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(U/t = 6 and for all temperature studied in LDFA, the system
remains metallic for this interaction strenght.)

the Néel-AFM Q = (π, π). The increase of t′/t results
in peak broadening as for the case of t′/t = 0.6 depicted
in Fig. 7b. A further increase of the anisotropy strength
splits the peak, and generates a double-peak structure
of the spin susceptibility, which highlights the evolu-
tion from Néel-AFM to the 120◦-AFM. At t′/t = 1.0,
the valley between the two peaks at (2π/3, 2π/3) and
(4π/3, 4π/3) becomes even deeper. It agrees with our
VCA results (Fig. 3).

At finite temperatures, the LDFA allows us to an-
alyze the thermodynamics of the Hubbard model on
the anisotropic triangular lattice. In one of our recent
works53, by using LDFA, we showed that thermodynam-
ical quantities such as the entropy substantially enhance
our understanding of the competing roles of geometric
frustration and electronic correlations. We found that
geometric frustration favors the effect of ”adiabatic cool-
ing”,i.e. following a constant entropy curve, increasing
the interaction results in the effective decrease of tem-
perature. This is in contrast to the situation in square54

and cubic55 lattices, where the entropy is nearly a con-
stant function of interaction in the weak-coupling region.
The effect of ”adiabatic cooling” has been found for the
honeycomb type lattice56. We speculate that the geo-
metric frustration as imposed by the triangular lattice
enhances the decrease of entropy as a function of inter-
action strength, which is discussed in the following.

In Fig. 8, the double occupancy D = 〈n↑n↓〉 is dis-
played, whose low temperature behavior reveals more in-
formation than just the degree of electron localization.
The double occupancy relates to the entropy S through
a Maxwell relation via the Hellmann-Feynman theorem,
i.e.

(
∂S

∂U
)T,V = −(

∂D

∂T
)U,V . (11)

As discussed in Ref. 53, the negative-entropy slope for
temperatures lower than a characteristic temperature T ∗

indicates that the entropy will increase with the increase
of interactions. As shown in Fig. 8, for temperatures
smaller than T ∗/t ∼ 0.8, in the isotropic triangular case
(i.e. t′/t = 1), D decreases upon increasing T 53. It
becomes more intuitive by rewriting Eq. (11) as

Cv
T

(
∂T

∂U

)
S

=

(
∂D

∂T

)
U

, (12)

where Cv is the specific heat. This immediately implies
that keeping the entropy constant, an increase of U re-
sults in a decrease of T for T ≤ T ∗. The influence of
frustration effects becomes clear in Fig. 8. With the
reduction of anisotropy, the negative slope of the dou-
ble occupancy below T ∗ becomes less obvious. In the
unfrustrated limit, i.e. t′/t = 0, the double occupancy
would resemble that in a square lattice, indicating that no
”adiabatic cooling” is possible. At a fixed temperature
below T ∗, frustration increases the value of the double
occupancy, resulting in the enhancement of its negative
slope. We conclude that frustration is the reason for the
”adiabatic cooling” in the anisotropic triangular system.
In addition to the change of the slope, we find that the
characteristic temperature T ∗ becomes slightly smaller
with the decrease of t′/t (see the solid arrows around
T/t ∼ 0.8 in Fig. 8). In the curves for the t′/t = 0.4, 0.6,
we also observe a second characteristic temperature T ′

due to the evolution of system geometry from square to
triangle (dashed arrows around T/t ∼ 0.25).

IV. CONCLUSIONS

We have conducted a detailed single-particle spectra
analysis of the Hubbard model on the anisotropic trian-
gular lattice for zero and finite temperature. Focusing
on the role of anisotropy and interaction strength, we
have identified the significant features of the phase di-
agram displaying e.g. a magnetic transition regime be-
tween Néel-AFM and 120◦-AFM order as well as, in par-
ticular, a non-magnetic insulating (NMI) regime. Once
set in at an anisotropy value nearby the triangular limit,
the NMI domain quickly broadens in terms of range of
U/t as a function of anisotropy, along with a more ex-
tended metallic regime for weaker coupling. It is exactly
the NMI regime which might prove most relevant for
the unconventional organic compounds, as one or several
spin liquid phases can potentially appear in this window
of parameter space. While this question is beyond the
framework of the current investigation which focused on
single-particle quantities, it will be worthwhile to follow
up on the identification of the NMI regime and to adapt
methods capable of calculating multi-particle vertices in
order to identify the nature of the quantum many-body
phase. Along this path, our VCA/LDFA study is helpful
in that it constrains the interesting parameter window
to be scanned by other approaches such as variational
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Monte Carlo methods. At finite temperature, in line with
our T = 0 study, we find that the anisotropy substan-
tially suppresses the magnetic ordering of the system.
The formation of the shadow band at the Γ-point in the
LDFA calculations shows that, going beyond DMFT, the
LDFA is capable of describing magnetic effects due to the
inclusion of non-local correlations. A characteristic tem-
perature T ∗ is identified in the double occupancy, below
which the double occupancy decreases upon increasing
temperature. This opens up the possibility of ’adiabati-
cally cooling’ the system by increasing the interactions,
while keeping the entropy constant. We find that the
geometrical anisotropy favors ’adiabatic cooling’, i.e. in-
creasing the anisotropy results in a larger negative slope
of the double occupancy below T ∗.
Note added. While finalizing the draft of this

manuscript, we became aware of a related VCA study
of the anisotropic triangular Hubbard model by A. Ya-
mada57. The subset of VCA findings contained in our
paper agrees with this study.
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Appendix A: Technical refinements and caveats of
the VCA

In this appendix, we present useful technical improve-
ments to the VCA method for the current study. They
concern the efficient simulation of more non-local fluctu-
ations in a small reference cluster, and the precise deter-
mination of the spectral function from the pole structures
of the single-particle Green’s function. Furthermore, we
illustrate the importance of an appropriate choice of ref-
erence cluster. Specifically, we show that the analysis of
superconductivity is heavily affected by the discrete ro-
tation symmetries of the reference cluster, rendering the
VCA approach inaccurate for a reliable investigation of
superconduvctivity for the anisotropic triangular lattice.

1. Variation of single-particle hopping

The variation of single-particle hopping t in VCA is
usually not important for the study of strongly corre-
lated system, as its influence is negligibly small. We re-
cently found, however, that this effect becomes important
for the Hubbard model on the honeycomb lattice with

small and intermediate correlations58, which is also in
line with the previous studies on the square lattice59,60.
In the current study, this is the regime where the MIT
happens, and the NMI phase emerges in proximity to a
metallic domain. Thus, we find that the variation of the
single-particle hopping t is crucial for the analysis of the
Hubbard model on the anisotropic triangular lattice.

Fig. 9 displays the grand potential as a function of
δt = t′ − t, where t′ is the optimal value of t that min-
imizes the grand potential. At U/t = 7.0, the mini-
mum of the grand potential is at δt/t ∼ 1, represent-
ing a strong enhancement of the dynamics within the
reference cluster, as t′ ∼ 2t. The adjusted dynamics
leads to an increase of the critical value for the MIT to
U/t ∼ 7.5. The minima of the grand potential move to
δt/t = 0.10 and 0.08 as interactions increase to U/t = 7.6
and U/t = 7.8, respectively. Fig. 9 clearly shows the
trend of δt → 0 when stronger interactions are present.
In contrast to the MIT, the magnetic phase transition
of the Hubbard model on the isotropic triangular lattice
takes place at even stronger interactions U/t = 9.4, where
the variation of the hopping is found to be negligible. As
a consequence, with the variation of the single-particle
hopping t, the NMI phase appears to be in the regime
7.5 < U/t < 9.4, which nicely agrees with other works
some of which employ different approaches42–48.

Ω
−

Ω
(δ
t
=

0
)

δt/t

U/t = 7.8
U/t = 7.6
U/t = 7.4
U/t = 7.2
U/t = 7.0

-0.04

-0.02

0

0.02

0 0.25 0.5 0.75 1

FIG. 9. VCA grand potential as a function of δt/t. In the
metallic phase, i.e. U/t < 7.5, the minimum is around δt/t ∼
1 representing a strong non-local modification of the hopping
amplitude inside the reference cluster. This is not seen for the
insulating regime where U/t > 7.5, as the minimum of δt/t
quickly moves to 0. For the two specific values of U/t shown
in this plot, the minima are at δt/t = 0.1 for U/t = 7.6, and
at δt/t = 0.08 for U/t = 7.8. The correction implied by the
variation of t becomes negligible in the strongly correlated
regime.
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orcode) and the exact pole structure of the Green’s function
with non-zero weight (red dots).

2. Exact evaluation of the single-particle gap
through spectral function without broadening factor

In VCA, the spectral function as well as the local
density of states (LDOS) is usually calculated from the
single-particle Green’s function with an broadening fac-
tor iη. A precise value of the single-particle gap can only
be obtained by extrapolating η to 0. Here, we present a
scheme to evaluate the exact single-particle gap without
any such broadening factor η. The single-particle Green’s
function is calculated61 as

G =
1

(QgQ†)−1 − V
= Q

1

g−1 −Q†V QQ
† . (A1)

where g−1 = ω − Λ is a diagonal matrix and Λmn =
δmnω

′
m the excitation spectrum of the reference cluster.

The poles of the VCA Green’s function G are simply the
eigenvalues of the matrix M = Λ + Q†V Q. With the
diagonal form of M , i.e. DM = S−1MS, one can rewrite
the VCA Green’s function as

G = Q
1

M
Q† = Q

1

SDMS†
Q† = QS

1

DM
S†Q† . (A2)

The weights associated to the poles DM is
(QS)αm(S†Q†)mβ . Only poles with non-zero weights
contribute to the spectral function. In Fig. 10 we
compare the spectra calculated from Eq. (A2) to the
ones calculated with introducing a broadening factor.
Clearly, the employment of Eq. (A2) give rise to much
richer spectra, where some parts in the intensity plot are
missing for the calculations with broadening. This new
strategy enhances the accuracy of the VCA method in
characterizing the MIT through the single-particle gap
as shown in Fig. 4a).
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FIG. 11. Cluster symmetries. a) 4-site with square lattice
C4v symmetry. b) Anisotropic 4-site cluster. c) 6-site with
triangular lattice C3v symmetry. d) Anisotropic 6-site cluster.

3. Artifical bias for superconductivity from broken
symmetries in VCA reference clusters

In the VCA phase diagram Fig. 3, no superconductiv-
ity (SC) has been investigated. In principle, it is possible
in VCA to study SC via appropriate Weiss fields, and
indeed has been previously attempted for the Hubbard
model on the anisotropic triangular lattice30. In the fol-
lowing, we show that these previous approaches have to
be interpreted with extreme caution, and explicate why
a systematic investigation of SC order for the anisotropic
triangular lattice is not feasible for VCA, or any other fi-
nite cluster method as a matter of principle. Fig. 3 shall
thus be understood as a tentative phase diagram without
the inclusion of SC. For the isotropic triangular lattice
where SC can be investigated reliably through VCA, we
find chiral d-wave SC for a large window from weak to
intermediate coupling, a superconducting solution which
was not considered in Ref. 30.

Fig. 11 shows the symmetry classification for the small-
size reference clusters we encounter for the anisotropic
triangular lattice. As we intend to interpolate between
the square lattice (t′/t = 0) and the triangular lattice
(t′/t = 1), we choose a 6-site cluster which is still con-
veniently tractable numerically and exhibits commensu-
rability with C4v and C3v in the respective limits. (As
further elaborated on in the main text, this also applies
to the 12-site cluster which we, due to significantly en-
hanced numerical effort, only used for special points in
the phase diagram.)

In close analogy to magnetic order, SC Weiss fields can
be similarly employed in VCA. The relevant SC form fac-
tors are the in-plane d-wave orders dx2−y2 (Fig. 12a) and
dxy (Fig. 12b), which in total yield 3 variational SC am-
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FIG. 12. Real-space superconducting form factors for the
anisotropic triangular lattice. The amplitude parameters δi,
i = 1, 2, 3 are varied in the VCA grand potential. d1 and d2
parametrize the SC orders which become dx2−y2 (left) and dxy
(middle) SC order in the isotropic square or triangular limit,
respectively. For the isotropic triangular lattice, in units of
∆2, we find chiral d-wave SC order d1 + id2 = dx2−y2 + idxy
(right) for ∆1 =

√
3/2 and ∆3 = 1/2.

plitude parameters ∆i, i = 1, 2, 3. For C4v symmetry
(t′/t = 0), both d-wave orders are associated with in-
dependent one-dimensional irreducible lattice represen-
tations. For C3v symmetry (t′/t = 1), they form a single
two-dimensional irreducible lattice representation. For
generic t′/t, the SC orders are denoted by d1 and d2,
respectively.
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FIG. 13. Condensation energy of the 4-site (a) and 6-site (b)
cluster ground state for different SC order parameters relative
to the paramagnetic groundstate εdi − εPM . All energies are
taken at U/t = 5 with fixed respectively chosen SC Weiss
field h = 0.1t. d1 + id2 maximizes the condensation energy
for finite clusters as it removes all low-energy spectral weight.

Let us first analyze the finite cluster spectra in the
presence of the SC Weiss fields. In Fig. 13, the energy
differences between the paramagnetic ground state and
the SC ground state is plotted as a function of anisotropy
for the 4-site and 6-site cluster and U/t = 5. The Weiss
field scale h/t=0.1 is big enough such that the complex
chiral d-wave order parameter d1 + id2 (Fig. 12c) is en-
ergetically preferred. This relates to the fact that only
d1+id2 is fully gapped, while both individual d1 or d2 re-
tain nodal behaviour. (Note, however, this does not mean
that chiral superconductivity should always be preferred
for the infinite VCA system where h→ 0, or for a finite
cluster spectrum with smaller h/t.)

Fig. 13a shows the 4-site cluster spectrum which hardly
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FIG. 14. VCA free energy of the Hubbard model on the
isotropic triangular lattice for a 6-site reference cluster. d+ id
SC is stabilized in the weak to intermediate coupling regime.
It only partly overlays the NMI phase obtained in Fig. 3.

changes as a function of anisotropy. Of the individual
d-wave form factors, d1 ≡ dx2−y2 has the larger conden-
sation energy for any anisotropy. This changes as one
considers the 6-site cluster (Fig. 13b). Beyond a certain
degree of anisotropy towards the triangular limit, d2 is
preferred over d1. Eventually, d1 and d2 become degen-
erate for t′/t = 1 as dictated by C3v lattice symmetry.
Fig. 13 demonstrates how the fundamental symmetries
of the isotropic triangular limits are violated by the 4-
site cluster, as e.g. employed in Ref. 30. Taking the
6-site cluster and hence accurately accounting for lattice
symmetries, the VCA phase diagram for the isotropic tri-
angular lattice is shown in Fig. 14. From weak to inter-
mediate coupling, chiral d-wave SC is found, followed by
an NMI regime and 120◦ AFM order for increasing U/t.
The nature of superdoncutivity found in our VCA analy-
sis is in accordance with several approaches such as func-
tional renormalization group62–64, parquet renormaliza-
tion group65, and finite cluster variational Monte Carlo66.
Note in Fig. 14 that the NMI phase, as the promising spin
liquid candidate scenario, persists upon the joint consid-
eration of SC for a sizable coupling regime.
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FIG. 15. Domain of stable d + id SC grand potential saddle
point in VCA for the anisotropic 6-site reference cluster.

How does the SC phase diagram in Fig. 14 evolve for
finite anisotropy t′/t < 1 when d1 and d2 are not de-
generate anymore? d1 + id2 dominates as long as the
enhanced gain of condensation energy through chiral d-
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wave SC overcomes the energy splitting between d1 and
d2. (Fig. 15 shows the domain for which a saddle point
of chiral d-wave SC is found in VCA with a 6-site refer-
ence cluster.) In total, however, the bias from different
cluster sizes, as well as strong finite size effects in the
small clusters in general, do not allow for a systematic
analysis of SC for the anisotropic lattice. For example,
the quantitative analysis of the transition point between
gaped chiral d-wave and nodal d-wave does not appear

feasible within VCA: The 4-site analysis yields a strong
preference for dx2−y2-wave SC, while the 6-site analysis
advocates chiral d-wave for a large domain of anisotropy.
In total, our findings support the view that such a ques-
tion should preferably be addressed through momentum-
resolved approaches where the adjusted breaking of lat-
tice symmetries is more accurately accounted for than in
a finite size real space cluster method.
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49 J. Kuneš, Phys. Rev. B 83, 085102 (2011).
50 N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1133

(1966).

http://dx.doi.org/ 10.1103/PhysRevLett.85.5420
http://dx.doi.org/ 10.1103/PhysRevLett.85.5420
http://dx.doi.org/ 10.1103/PhysRevLett.95.177001
http://dx.doi.org/ 10.1103/PhysRevLett.91.107001
http://dx.doi.org/10.1103/PhysRevB.71.134422
http://dx.doi.org/10.1103/PhysRevB.76.235124
http://dx.doi.org/10.1103/PhysRevLett.102.176401
http://dx.doi.org/10.1103/PhysRevLett.102.176401
http://dx.doi.org/10.1103/PhysRevB.79.064405
http://dx.doi.org/10.1103/PhysRevLett.95.036403
http://dx.doi.org/10.1103/PhysRevB.87.140402
http://dx.doi.org/10.1103/PhysRevB.87.140402
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/10.1146/annurev-conmatphys-062910-140521
http://dx.doi.org/ 10.1103/PhysRevLett.103.067004
http://dx.doi.org/ 10.1143/JPSJ.78.083710
http://dx.doi.org/ 10.1143/JPSJ.78.083710
http://arxiv.org/abs/1208.3954
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevB.83.024402
http://dx.doi.org/10.1103/PhysRevLett.91.206402
http://dx.doi.org/10.1103/PhysRevLett.91.206402
http://dx.doi.org/10.1140/epjb/e2003-00121-8
http://dx.doi.org/10.1140/epjb/e2003-00121-8
http://dx.doi.org/10.1103/PhysRevLett.94.156404
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://dx.doi.org/10.1103/PhysRevLett.107.010401
http://arxiv.org/abs/1312.2934
http://dx.doi.org/10.1103/PhysRevB.83.041104
http://dx.doi.org/10.1103/PhysRevB.83.041104
http://dx.doi.org/10.1103/PhysRevLett.97.257004
http://dx.doi.org/10.1103/PhysRevLett.97.257004
http://dx.doi.org/10.1103/PhysRevLett.100.136402
http://dx.doi.org/10.1103/PhysRevLett.100.136402
http://dx.doi.org/10.1103/PhysRevB.79.045133
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/10.1103/PhysRevLett.102.206401
http://dx.doi.org/ 10.1103/RevModPhys.68.13
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.72.035122
http://dx.doi.org/10.1103/PhysRevB.78.195105
http://dx.doi.org/10.1103/PhysRevB.78.195105
http://dx.doi.org/10.1103/RevModPhys.63.1
http://dx.doi.org/10.1103/PhysRevB.50.10048
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.82.3899
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.99.127004
http://dx.doi.org/10.1103/PhysRevLett.97.046402
http://dx.doi.org/10.1103/PhysRevLett.97.046402
http://dx.doi.org/ 10.1103/PhysRevLett.105.267204
http://dx.doi.org/10.1103/PhysRevB.75.033102
http://arxiv.org/abs/cond-mat/0602098
http://arxiv.org/abs/cond-mat/0602098
http://dx.doi.org/ 10.1103/PhysRevB.77.214505
http://dx.doi.org/ 10.1103/PhysRevB.87.035143
http://arxiv.org/abs/1201.5139
http://dx.doi.org/10.1103/PhysRevLett.103.036401
http://dx.doi.org/10.1103/PhysRevLett.103.036401
http://dx.doi.org/ 10.1103/PhysRevB.83.085102
http://dx.doi.org/10.1103/PhysRevLett.17.1133
http://dx.doi.org/10.1103/PhysRevLett.17.1133


13

51 J. R. Schrieffer, X. G. Wen, and S. C. Zhang, Phys. Rev.
B 39, 11663 (1989).

52 K. Beach, arXiv:cond-mat/0403055.
53 G. Li, A. E. Antipov, A. N. Rubtsov, S. Kirchner, and

W. Hanke, Phys. Rev. B 89, 161118 (2014).
54 T. Paiva, R. Scalettar, M. Randeria, and N. Trivedi, Phys.

Rev. Lett. 104, 066406 (2010).
55 T. Paiva, Y. L. Loh, M. Randeria, R. T. Scalettar, and

N. Trivedi, Phys. Rev. Lett. 107, 086401 (2011).
56 B. Tang, T. Paiva, E. Khatami, and M. Rigol, Phys. Rev.

Lett. 109, 205301 (2012).
57 A. Yamada, Phys. Rev. B 89, 195108 (2014).
58 M. Laubach, J. Reuther, R. Thomale, and S. Rachel, Phys.

Rev. B 90, 165136 (2014).
59 C. Dahnken, M. Aichhorn, W. Hanke, E. Arrigoni, and

M. Potthoff, Physical Review B 70, 245110 (2004).

60 M. Aichhorn, H. G. Evertz, W. von der Linden, and
M. Potthoff, Phys. Rev. B 70, 235107 (2004).

61 M. Aichhorn, E. Arrigoni, M. Potthoff, and W. Hanke,
Physical Review B (Condensed Matter and Materials
Physics) 74, 235117 (2006).

62 C. Honerkamp, Phys. Rev. B 68, 104510 (2003).
63 M. L. Kiesel, C. Platt, W. Hanke, and R. Thomale, Phys.

Rev. Lett. 111, 097001 (2013).
64 C. Platt, W. Hanke, and R. Thomale, Adv. Phys. 62, 453

(2013).
65 R. Nandkishore, R. Thomale, and A. V. Chubukov, Phys.

Rev. B 89, 144501 (2014).
66 K. S. Chen, Z. Y. Meng, U. Yu, S. Yang, M. Jarrell, and

J. Moreno, Phys. Rev. B 88, 041103 (2013).

http://dx.doi.org/10.1103/PhysRevB.39.11663
http://dx.doi.org/10.1103/PhysRevB.39.11663
http://arxiv.org/abs/cond-mat/0403055
http://dx.doi.org/ 10.1103/PhysRevB.89.161118
http://dx.doi.org/10.1103/PhysRevLett.104.066406
http://dx.doi.org/10.1103/PhysRevLett.104.066406
http://dx.doi.org/ 10.1103/PhysRevLett.107.086401
http://dx.doi.org/10.1103/PhysRevLett.109.205301
http://dx.doi.org/10.1103/PhysRevLett.109.205301
http://dx.doi.org/10.1103/PhysRevB.89.195108
http://dx.doi.org/10.1103/physrevb.90.165136
http://dx.doi.org/10.1103/physrevb.90.165136
doi:10.1103/PhysRevB.70.245110
http://dx.doi.org/10.1103/physrevb.70.235107
http://dx.doi.org/10.1103/PhysRevB.74.235117
http://dx.doi.org/10.1103/PhysRevB.74.235117
http://dx.doi.org/10.1103/PhysRevB.68.104510
http://dx.doi.org/ 10.1103/PhysRevLett.111.097001
http://dx.doi.org/ 10.1103/PhysRevLett.111.097001
http://dx.doi.org/10.1103/PhysRevB.89.144501
http://dx.doi.org/10.1103/PhysRevB.89.144501
http://dx.doi.org/10.1103/PhysRevB.88.041103

	Phase diagram of the Hubbard model on the anisotropic triangular lattice
	Abstract
	Introduction
	Methodology
	T=0: Variational Cluster Approach
	Finite-T: Ladder Dual-Fermion Approach

	Results
	VCA
	LDFA

	Conclusions
	Acknowledgement
	Technical refinements and caveats of the VCA
	Variation of single-particle hopping
	Exact evaluation of the single-particle gap through spectral function without broadening factor
	Artifical bias for superconductivity from broken symmetries in VCA reference clusters

	References


