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We investigate the effect of parity-time (PT)-symmetric optical potentials on the radiation of
achiral and chiral dipole sources. Two properties unique to PT-symmetric potentials are observed.
First, the dipole can be tuned to behave as a strong optical emitter or absorber based on the
non-Hermiticity parameter and the dipole location. Second, exceptional points give rise to new
system resonances that lead to orders-of-magnitude enhancements in the dipolar emitted or absorbed
power. Utilizing these properties, we show that enantiomers of chiral dipoles near PT-symmetric
metamaterials exhibit a 4.5-fold difference in their emitted power and decay rate. The results
of this work could enable new atom-cavity interactions for quantum optics, as well as all-optical
enantio-selective separation.

I. INTRODUCTION

The rate of spontaneous emission and the radiated
power from an emitter are not intrinsic properties. In-
stead, an emitter’s decay rate can be significantly influ-
enced by its surroundings. Since the pioneering work of
Purcell on cavity-emitter interactions [1], considerable re-
search has explored new materials and geometries to ma-
nipulate decay rates, including photonic crystals [2–5],
plasmonic structures [6–9] and metamaterials [10–13].
Each of these systems tailors light-matter interactions
by modifying the local density of optical states (LDOS),
which in turn dictates the number of radiative and non-
radiative pathways available to an emitter for decay.

Recently, parity-time (PT) symmetric optical poten-
tials have offered a new platform to tailor light-matter
interactions. These potentials rely on the balanced in-
clusion of loss and gain, and render the optical Hamil-
tonian non-Hermitian. Below a so-called ‘exceptional
point’, PT-symmetric systems will be characterized by a
real eigenspectrum despite their non-Hermiticity [14–17].
Thereafter, eigenvalues will move into the complex plane
and become complex conjugates of each other. Accord-
ingly, optical modes can propagate preferentially in one
spatial location or another, exhibiting either optical gain
or strong attenuation [18–23]. The unique and unidirec-
tional optical properties attainable with PT-symmetric
potentials have enabled applications ranging from opti-
cal diodes and insulators to dual laser-coherent absorbers
[24–26].

While the interaction of propagating planewaves with
PT-symmetric media has been well-studied, the radia-
tion of quantum emitters near PT-symmetric potentials
remains unexplored. In this work, we investigate how
PT optical potentials impact the LDOS, and, conse-
quently, the radiation of electric and magnetic dipoles
near PT-symmetric metamaterials. We begin by explor-
ing achiral emitters, showing how both the magnitude
and sign of the radiated power can be tuned. Depend-

ing on the strength of the ’non-Hermiticity parameter’,
the dipole can act either as a strong optical source or
an efficient absorber, with positive or negative radiated
powers. Further, the emitted power can be increased
by several orders of magnitude at the exceptional point,
where the eigenstates coalesce and increase the LDOS.
Subsequently, we explore the radiation of chiral emitters
near PT-symmetric metamaterials. Through appropriate
design of PT-symmetric potentials, we show how enan-
tiomers can be distinguished by their decay rate, with
maximum differences observed at the exceptional point.
Followed by a photoionization scheme to selectively tar-
get excited-state molecules, as proposed in [27], these
results could facilitate efficient optical enantiomer sepa-
ration.

II. THEORETICAL FORMULATION

We consider the planar plasmonic metamaterial shown
in Fig. 1 (a), composed of a five-layer stack of alternating
metallic and dielectric films. Note that this structure has
recently been proposed as a PT sub-wavelength waveg-
uide [28] and as the unit-cell constituent of a lossless,
reflectionless Veselago lens [23]. As in these papers, the
layers are assumed to be infinite in the xy-plane but finite
in z. The metal and dielectric thicknesses, tm and td, are
deeply subwavelength and taken to be 30 nm. The metal
is modeled as a lossless Drude material with a permittiv-
ity ǫ = 1− (

ωp

ω
)2. The plasma frequency, ωp, is taken to

be 8.85 × 1015s−1, similar to bulk plasma frequency of
Ag. The dielectric layers have a refractive index n ± iκ,
with one layer corresponding to loss media (+κ) and the
other corresponding to gain media (-κ). For concrete-
ness, we consider n=3.2, corresponding to the refractive
index of TiO2 in the frequency range of interest. The
imaginary part of the refractive index κ is variable, but
it is always identical in each dielectric layer to satisfy the
PT-symmetric condition of ǫ(z) = ǫ∗(−z). The dipole
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FIG. 1. (a) Schematic of a dipole radiating in the vicinity
of the 5-layer PT-symmetric metamaterial. Dispersion curves
of the (b) TM modes and (c) TE modes of the metamaterial
for two values of the non-Hermiticity parameter, κ = 0 (blue)
and κ = 0.23 (red). The black circles denote the exceptional
points. The dashed lines correspond to the light lines in the
air and dielectric.

emitter is assumed to be a distance z0 away from the
first vacuum/metal interface of the structure.

Fig. 1 shows the dispersion curves for the metama-
terial, indicating that both transverse magnetic (TM)
and transverse electric (TE) modes are supported. Each
panel includes calculations for two values of the non-
Hermiticity parameter, κ=0 and κ=0.23. At κ = 0, the
in-plane wave vector kx diverges for TM modes (Fig. 1
(b)) at the Ag-TiO2 and Ag-vacuum surface plasmon res-
onance frequencies (E = 1.7 eV and 4 eV, respectively).
Wavevectors remain finite and smaller than the TiO2

light line for TE modes. As the non-Hermiticity pa-
rameter is increased, modes converge toward the same
energy and wavevector, and coalesce at the exceptional
points (EP), denoted by black circles. This point is of
particular importance as it shows a phase transition in
the modal behavior of the waveguide. Before this EP, the
modes have real propagation constants and field distri-
butions have a definite symmetry. After the EP however,
the propagation constants move into the complex plane
and the fields lose their symmetry. This region beyond
the exceptional phase is called the ‘broken phase.’ As de-
scribed in reference [28], in the broken phase, one mode
is localized almost exclusively in the gain media, while
the other is confined to the lossy region.

To determine how these metamaterial modes impact
dipolar emission, we calculate the power radiated by a
dipole, P , normalized to its radiated power in free space
P0 [29]. For an electric dipole (~p) the normalized radi-
ated power of the dipole is given by:

P

P0
= 1 +

3

4

|~pρ|
2

|~p|2

∞
∫

0

Re[
kρ
kz

(rTE − rTMk2z)e
i2kzz0 ]dkρ

+
3

2

|pz|
2

|~p|2

∞
∫

0

Re[
k3ρ
kz

rTMei2kzz0 ]dkρ

(1)

whereas for a magnetic dipole (~m), the radiated power is
given by:

P

P0
= 1 +

3

4

|~mρ|
2

|~m|2

∞
∫

0

Re[
kρ
kz

(rTM − rTEk
2
z)e

i2kzz0 ]dkρ

+
3

2

|mz|
2

|~m|2

∞
∫

0

Re[
k3ρ
kz

rTEe
i2kzz0 ]dkρ

(2)

In Eq. 1, ~p, ~pρ and pz denote the electric dipole moment
and its transverse and normal components, respectively
(the same for Eq. 2). Likewise, kρ is the transverse mo-

mentum in the xy-plane (kρ =
√

k2x + k2y), and rTE and

rTM are the reflection coefficients from the structure for
TE- and TM-polarizations.
In general, this equation implies three important fea-

tures of dipolar emission near a PT plasmonic meta-
material. First, the power strongly depends on the
modal wavevector or linear momentum. Therefore, at
the surface plasmon resonance frequencies where mode
momenta diverge and a flat-band appears, the LDOS in-
creases and a significant modification of the Purcell fac-
tor is expected. Secondly, the Purcell factor strongly
depends on the reflection coefficient. As discussed in
the next section, the reflection coefficient can be mod-
ified with increasing the non-Hermiticity parameter. An
abrupt change in the behavior of the reflection coefficient
at the exceptional point noticeably enhances the Purcell
factor (Appendix B details the behavior of the S-matrix
poles), essentially giving rise to a new system resonance.
Lastly, Eq. 1 suggests that the reflection coefficient can
control the sign of the power as well. As shown in Ap-
pendix A, the reflection coefficients of evanescent com-
ponents (kρ ≥ k0) interacting with the gain or loss side
of PT media are always complex conjugate of each other:
rG = r∗L. For these evanescent components, kz is purely
imaginary, thus the exponential term ei2kzz0 is real and
the power spectrum is directly proportional to the imag-
inary part of the reflection coefficients. Accordingly, the
non-radiative power changes sign when the reflection co-
efficient is replaced with its complex conjugate - or phys-
ically, when a dipole is repositioned from the loss to the
gain side. Ultimately, whenever the non-radiative con-
tribution is dominant (i.e. when the dipole is close to
the structure), this feature can change the sign of the
total power P . This intriguing result complements the
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reports of asymmetric reflections of propagating plane
waves from PT structures when illuminated from the loss
of gain side [23]. In the following sections, we present
the numerical results particular to the structure depicted
in Fig. 1(a).

III. ACHIRAL EMITTER

Since the power emitted by a dipole is directly related
to the reflected fields, we start by investigating the re-
flection coefficients. Figure 2(a) plots the variation of
the reflection coefficient with non-Hermiticity parameter
κ and in plane momentum kρ. We consider TM-polarized
illumination, and set the energy to E=1.2eV. At this en-
ergy, all modes supported by the metamaterial lie below
the vacuum light line and have real momenta exceed-
ing that of free space (refer to Fig. 1(b)). As seen, the
reflection coefficient diverges for wavevectors correspond-
ing to the guided modes. For κ = 0, this divergence oc-
curs for three wavevectors (kρ =0.006, 0.046, and 0.058
nm−1). As the non-Hermiticity parameter is increased,
the mode with lowest wavevector exhibits minimal vari-
ation. For better clarifications the vacuum light line is
added to Fig. 2(a), as well (black dashed line). Refer-
ring to Fig. 1(b) one can clearly see that at low ener-
gies some of the TM modes closely follow the light line
and only detach from the line when the energy increases.
Our modal analysis for this structure (not shown here)
reveals that these low momenta modes remain close to
the vacuum light line even for the very large values of
κ. However, the higher-momenta modes have reflection
coefficients that begin to coalesce and form a loop in kρκ-
plane, terminating at the exceptional point, κ ≈ 0.23 in
Fig. 2(a). For larger values of κ, the reflection coefficient
at these larger wavevectors decreases, due to the lack of
momentum matching between guided modes and incident
planewaves. A similar study on the reflection coefficient
of TE-modes leads to a featureless map, due to the lack
of TE-modes at this low energy. (see Appendix C).
Figure 2(b) shows the total power radiated by an elec-

tric dipole located 20 nm away from the metamaterial.
We consider both horizontal and vertical dipoles at an
energy of 1.2 eV. As seen, the Purcell factor increases by
two orders of magnitude at the exceptional point. This
behavior is nearly independent of dipole orientation, with
slightly more power observed for the vertical dipole as it
completely couples to TM modes. As seen, the behavior
is very sensitive to the detuning of κ, as shown in the
inset; indeed, the power rapidly decays away from the
exceptional point.
Also, Fig. 2(b) indicates that the sign of the total

power changes based on whether the dipole is located
on the gain side (dashed lines) or loss side (solid lines) of
the metamaterial. As described before, the non-radiative
part of the power spectrum experiences complex conju-
gated reflection coefficients from the gain and loss side.
This result implies that the non-radiative part of the
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FIG. 2. (a) Reflection coefficient of TM-polarized planewave
as a function of in-plane momentum and non-Hermiticity pa-
rameter κ. The energy of the planewaves is 1.2 eV. (b) Nor-
malized power of a vertical (red lines) and horizontal (blue
lines) electric dipole as a function of κ at E=1.2 eV and z0=20
nm. The solid lines show the total emitted power when the
dipole is close to the loss layer while the dashed lines corre-
spond to the gain side. For better illustration of the behavior
close to the EP the inset shows the zoomed-in version of the
power normalized by the dipoles on the loss side very close to
the EP. The black dotted line in panel (a) corresponds to the
light line in vacuum.

power changes sign as the dipole is relocated from the
gain side to the loss side. Here, the dipole’s close prox-
imity to the interface means that the non-radiative con-
tribution dominates the radiative contribution by about
two-orders of magnitude. Therefore if the sign of the
non-radiative part is changed, the sign of the total power
can also be changed. While the large positive power from
the loss side means that the dipole behaves as an efficient
emitter, the negative sign on the gain side implies that
the dipole efficiently absorbs the power reflected back
from the structure.

To understand this behavior further, we investigate the
effect of the dual TE modes and calculate the emitted
power from a magnetic dipole. Figure 3(a) plots the nor-
malized power for both horizontal and vertical magnetic
dipoles as a function of κ at a fixed energy of E=1.2eV.
Here, unlike electric dipoles, the orientation of the dipoles
lead to significant differences. While the horizontal mag-
netic dipole shows a maximum at the exceptional point
(κ ≈ 0.23) like the electric dipole case, the vertical mag-
netic dipole has no resonance feature. According to the
symmetry of the radiated fields from a dipole and the
modes of the structure it is clear that a horizontal mag-
netic dipole excites both TE and TM-polarizations while
a vertical dipole exclusively couples to TE-modes. How-
ever as shown in Fig. 1(c) the structure supports no TE
mode at this low energy, hence neither an EP nor a sig-
nificant resonant feature will be observed at E=1.2 eV
for TE-modes. Accordingly, the powers remain small for
vertically-oriented dipoles. Further, note that the total
power for horizontal magnetic dipoles is not symmetric.
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FIG. 3. Normalized power emitted by a vertical (red) and
a horizontal (blue) magnetic dipole as a function of κ at (a)
E=1.2 eV and (b) E=3.6 eV. The dipole is assumed to be 20
nm away from the first interface. The solid lines show the
emitted power for a dipole close to the loss while the dashed
lines correspond to the dipole close to the gain side. The
inset in panel (b) shows the variation of the power from a
horizontal magnetic dipole close to the TE-mode and TM-
mode exceptional points. Note that the inset is plotted on
log-scale for better clarifications.

This asymmetry is a general feature for all dipoles near
PT media due to their directional scattering properties,
but it is magnified for this particular case since the ra-
tio between non-radiative and radiative contributions is
small. While the non-radiative part still contributes dom-
inantly to the total power at this short dipole-structure
separation, it only is about three times larger than the
radiative part.

At the energy increases, the structure supports both
TM and TE modes. For example, at E=3.6 eV, the TE-
reflection coefficient in the kρκ-plane shows a loop at κ ≈
0.25 (see Appendix C). Therefore, unlike E=1.2 eV, at
3.6 eV both TE and TMmodes have exceptional points in
their spectra. Figure 3(b) shows the total power radiated
by both vertical and horizontal magnetic dipoles at this
energy. Unlike lower energies, resonant features in the
dipole power are observed for both dipole orientations.
In particular, notice that the vertical magnetic dipole,
which exclusively couples to TE-modes, has a resonant
peak at κ =0.25, corresponding to the exceptional point
of these modes at this energy. The horizontal dipole, on
the other hand, obtains two resonance features: one due
to the TM-mode coalescence and another due to the TE-
mode coalescence. Note that the latter coincides with the
resonance features of the vertical magnetic dipole at the
EP of the TE modes. For better clarification, the figure
inset shows the zoomed-in version of the radiated power
by a horizontal magnetic dipole in the vicinity of the TE
and TM sexceptional points.

Figures 2 and 3 imply that mode coalescence at the
exceptional points significantly modifies the power dis-
sipation spectrum (the integrand of Eq. 1) and the to-
tal power. The poles of the reflection coefficients (or

S-matrix) provide a deeper understanding of this phe-
nomena. Before the exceptional point, the two simple
poles, corresponding to the two slow modes below TiO2

light line in Fig. 1(b), contribute oppositely to the inte-
gral and hence the total power. At the exceptional point,
these modes coalesce and form a double pole and this op-
posite behavior vanishes. Therefore, a marked increase in
the power is obtained. After the exceptional point, only
one simple pole contributes. However the contribution
of this pole monotonically decreases as the pole moves
away from the real axis into the complex plane (larger
κ), hence the total power decreases again. Further de-
tails can be found in Appendix B where more elaborated
discussion about the singularities of the reflection coeffi-
cients and the effect of the branch-cuts and the poles are
included.

The spectral variation of the radiated power as a func-
tion of energy is shown in Fig. 4. Both vertical electric
and magnetic dipoles are included [30]. As seen in pan-
els (a) and (b), which consider a dipole positioned 20 nm
above the metamaterial, peaks in the normalized power
appear at both frequencies of the exceptional point as
well as the surface plasmon resonance frequencies. For
example, a vertical electric dipole couples exclusively to
TM modes and exhibits local maxima in the Purcell fac-
tor at energies of 1.2 eV and 1.9 eV (the exceptional
points for the four lowest order branches) and at 2.3 eV
and 4 eV. In contrast, magnetic dipole radiation cannot
couple to TM modes at E=1.2 eV. However, its power
spectrum has a resonance feature at E=3.8 eV, where an
exceptional point arises for κ=0.23. Variation of the nor-
malized power at lower energies is due to the appearance
of the two TE modes around 1.9 and 2.7 eV.

The relative contribution of radiative and non-
radiative components to the Purcell factor varies strongly
as a function of z0 (the dipole-metamaterial separa-
tion). While the non-radiative component exponentially
decreases with separation, the radiative part oscillates.
Since the non-radiative contribution can change the sign
of the total power, the sign can in turn modified with
dipole-cavity separation. Figure 4(c) plots the spatial
variation of dipole power for a z-oriented electric dipole.
When the dipole is close to the structure, the power is
positive on the loss side and negative on the gain side.
For larger separations (z≥78 nm), the power radiated
from the dipole is always positive, independent of its
proximity to the gain or loss side. As the separation
approaches infinity, the Purcell factor approaches unity,
as expected. Similar trends hold for magnetic dipoles,
though the magnetic dipole needs to be placed within
60 nm of the metamaterial to obtain a similar change in
sign. Accordingly, a dipole located on the gain side can
be tuned to behave as a bright emitter (positive power)
to an efficient absorber (negative power) by changing its
separation.
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FIG. 4. Normalized power of (a) a vertical electric dipole
and (b) a vertical magnetic dipole near the PT-symmetric
metamaterial as a function of energy. In both cases κ = 0.23
and z0=20 nm. The variation of the normalized power as a
function of z0 at E=4 eV and κ=0.23 is shown for (c) a vertical
electric dipole and (d) a vertical magnetic dipole. Note that
in these two figures the lower limit is set to z0= 60 nm for
better illustration.

IV. CHIRAL EMITTERS

While the above results pertain to electric and mag-
netic dipoles, the effect of the exceptional point on the ra-
diated power is a general property of the structure and its
modal features. Therefore, the results can be extended
to more complicated sources, including chiral emitters.
The emergence of chirality is largely attributed to the
interaction of simultaneous electric and magnetic dipoles
[31, 32]. Consequently, as with achiral emitters, the de-
cay rate and radiated power of chiral molecules can be
modified through its surrounding environment.
Recently, the interaction of chiral and achiral molecules

with chiral objects has been the subject of extensive
study [27, 33–35]. It has been shown that enantiomers
exhibit enantio-specific coupling to the modes of a chi-
ral scatterer, and that chiral structures can substantially
modify the decay rate and radiation pattern of chiral
molecules [27]. Here, we consider the radiation of a chiral
molecule in the vicinity of our PT-symmetric structure,
which, importantly, contains no chiral constituents. As
will be shown, even this achiral structure can significantly

modify the radiation of chiral emitters.
Equation 1 can be extended to include the simultane-

ous radiation of the electric and magnetic dipoles. Doing
so, the normalized power radiated by a chiral source com-
posed of an electric and magnetic dipole is given by:

P

P0
= 1 +

ω

2P0
Im[~p∗e · ~E

s(~r0) + ~p∗m · ~Bs(~r0)] (3)

In this equation, ~pe and ~pm are the electric and mag-

netic dipole moments of the molecule, while ~Es and ~Bs

are the scattered electric and magnetic fields at the po-
sition of the molecule, ~r0. P0 is the power radiated by a
chiral source in free space. Since the magnetic moment
operator is purely imaginary for a two-level system, a
π/2 phase difference exists between the electric and mag-
netic dipoles. With this phase difference it can be shown
that P0 is given by the summation of the power emitted
by each dipole in free space individually. More complex
chiral molecules are characterized by a variable phase re-
lationship and the possible need for quadrupolar terms.
For simplicity, we only consider dipolar terms here. We
use the common naming convention based on the sign of
~pe · ~pm, where a right-handed enantiomer refers to a pos-
itive product, while a left-handed enantiomer refers to a
negative dot product.
A schematic of a chiral molecule close to our metama-

terial is shown in Fig. 5(a). The electric and magnetic
dipoles are located 20 nm away from the interface, in
the xy-plane with an angle θ between them. We assume
that the ratio between the magnetic and electric dipoles
is ξ = 0.1c, where c is the speed of light [27, 34]. From
Fig. 3 and 4, we know achiral emitters will exhibit an
increased power emission at the PT-symmetric metama-
terial exceptional point. Is it possible to utilize the same
LDOS enhancement at the exceptional point to manip-
ulate the emitted power of the chiral source near PT-
symmetric potentials? More importantly, do differences
in the decay rates of enantiomers emerge, and can they
be used to distinguish enantiomers?
For chiral selectivity, there must be an effect from the

electric dipole at the position of the magnetic dipole and
vice-versa. Otherwise the power radiated by each enan-
tiomer would be the same. Since state coalescence at ex-
ceptional point manifests itself in all of the scattering pa-
rameters, an enhancement in the normalized power of the
chiral emitters is expected as well. Figure 5(b) plots the
difference between the normalized emitted powers (de-
cay rates) of the right (′+′) and left (′−′) enantiomers
as a function of κ. The energy again is fixed at 1.2 eV
where an exceptional point appears at κ ≈0.23. The
parameters for the left enantiomer have been calculated
by substituting ~pm with −~pm, while ~pe is always fixed
along the x-direction. While the difference between de-
cay rates is minimal below the exceptional point, at this
exceptional point the decay rates are markedly different.
This difference monotonically increases by increasing the
angle between the dipoles. Note that an x-directed elec-
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FIG. 5. (a) Schematic of a chiral molecule modelled as an
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difference between the normalized power hence the decay rate
of right (+) and left (-) enantiomers as a function of κ for
different angles at E=1.2 eV. The inset shows the variation of
the peak value as a function of the angle θ between the two
dipoles.

tric dipole at r0 produces only non-zero Hy at this point.
Therefore, as the angle between the dipoles approaches
90o, the scattered magnetic field by an electric dipole
along the magnetic dipole increases. At θ ≈ 90o, the dif-
ference between enantiomer decay rate is maximized to
4.5 [36]. In other words, if a racemic mixture of chiral
enantiomers are excited, the right enantiomer decays 4.5
times faster than the left enantiomer to its ground state.
Combined with a photo-ionization technique to remove
molecules in the excited state, this interaction could be
used to extract pure enantiomers from a racemic mixture.

V. CONCLUSION

We have studied the effect of a PT-symmetric optical
potential on the radiation of achiral and chiral emitters.
PT-symmetric potentials not only tune the value of the
normalized power but also can change its sign. For sim-
ple electric or magnetic dipoles, mode coalescence at the
exceptional point increases the emitted power by orders
of magnitude. Further, PT-potentials allow for a change
in the sign of the radiated power, so that a dipole can
serve as a bright emitter or an efficient absorber based
on its position with respect to the metamaterial (loss
or gain side), and also its height above the metama-
terial. Further, the exceptional point leads to a 4.5x
difference in left/right enantiomer decay rates. Look-
ing ahead, these results could be utilized in the design

of new PT-symmetric cavities to control emitter prop-
erties. For example, the large Purcell factors at excep-
tional points could change a normally ’dark’ molecule a
bright emitter; or, alternatively, a bright emitter could
be switched to an efficient absorber by re-locating the
dipole. Such effects could be utilized in designing an ef-
ficient all-optical, single-photon modulator or a sensitive
molecular ruler. The results might also pave the way for
all-optical enantio-selective separation.
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Appendix A: Scattering properties of a

PT-symmetric potential

The behavior of a multilayered structure can be de-
scribed using either a transfer matrix T or scattering
matrix S. In our prior work, we investigated the symme-
try of the scattering matrix of a PT-symmetric structure.
In this appendix, we extend our analysis, describing the
scattering matrix properties of PT structures excited by
evanescent waves. We will show a general symmetry of
rL = r∗R relates the reflection coefficients of the structure
from two sides, left (L) and right (R).
The transfer matrix favours itself to cascaded systems

via the multiplication of each layer T matrix as:

Teq =

n=N
∏

n=1

Tn (A1)

where the mth layer transfer matrix is given by:

Tm = [air]−1ImDmI−1
m [air]

Im =

(

1 1
km

αm

− km

αm

)

Dm =

(

eikmdm 0
0 e−ikmdm

)

[air] =

(

1 1
kair −kair

)

(A2)

where km =
√

k20ǫm − k2x and αm = 1 and ǫm for TE and
TM polarizations, respectively. From these equations the
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total transfer matrix can be written as:

Teq = [air]−1(INDNI−1
N ) · · · (I2D2I

−1
2 )(I1D1I

−1
1 )[air]

(A3)
Therefore the following equation gives the inverse of the
transfer matrix as:

T−1
eq = [air]−1(I1D

−1
1 I−1

1 )(I2D
−1
2 I−1

2 ) · · · (IND−1
N I−1

N )[air]
(A4)

if ǫm → ǫ∗m then Im → I∗m and Dm → D∗−1
m .

In a PT-symmetric potential, the permittivity distri-
bution satisfies ǫ(z) = ǫ∗(−z). Hence, the spatially sym-
metric layers either have the same real refractive indices
or the permittivities are complex conjugate of each other.
Assume that layer m and N-m+1 have complex conju-
gated permittivities. Therefore we have:

Im = I∗N−m+1

D−1
m = D∗

N−m+1

I−1
m = I∗−1

N−m+1

(A5)

hence:

T ′−1
m = T ′∗

N−m+1 (A6)

where

T ′

m = ImDmI−1
m (A7)

If the mth layer is lossless (i.e., has a real refractive in-
dex), then km can be either a pure real or pure imaginary
number.
case 1 : km is real:

Im = I∗m

D−1
m = D∗

m

I−1
m = I−1∗

m

(A8)

hence T ′−1
m = T ′∗

m .
case 2 : km is imaginary:

T ′

m =
αm

2km

(

1 1
km

αm

− km

αm

)(

e+ikmdm 0
0 e−ikmdm

)

(

km

αm

+1
km

αm

−1

)

=
αm

2km

(

2 km

αm

cos(kmdm) i2sin(kmdm)

i2( km

αm

)2sin(kmdm) 2 km

αm

cos(kmdm)

)

(A9)

Note that in this case k∗m = −km hence again T ′−1
m =

T ′∗

m . Now, rewrite the transfer matrix in the following
form:

Teq = [air]−1A[air] (A10)

where A−1 = A∗ and |A| = 1. Therefore A has the
following general form:

A =

(

a ib
ic a∗

)

(A11)

k
ρ
/k

0

0 5 10
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ρ
/k

0

0 5 10
k

ρ
/k

0

0 5 10

κ=0.05 κ=0.23 κ=0.24

0
0 0

T

a) b) c)
E=1.2 eV , TM

E=3.6 eV , TE

κ=0.05 κ=0.26 κ=0.30
d) e) f )

k
ρ
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0

0 1.5 3
k

ρ
/k

0

0 1.5 3
k

ρ
/k

0

0 1.5 3

0

0 0

-16 -16

T

-35

15 25 0.7

10

-20

FIG. 6. Variation of the transmission coefficient as a function
of in-plane momentum and various values of k for (a)-(c) TM
modes at E = 1.2 eV and (d)-(f) TE modes at 3.6 eV. The
non-Hermiticy values in each case are chosen to be before, at,
and after the exceptional point.

Also [air] is given as:

[air] =

(

1 1
√

k20 − k2x −
√

k20 − k2x

)

(A12)

If the waves are propagating in air, where kx ≤ k0 then
[air] = [air]∗. In this case the total transfer matrix sat-
isfies the property of T ∗

eq = T−1
eq .

However, when the waves are evanescent, i.e. k0 ≤ kx,
this equality no longer holds. The general form for the
transfer matrix is given as:

T =
1

2γ

(

2γRe(a) + (c− bγ2) +i2γIm(a) + (c+ bγ2)
+i2γIm(a)− (c+ bγ2) 2γRe(a)− (c− bγ2)

)

(A13)

where γ =
√

k2x − k20 .
Although this matrix does not satisfy the previous con-

dition of T ∗ = T−1, it leads to the new equality of
rL = r∗R. In other words, evanescent planewaves are
reflected with complex conjugated coefficients from the
gain and loss sides of a PT-symmetric potential.

Appendix B: Effect of the poles on the emitted

power

In the main text, we ascribed changes in the dipolar
emission near PT-symmetric potentials to the variation
of the poles, hence the reflection coefficient with change
of non-Hermiticity parameter. Here, we more quantita-
tively describe the changes of the reflection coefficients,
based on the S-matrix singularities. The S-matrix singu-
larities correspond to the modes of the system, and they
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FIG. 7. (a) Location of the branch-cut and poles in kρ-plane
(in-plane momentum) and effect of the non-Hermiticy param-
eter in moving the poles. (b) Partially integrated power spec-
trum of a vertical electric dipole at E=1.2 eV as a function of
endpoint for different values of κ.

appear as singularities in the reflection and transmission
coefficients. As discussed before the reflection from a PT-
symmetric potential is directional while the transmission
is identical from both the loss and gain sides. There-
fore to make the argument easier we explain the behavior
based on transmission singularities and their variations
with κ. Without loss of generality, a similar argument
holds for the reflection coefficients as well.

Figure 6 shows the transmission coefficients of the 5-
layer metamaterial as a function of kρ for three distinct
values of non-hermiticity parameter κ. The presence of
the singularities are clear from the divergence of the cor-
responding parameter. According to the form of the ma-
trix elements discussed in Appendix A the type of singu-
larities are either branch cuts (where the kz parameters
vanish) or poles (where a guided mode exists in the struc-
ture). Also the poles can only be simple since the struc-
ture is transnationally invariant hence the modes vary as
eiρkρ . Due to the loss of the layers the only branch cut
occurs at kρ = k0 as shown in Fig. 6(a)-(c). Aside from
this singularity, tTM shows completely different behav-
ior for various values of κ. Referring to the dispersion
diagrams of this waveguide, at E=1.2 eV the waveguide
supports two deeply sub-wavelength TM-modes (modes
below the TiO2 light line in Fig. 1(a)). The wavevector
of these modes corresponds to the divergence of tTM in
Fig. 6(a) (note the sharp resonance features in this panel

-1.3 0
log|r

TE
|

0
k

ρ
(nm )-1

0.06

κ

0.5

0.25

0
0.03

a)

κ

c)

0.03

0.5

0.25

0

κ

0.05 0.3
P/P

0

b)

0.5 10
P/P

0

d)

κ

p
m

p
m

-3 +3
log|r

TE
|

0
k

ρ
(nm )-1

0.06

FIG. 8. Reflection coefficient of TE-mode as a function of
in-plane momentum and non-Hermiticy parameter at (a) E=
1.2 eV and (c) E= 3.6 eV. Normalized power radiated by a
vertical magnetic dipole located 20 nm away from the struc-
ture and on the loss side when the dipole energy E=1.2 eV(b)
and E=3.6 eV(d).

at larger values). This divergence has a generic behavior
of a simple pole as mentioned before, and corresponds to
a non-degenerate mode in the structure. Therefore, the
transmission in the vicinity of the nth simple pole can be
approximated as An

kρ−kn

. Note that this function changes

its sign around the pole kn. However, the different zero-
crossings of the transmission close to these poles implies
these residues An have different signs. More specifically,
while the first pole has a negative to positive zero crossing
the other pole has a positive to negative crossing. There-
fore, the power dissipation spectrum (the integrand of
Eq. 1) has simple poles with opposite residues at these
points. Thus, although the structure supports two modes
at E = 1.2 eV, these modes contribute oppositely to the
total power of Eq. 1.

As κ increases, the poles corresponding to the modes
of the structure approach each other and finally coalesce
at κ = 0.23, as seen in Fig. 6(b). Notice that there is
no sign change around this pole and the value is exclu-
sively negative, a signature of a second order mode and
state coalesce. Accordingly, the power dissipation spec-

trum around this pole can be approximated as
A′

n

(kρ−kn)2
.

Increasing κ beyond this point leads to a significant de-
crease in the transmission due to the new location of the
poles in the complex plane, away from the real axis. A
similar behavior for the TE polarized modes at E=3.6 eV
has been shown in Fig. 6 where a comparison before, at,
and after the exceptional point is given in panels (d),(e)
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and (f), respectively. Again, note how the two sharp res-
onance features accompanied by a sign change for simple
poles in Fig. 6(d) is substituted with a single-valued sin-
gle peak at the exceptional point in Fig. 6(e). Also note
that the peak drastically decreases in Fig. 6(f) where the
poles have imaginary values after the exceptional point.
To numerically validate this behavior, Fig. 7 shows the

partial integral of the power dissipation spectrum, where
the upper limit of the integral in Eq. 1 is replaced with a
variable kρ. The power dissipation integral is for a ver-
tical electric dipole radiating at E=1.2 eV. Figure 7(a)
shows the contour integral path in the complex kρ-plane
in black dashed lines. In this plane, the singularities of
the integrand are denoted as branch cuts at k0 followed
by a series of poles. The black arrows schematically show
the trajectory of the poles along the real kρ-axis when κ
changes. From residue theorem, it is well-known that
the integral value is given by the residue of the poles sur-
rounded by the contour. When κ is small, corresponding
to two real and distinct modes (red crosses in Fig. 7(a)),
the value of the integral changes in opposite directions
as the upper limit passes the poles. The residue of the
integrand has different signs for these two poles. How-
ever, when κ hits the exceptional point (purple cross in
Fig. 7(a)), the value of the integral monotonically in-
creases even after passing the pole. Entering the broken
phase by increasing κ (yellow crosses in Fig. 7(a)), the
increasing behavior could be preserved, but the integral
values are substantially smaller. Since in this regime
the poles move away from the real axis, the contribu-
tion from these poles decrease the integral values in the
limit of κρ → ∞. This quantitative assessment agrees

with the qualitative behavior of the poles deduced from
the scattering parameters. More importantly, it reveals
the underlying effect of the exceptional points on dipolar
emission.

Appendix C: Variation of reflection coefficients for

TE-modes

In the main text, the reflection coefficient of the TM
modes was presented at 1.2 eV. There, it was shown
that substantial enhancement in the power corresponds
to the emerging exceptional point. Here, we expand upon
the behavior of the magnetic dipole results presented in
Fig. 3. Figure 8(a) shows the reflection coefficient of TE
modes in kρκ-plane at E=1.2 eV. As described in the
main text, the map is nearly featureless, since there are
no TE modes at this energy. Accordingly, the power
of the vertical magnetic dipole is very small (Fig. 8(b)).
However, the structure supports TE modes at higher en-
ergies. Figure 8(c) shows the reflection coefficient of TE
modes at E=3.6 eV in the kρκ-plane. In contrast to the
low energy case, here a similar looping behavior occurs
at κ ≈ 0.25, corresponding to an exceptional point for
TE modes at this energy and this non-Hermiticity fac-
tor. Since a vertical magnetic dipole exclusively excites
TE modes, it is a good check to investigate the change of
its power as a function of κ. Figure 8(d) shows the emit-
ted power from a vertical magnetic dipole at E=3.6 eV.
As can be seen, the normalized power increases by one
order of magnitude where the corresponding exceptional
point is observed in the reflection coefficient of Fig. 8(c).
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