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The strong Rashba spin-orbit coupling (SOC) of the two-dimensional electron gas (2DEG) at the
oxide interface LaAlO3/SrTiO3 underlies a variety of exotic physics, but its nature is still under
debate. We derive an effective Hamiltonian for the 2DEG at the oxide interface LaAlO3/SrTiO3

and find a new anisotropic Rashba SOC for the dxz and dyz orbitals. This anisotropic Rashba
SOC leads to anisotropic static spin susceptibilities and also distinctive behavior of the spin Hall
conductivity. These unique spin responses may be used to determine the nature of the Rashba SOC
experimentally and shed new light on the orbital origin of the 2DEG.

PACS numbers: 73.20.–r, 71.70.Ej, 72.25.Mk

The discovery of a high mobility 2DEG at the inter-
face between two band insulators LaAlO3 and SrTiO3

(LAO/STO)1 has attracted increasing attention2. How-
ever, the origin of the 2DEG is still under active debate.
According to the intrinsic polar catastrophe mechanism,
there should be a half electron (per unit cell) transfer
from the top surface layer of LAO to the LAO/STO in-
terface. The resulting carrier density at the interface
is roughly 3.5 × 1014 cm−2, which mainly comes from
the three t2g orbitals of Ti in STO. Several transport
experiments, however, estimate that the carrier density
is only ten percent of that due to the polar catastro-
phe mechanism3–5. In addition, it has been proposed
that electrons in the dxy orbitals, which are confined in
the xy-plane, are more likely to become localized at the
interface due to the impurities or electron-phonon cou-
pling, while those in the dxz and dyz orbitals are itinerant
and contribute to transport6. Within this scenario, the
localized and itinerant electrons would account for the
observed magnetic order7 and superconductivity8–11, re-
spectively. It is therefore important to understand the
transport properties of the 2DEG. Other mechanisms,
such as oxygen vacancies12,13 and polar distortion14,15

have also been proposed.
Recent magneto-transport experiments have provided

us new insight into the 2DEG at the oxide interface. In
particular, a strong and field-tunable Rashba spin-orbit
coupling (SOC) was observed16,17 and was modeled using
the standard k-linear form18, i.e.,

HR = λR(k × σ) · ẑ . (1)

Based on this k-linear Rashba SOC, theoretical works
have predicted a variety of unusual effects such as the
Fulde-Ferrell-Larkin-Ovchinikov-type superconductivity
coexisting with ferromagnetism19, spiral magnetic order
and skyrmions20–23, and the spin Hall effect24. How-
ever, a very recent magneto-conductivity measurement
has suggested the possibility of a k-cubed Rashba SOC
of the 2DEG at the oxide interface25,26. Accordingly,
some authors proposed the k-linear Rashba SOC for the
dxy orbital27,28 and k-cubed one for the dxz and dyz
orbitals28. On the other hand, first-principles calcula-

tions combined with the envelope function method have
found an anisotropic nonparabolic spin-splitted subband
structure for the dxz and dyz orbitals29, which could
not be explained by the standard k-cubed Rashba SOC.
Thus, a detailed investigation of the low energy effective
model and the nature of the Rashba SOC is highly de-
sirable.

In this paper, we present a detailed derivation of the
effective Hamiltonian of the 2DEG at the oxide interface.
We find a new anisotropic Rashba SOC of the following
form

Hani
R ∝

(
k2x − k2y

)
(k × σ) · ẑ (2)

for the dxz and dyz orbitals, and a standard k-linear
Rashba SOC for the dxy orbital. The anisotropy of the
Rashba SOC naturally leads to anisotropic spin suscepti-
bilities that have been observed experimentally10,11. We
also show that this anisotropic Rashba SOC results in dif-
ferent behavior of the spin Hall conductivity (SHC) when
compared to the standard k-linear and k-cubed Rashba
SOCs. These distinctive spin responses can be used for
determining the nature of the Rashba SOC in experi-
ments and shed new light on the orbital origin of the
2DEG at the LAO/STO interface.

We begin by constructing the low-energy effective
model of the 2DEG at the LAO/STO interface around
the Γ point in the Brillouin zone. The 2DEG is formed
from the d-orbitals of the transition-metal Ti. Here we
focus on the three t2g orbitals, namely, dxy, dxz and dyz,
since the eg orbitals are pushed up about 2 eV higher
than the t2g orbitals by the octahedral crystal field. On
the xy-plane, electrons in the dxy orbital can hop along
either x or y direction to the dxy orbitals on the neigh-
boring Ti, while electrons in the dxz (dyz) orbital can hop
to its neighbor only along the x (y) direction. Thus the
corresponding hopping Hamiltonian can be expressed in
the following matrix form:

H0 =

 h(k) 0 0
0 −2t cos kx 0
0 0 −2t cos ky

 , (3)
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where h(k) = −∆E − 2t (cos kx + cos ky), t = t2pd/∆pd is
the effective hopping parameter between nearest neigh-
boring Ti, ∆pd is the splitting between the oxygen p and
Ti t2g energy levels, and ∆E is the difference of the onsite
energies between the dxy orbital and the dyz/dxz orbital.
Note that since dxy is even, and dxz and dyz are odd un-
der the operation z → −z, hopping between these two
sets of orbitals is prohibited in the presence of the mirror
symmetry.

To model the effect of the SOC, we introduce
the atomic SOC Hξ = ξl · σ in the basis
{|dxy ↑〉 , |dxy ↓〉 , |dxz ↑〉 , |dxz ↓〉 , |dyz ↑〉 , |dyz ↓〉},

Hξ = ξ


0 0 0 −i 0 1
0 0 −i 0 −1 0
0 i 0 0 −i 0
i 0 0 0 0 i
0 −1 i 0 0 0
1 0 0 −i 0 0

 , (4)

where ξ denotes the strength of the atomic SOC. σ refers
to the spin degree of freedom, while l is the orbital an-
gular momentum of the electron.

Finally, there is a mirror symmetry breaking at the
interface due to the polar displacement of Sr and Ti
atoms relative to the oxygen octahedra, which leads to
the Rashba SOC. Physically, the mirror symmetry break-
ing can induce the hopping process from the dxz (dyz) or-
bital to the dxy orbital via the px (py) orbital of oxygen.
The corresponding Hamiltonian can be written as27,28

Hγ = γ

 0 −2i sin ky −2i sin kx
2i sin ky 0 0
2i sin kx 0 0

⊗ σ0, (5)

where γ refers to the effective hopping amplitude between
the dxy orbital and the dxz and dyz orbitals. σ0 is the
2× 2 unit matrix in the real spin space.

The total tight-binding (TB) Hamiltonian including all
three parts is given by

HTB = H0 +Hξ +Hγ .

There are three pairs of degenerate bands at the Γ point,
which are plotted in Fig. 1(a) using the parameters given
in Ref. 28. It can be seen that the energy contour of the
middle two bands has a strong anisotropy as shown in
Fig. 1(b), whereas the lowest two bands are isotropic as
shown in Fig. 1(c). Note that the splitting of the lowest
two energy bands due to the Rashba SOC is unnoticeable
for the given energy.

To derive the effective Hamiltonian, we apply the
quasi-degenerate perturbation theory30. Up to leading
order in the SOC strength ξ, we obtain the effective
Hamiltonian for the top pair of bands

Htop (k) =
k2

2mtop
− αtop (k × σ) · ẑ, (6)
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FIG. 1. (Color online) (a) Band structure of TB model de-
scribing oxide interface. Energy contours near the Γ point
for energies (b) E/t = −2 and (c) E/t = −3. Parameters
are adopted from Ref. 28: ∆E/t = −0.56, ξ/t = 0.035,
γ/t = 0.072.

the middle pair of bands

Hmid (k) =
k2

2mmid
+ αmid

(
k2x − k2y

)
(k × σ) · ẑ, (7)

and the bottom pair of bands

Hbot (k) =
k2

2mbot
− αbot (k × σ) · ẑ, (8)

where (mtop,mmid,mbot) and (αtop, αmid, αbot) are the
effective masses and Rashba SOC strengths for the top,
middle, and bottom pairs of bands, respectively (all their
specific expressions are given in the supplementary ma-
terials)31. The top pair of bands is a mixture of all
three t2g orbitals. The bottom pair mainly comes from
the dxy orbital. The middle pair is a hybridization be-
tween the dxz orbital and the dyz orbital. It is also clear
that the bottom pair of bands has the k-linear Rashba
SOC that was proposed by previous works27,28. This
concentric isotropic Fermi contour of dxy orbital had
also been demonstrated at the surface of bare SrTiO3

32.
In the middle pair of bands, the Rashba SOC becomes
anisotropic and has a k-cubed energy dispersion33. Two
recent angle-resolved photoemission experiments had al-
ready observed the anisotropic Fermi contour of the dxz
orbital and the dyz orbital at a high carrier density34,35.
Note that the effective Hamiltonian of each pair of bands
is constructed with respect to its own bottom edge.

The anisotropic Rashba SOC for the dxz and dyz or-
bitals in Eq. (7) is our main result. In the rest of this
paper, we will study its effects on the static spin sus-
ceptibility and the spin Hall conductivity36,37. For con-
venience, we redefine the corresponding effective mass
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m = mmid/~2 and Rashba SOC strength β = αmid/~3.
The effective Hamiltonian for the middle pair can be re-
cast into

Hmid (k) =

(
~2k2

2m −iβ~3
(
k2x − k2y

)
k−

iβ~3
(
k2x − k2y

)
k+

~2k2

2m

)
,

(9)
with k± = kx ± iky. Some simple algebra leads to the
eigenvalues of Hmid (k)

εks =
~2k2

2m
+ sβ~3k3 |cos 2θk| (10)

and the corresponding eigenvectors

φks =
1

L
eik·rηks, (11)

where the spinor is given by ηks =
(
−isςke−iθk , 1

)T
/
√

2,

s = ±1 is the chirality index, L2 is the area of the 2DEG
with ςk = cos 2θk/ |cos 2θk| = ±1, θk = arctan(ky/kx).
Since our model is only valid around the Γ point, we
would like to introduce a momentum cutoff kc = 1/3m~β
via the turning point of the energy dispersion εk =
k2~2/2m−β~3k3. The corresponding energy of this turn-
ing point is given by εturn = 1/54m3β2.

In general, the free spin susceptibilities can be written
as

χij (q) = −kBTµ2
B

∑
n,k

Tr [σiG (k, ωn)σjG (k + q, ωn)] ,

(12)
where σi are the Pauli matrices with i = x, y, z, G (k, ωn)
is the Matsubara Green’s function of an electron with mo-
mentum k and frequency ωn, µB is the Bohr magneton.
After carrying out the standard analytic continuation
and frequency summation (more details of the deriva-
tion can be found in the Appendix of Ref. 39), we can
find the static spin susceptibilities in the limit q → 0,

χ0
zz = −2µ2

B

∑
k

f (ξ+ (k))− f (ξ− (k))

ξ+ (k)− ξ− (k)
, (13)

χ0
xx = −µ

2
B

2

∑
k,λ

∂f (ξλ (k))

∂ξλ (k)
+
χ0
zz

2
, (14)

χ0
yy = χ0

xx, (15)

where ξλ (k) = ελ (k)− EF is the energy of the electron
measured relative to the Fermi energy EF , and the su-
perscript 0 indicates the spin susceptibility with q = 0.
All of the other components vanish due to the symme-
try of Fermi surface. The out-of-plane component χ0

zz is
the so-called van Vleck susceptibility and originates from
the virtual inter band transition. The in-plane compo-
nent χ0

xx or χ0
yy contains both the intraband contribution

(the Pauli susceptibility) and the interband contribution
(the van Vleck susceptibility).

Numerical calculations of the spin susceptibilities of
2DEGs with the anisotropic Rashba SOC show two main
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FIG. 2. (Color online) The spin susceptibility of 2DEG with
the anisotropic Rashba SOC as function of the Fermi energy
EF in unit of εturn (measured from the bottom of the middle
pair of bands). We set the dimensionless effective mass of the
electron m = 1, the dimensionless Rashba SOC parameter
β = 0.01 and the temperature T=5 K.

features, as shown in Fig. 2. First, the spin suscep-
tibilities are anisotropic, i.e., χ0

zz 6= χ0
xx. Secondly,

the spin susceptibilities have strong Fermi energy depen-
dence. Note that the momentum cutoff kc is used in our
numerical calculations.

Previously the anisotropic spin susceptibility was also
found using the k-linear Rashba model38. However, the
spin susceptibility is anisotropic when only the lower
Rashba spin-splitted band is occupied. As soon as both
spin-splitted bands are occupied, the spin susceptibil-
ity becomes isotropic39. As such, the anisotropy only
shows up in a small energy window. In contrast, the spin
susceptibility in our model is always anisotropic (up to
the turning point when the model is no longer valid)40.
Therefore our result may provide an alternative explana-
tion for the observed magnetic anisotropy10,11.

Let us now turn to calculate the SHC of the 2DEG
with the anisotropic Rashba SOC. The general spin con-
ductivity tensor in the spin space is given as

σσi
αx =

~
2πL2

∑
k

Tr
[
Jσi
α K̃x

]
, (16)

where K̃x ≡ UKxU
† is the vertex function in the spin

space and Kx = G̃RJxG̃
A is the vertex function in the

eigenvectors space of Hmid(k). G̃R and G̃A are the re-
tarded and advanced Green’s function of 2DEG,

G̃Aks (ε) =
1

ε− εks − iη
, G̃Rks (ε) =

1

ε− εks + iη
, (17)

where η is a positive infinitesimal. Jα stands for the
velocity operator in the eigenvectors space and is given
by Jα = U†jαU where jα = evα is the current operator
of electron in the spin space and vα = ∂Hmid/∂ (~kα)
refers to the velocity operator with α = x, y. The spin
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current operators are represented by

Jσi
α =

~
4
{vα, σi} , (18)

where {A,B} ≡ AB + BA is an anti-commutator, and
the 2× 2 unitary transformation matrix is of the form

U =
1√
2

(
−iςke−iθk iςke

−iθk

1 1

)
. (19)

After taking the trace over the spin degree of freedom,
we have the nonzero component of the intrinsic SHC as

σσz
yx =

ebλ~2

16π2

∫ kc

0

k4dk

EF − ~2k2/2m

∫ 2π

0

ςk sin2 θk

× cos 2θk[δ(EF − εk−)− δ(EF − εk+)]dθk, (20)

which indicates that a spin Hall current along the y di-
rection and polarized in the z direction may exist when
an external electric field is applied along the x direc-
tion. The symbols b and λ are defined as b = ~/m
and λ = β~2, respectively. In the weak anisotropy limit
(β � (2m~kF )−1), we keep the leading-order contribu-
tion to the intrinsic SHC and find

σσz
yx = − e

8π
, (21)

which is identical to that of the 2DEG with k-linear
Rashba SOC36 but is different from 2DEG with the k-
cubed Rashba SOC41,42. The vanishment of the other
components of the spin conductivity tensor is due to the
symmetry of the Fermi surface.

Now we consider the impact of disorder on the SHC
up to the vertex correction. It is more convenient to
implement the calculation in the eigenvector space. We
consider the randomly distributed, identical point defects
that are spin independent: V (r) = σ0V0

∑
i δ (r −Ri)

and the matrix element can be expressed as

V ss
′

kk′ =
V0

2L2

∑
i

e−i(k−k
′)·Ri

(
1 + ss′ςkςk′e−i(θk′−θk)

)
,

(22)

where V0 is the strength of defect potential and Ri is the
position of the defect. The self-energy in the first order
Born approximation can be written as〈

〈ks|V G0V
∣∣k′s′〉〉

AV

=
nV 2

4L2
δkk′

∑
k1s1

gk1s1 (1 + ss′ςkςk′)

=δs1s2δkk′
nV 2

2L2

∑
k1s1

gk1s1 = δkk′δss′Σks, (23)

where n = N/L2 is the density of impurities per unit
area and 〈〈· · · 〉〉AV denotes the ensemble averaging over

the impurity distribution. We have introduced the rela-
tion of disorder-free Green’s function: 〈k1s1|G0 |k2s2〉 =
δs1s2δk1k2

gk1s1 . Thus the disordered Green’s function
turns out to be〈
〈ks|G

∣∣k′s′〉〉
AV

=
1

g−1ks − Σks

δss′δk′k = G̃ks. (24)

For the ladder diagram correction to the velocity opera-
tor, we have the following iterative equation

ṽxs1,s2 (k) = vxs1,s2 (k) +
∑
k′

∑
s3,s4

〈〈
V s1s3kk′ V

s4s2
k′k

〉〉
AV

× G̃Rs4
(
k′
)
G̃As3

(
k′
)
ṽxs3,s4

(
k′
)
, (25)

where ṽx is the corrected velocity operator, s1,2,3,4 = ±1.
It is difficult to solve analytically the above self-

consistent equation due to the anisotropic dispersion.
However, by considering the weak SOC limit, i.e.,

ImΣkF � β~3k3F �
~2k2F
2m , the equation can be approxi-

mately solved by keeping the leading order of β, where
kF is the Fermi wave vector and ΣkF is the self-energy.

After lengthy but straightforward calculations, we can
find the corrected velocity operator (its derivation is pre-
sented in the Supplementary Materials31)

ṽx (k) = vx (k) + βmEFσy. (26)

Following the similar procedure in Eq. (16), we can cal-
culate the SHC with the vertex correction in the weak
anisotropy limit and get[

σσz
yx

]
V

= − e

16π
. (27)

It can be seen that in the weak anisotropy limit, the ver-
tex correction reduces the magnitude of SHC by a factor
of 2. In fact, this unique feature of SHC under the in-
fluence of disorder originates from the special form of
Rashba SOC. Our result is qualitatively consistent with
the fact that the term αk2 (k × σ) · ẑ would result in a
nonzero SHC even with the vertex correction43. On the
other hand, the vertex correction of disorder can cause
the intrinsic SHC of 2DEG with standard k-linear Rashba
SOC to vanish identically44, but does not affect the one
with k-cubed Rashba SOC45. Hence, the distinct behav-
iors of SHC can be used to determine the nature of the
Rashba SOC at LAO/STO interface.

In summary, we have developed an effective Hamilto-
nian of the 2DEG at the oxide interface LAO/STO and
found a new anisotropic Rashba SOC. We have found
that the static spin susceptibilities are anisotropic and
dependent on the Fermi energy. We have also demon-
strated that this new Rashba SOC possesses entirely dif-
ferent behavior for the SHC under disorder. Therefore,
these unconventional spin responses can be used to de-
termine the nature of Rashba SOC in experiments.
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