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We develop a coupled wire construction of chiral spin liquids. The starting point are individual
wires of electrons in the Mott regime that are subject to a Zeeman field and Rashba spin-orbit
coupling. Suitable spin-flip couplings between the wires yield an Abelian chiral spin liquid state
which supports spinon excitations above a bulk gap, and chiral edge states. The approach generalizes
to non-Abelian chiral spin liquids at level k with parafermionic edge states.
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Introduction.—The experimental discovery [1] and
conceptual understanding [2] of the fractional quantum
Hall effect (FQHE) had a tremendous impact on con-
temporary research of strongly correlated electron sys-
tems. In particular, it triggered interest in topologically
ordered quantum states of matter, which since then have
persisted as a predominant focus. Following up on an
idea by D. H. Lee, Kalmeyer and Laughlin [3, 4] pro-
posed the chiral spin liquid [5, 6] (CSL) as a fractionally
quantized Hall liquid for bosonic spin flip operators act-
ing on a spin-polarized reference state. Fractionalization
of charge for FQHE relates to fractionalization of spin for
the CSL, which supports S = 1/2 spinons obeying half-
Fermi statistics [7]. The CSL has been an invaluable seed
for new concepts such as topological order [8], providing a
direct perspective on the fundamental relations between
FQHE, spin liquids, and superconductivity [5, 9]. Despite
its high relevance as a paradigm formulated via wave
functions, the first Hamiltonian for which the CSL is
the (aside from topological degeneracies) unique ground
state was only identified two decades after the liquid had
been proposed [10]. The approach was subsequently ex-
panded to yield different classes of such trial Hamilto-
nians [11], where the latest and more generic versions
are more short-ranged than the initial microscopic mod-
els: they involve 2-body and 3-body spin interactions
which can be deduced from the explicit construction of
appropriate annihilation operators [12] or null operators
in conformal field theory [13]. In particular, non-Abelian
chiral spin liquids with level k parafermionic spin excita-
tions have been proposed [12, 14], which nurture the hope
for alternative scenarios of topological quantum compu-
tation in frustrated magnets and Mott regimes of alkaline
earth atoms deposited in optical lattices [15, 16].

Since their discovery, CSLs have been appreciated as
a realisation of a bosonic Laughlin state at Landau level
filling fraction ν = 1/2 on a spin lattice. Naturally, the
CSL of Refs. 3 and 4 can be defined on any lattice [17, 18],
which becomes mathematically transparent via the gen-
eralized Perelomov identity [19] for lattices with a primi-
tive unit cell. Some of these motifs have later reappeared
in the field of fractional Chern insulators [20–22]. As

of today, several promising CSL scenarios with broken
SU(2) spin symmetry have been proposed [23, 24], while
analytic wave functions are not known in these cases. The
most important one is the Kitaev model on the decorated
honeycomb lattice [23], which can be solved exactly by
a mapping to Majorana fermions. In addition, strong
numerical evidence for a CSL regime has been found in
models of broken [25, 26] and conserved [27–31] SU(2)
spin symmetry on the kagome lattice, where competing
magnetic order is sufficiently frustrated. From the view-
point of symmetry classification, SU(2) symmetry is not
a characteristic feature of CSLs. In contrast, parity (P)
and time-reversal (T) symmetry are necessarily broken
in CSLs, and they support (gaped) spinon excitations in
an otherwise featureless fluid.
In this Letter, we develop a coupled wire construction

(CWC) of CSL states. The CWC for topologically or-
dered quantum states of matter originates from the pio-
neering work by Kane and collaborators on deriving a sce-
nario of FQH states from suitably chosen many-particle
couplings in a set of coupled quantum wires [32]. Impor-
tant preceding work has been on sliding Luttinger liquid
phases, which already installed the notion of using the
magnetic field as a way to favorably tune the scaling di-
mension of inter-wire couplings [33]. Recently, the CWC
of two-dimensional systems has been employed in vari-
ous contexts [34–40] including a derivation of the peri-
odic table of integer and fractional fermionic topological
phases [41]. In a way, the CWC of Abelian and non-
Abelian CSLs reported in this paper completes the pro-
gram previously pursued for the CWC of Read-Rezayi
states in the FQHE [42, 43] and their superconducting
analogues [44, 45]. As such, the CWC provides a fruitful
perspective on a broad range of non-Abelian topological
quantum states of matter.

Model of coupled wires.—We analyze a k-fold stacked
array of N quantum wires, as shown in Fig. 1. We label
the wires by (a, b), where a = 1, . . . , k is the layer (or
flavour) index, and b = 1, . . . , N is the wire index within
each layer. Each wire is modeled by a cosine band of
spinful electrons, subject to a Zeeman field and spin-orbit
coupling. The couplings are constant within a given wire,
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FIG. 1. Wires b = n− 1, . . . , n+2 of layers a = m and m+1
of the multi layer array of coupled wires.

but depend on the wire index b. The four Fermi points
of right (R) and left (L) moving electrons of spin σ = ↑, ↓
in wire (ab) reside at momenta

k
(b)
Frσ = kF + σk

(b)
Z + rσk(b)so , (1)

where r = R,L. We identify R, ↑≡ + and L, ↓≡ −. Here,

kF denotes the bare Fermi momentum, and k
(b)
Z and k

(b)
so

the momentum shifts due to the Zeeman field and the
spin-orbit coupling, respectively.
Throughout this paper, we treat the system in

(Abelian) bosonization [46]. Linearising the spectrum
around the Fermi points, the electron annihilation op-

erators c
(ab)
σ (x) can be decomposed into right and left

moving modes,

c(ab)σ (x) = eik
(b)
FRσ

xR(ab)
σ (x) + e−ik

(b)
FLσ

xL(ab)
σ (x), (2)

which we bosonize as

r(ab)σ (x) =
U

(ab)
rσ√
2πα

e−i[rφ(ab)
σ

(x)−θ(ab)
σ

(x)], (3)

where U
(ab)
rσ is a Klein factor, and α the short distance

cutoff of the theory. The bosonic fields obey

[

φ(ab)
σ (x), θ

(ab)
σ′ (x′)

]

= −δaa′δbb′δσσ′

iπ

2
sgn(x− x′). (4)

With these definitions, the long wavelength density fluc-
tuations of spin σ electrons in wire (ab) are given by

ρ
(ab)
σ (x) = − 1

π∂xφ
(ab)
σ (x). In terms of the charge c and

spin s modes of the wires, defined as

φ
(ab)
c/s =

1√
2
(φ

(ab)
↑ ± φ

(ab)
↓ ), θ

(ab)
c/s =

1√
2
(θ

(ab)
↑ ± θ

(ab)
↓ ),

(5)

the Hamiltonian density of an individual wire reads

H(ab)
0 (x) = ΨT

ab(x)VabΨab(x)

+
g3

(2πα)2
e−i

∑
rσ

k
(b)
Frσ

x ei
√
8φ(ab)

c
(x) +H.c.

+
g1⊥

(2πα)2
e−i

∑
rσ

σk
(b)
Frσ

x ei
√
8φ(ab)

s (x) +H.c., (6)

where the (4 × 4)-matrix Vab depends on the Fermi
velocity and forward scattering interactions, and

Ψab = (∂xφ
(ab)
c , ∂xφ

(ab)
s , ∂xθ

(ab)
c , ∂xθ

(ab)
s )T . In addition to

the quadratic part, the Hamiltonian also contains a Mott
term ∼ g3, and a backscattering term ∼ g1⊥. In a clean
system, these terms contribute only when the oscillating
prefactors vanish.

Mott gap and spin flip operators.—For the construction
of a spin liquid, we gap out the charge sector in each wire
by tuning it into the Mott regime. Equation 6 implies

that this regime can be reached for
∑

rσ k
(b)
Frσ = 2π/α0,

where α0 is the lattice constant (taken identical in all
wires). We thus demand kF = π/2α0. At the same
time, the spin sectors should remain gapless if there are
no inter-wire couplings. This either requires the sine-
Gordon term ∼ g1⊥ to be irrelevant in the sense of the
renormalization group (RG) (or less relevant than the
couplings stabilizing the spin liquids, which are discussed

below), or
∑

rσ σk
(ab)
Frσ = 4k

(ab)
Z 6= 0. We thus apply a

Zeeman field in all wires.

In the Mott phase, the single wire Hamiltonian den-

sities H(ab)
0 pin the fields φ

(ab)
c to values φ

(ab)
c ≈ 〈φ(ab)

c 〉.
(The value of 〈φ(ab)

c 〉 depends on the sign convention for
the ordering of the Klein factors. Taking them to be Ma-
jorana fermions with U †

rσ = Urσ and U2
rσ = 1, we choose

UL↑UL↓UR↑UR↓ = 1 on each wire (ab). A Hubbard in-

teraction Uc†↑c↑c
†
↓c↓ then generates g3 = −U < 0, which

implies we may take 〈φ(ab)
c 〉 = 0.)

In the Mott phase, the remaining local degrees of free-
dom are spin flip operators

S+
ab = c

(ab)
↑

†c
(ab)
↓

=
∑

r=R,L

U
(ab)
r↑

†U
(ab)
r↓

2πα
e−rik

(b)
1r x ei

√
2(rφ(ab)

s −θ(ab)
s )

+
∑

r=R,L

U
(ab)
r↑

†U
(ab)
−r↓

2πα
e−rik

(b)
2r x ei

√
2(rφ(ab)

c −θ(ab)
s ),

(7)

where

k
(b)
1r ≡ 2(k

(b)
Z + rk(b)so ), k

(b)
2r ≡ 2(kF + rk(b)so ). (8)

Abelian chiral spin liquid.—The Abelian CSL only re-
quires a single layer, or flavour, of wires (k = 1). Similar
to the wire construction of quantum Hall states [32, 43],
we couple right movers in wire b to left movers in wire
b+1, but not in wire b− 1. Such a coupling breaks time
reversal symmetry T as well as two-dimensional parity P
(which we take as x → x, y → −y along and transverse to
the wires, respectively), but is PT invariant. (The con-
servation of PT, however, is no prerequisite for a CSL
in the sense of a symmetry-protected topological (SPT)
phase [34].)

In the construction of Kalmeyer and Laughlin [3, 4]
(KL), P and T are violated through the fictitious mag-
netic field used to stabilise the m = 2 Laughlin state,
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wire number b k
(b)
Z k

(b)
so

n or n+ 3 3k0 k1

n+ 1 −2k0 k0 + k1

n+ 2 −k0 −2k0 + k1

TABLE I. Zeeman and spin-orbit momenta in the wires of a
unit cell of the array.

b k
(b)
1R/2 −k

(b)
1L /2 k

(b)
2R/2 −k

(b)
2L /2

n 3k0 + k1 −3k0 + k1 kF + k1 −kF + k1

n+ 1 −k0 + k1 3k0 + k1 kF + k0 + k1 −kF + k0 + k1

n+ 2 −3k0 + k1 −k0 + k1 kF − 2k0 + k1 −kF − 2k0 + k1

TABLE II. Spin-flip excitation momenta associated with the
microscopic momenta of Tab. I as defined by Eq. (8).

which is then projected to describe spin flips on a lat-
tice commensurable with the magnetic field (one Dirac
flux quantum per unit cell of the square lattice). While
readily implemented in a language of wave functions, this
method of obtaining a CSL state in two steps—writing
it out in the continuum and then projecting it onto
the lattice—is not available in a description in terms of
Hamiltonians, such as our CWC. In all known construc-
tions [10–13] of parent Hamiltonians of the KL state, P
and T violation is implemented through a three-spin in-
teraction of the form Si(Sj × Sk), where i, j, and k are
three lattice sites on a plaquette.
A term of this form, however, is not easily implemented

as a coupling between wires. A simpler and more elegant
way to obtain a CSL, i.e., to install the desired couplings
between right movers in wire b to left movers of wire b+1,
is to adjust the values for kZ and kso such that all the
terms in S+

1bS
−
1b+1, except the desired ones, oscillate, i.e.,

k
(b)
1R = −k

(b+1)
1L ∀ n, (9)

while no other values for k1r or k2r match between neigh-
boring wires. P violation, as defined above, requires the
unit cell to contain more than 2 wires. A possible choice
for kZ and kso within a 3-wire unit cell is given in Tab. I,

and results in the spin flip momenta k
(1b)
1r and k

(1b)
2r of

Tab. II. The price we pay for the simplicity of the con-
struction is that the Zeeman and spin-orbit couplings vi-
olate SU(2) spin symmetry at the single wire level, which
is intact in the KL liquid, but not a required property for
the universality class of CSLs [23, 30].
In terms of bosonic fields, a coupling 1

2J(S
+
abS

−
a′b+1 +

H.c.) between neighboring wires yields the transverse
Hamiltonian densities

H(aa′b)
t = 2t cos

(
√
2(φ(ab)

s − θ(ab)s + φ(a′b+1)
s + θ(a

′b+1)
s )

)

(10)

with 2t = J/(2πα)2. These terms commute with them-
selves at different positions x along the wires (which im-
plies that they can pin the value of the field combinations
forming their argument, and hence open up an energy
gap), and with each other for different values of b. The
full Hamiltonian for the wire-coupled Abelian (k = 1)
CSL is hence given by

Hk=1 =
∑

b

∫

dx
[

H(1b)
0 (x) +H(11b)

t (x)
]

. (11)

The state is gapped in the bulk but supports gapless chi-
ral edge modes in wires 1 and N , which are described

by the bosonic fields Φ1(x) =
(

−φ
(11)
s (x)− θ

(11)
s (x)

)

/
√
2

and ΦN(x) =
(

φ
(1N)
s (x) − θ

(1N)
s (x)

)

/
√
2. The cor-

responding spin flip operators adding spin 1 to the
edges can be defined as S+

1 = exp(2iΦ1) and S+
N =

exp(2iΦN ). Since the bosonic fields obey the commu-
tation relations [Φ1(x),Φ1(x

′)] = −(iπ/2)sgn(x−x′) and
[ΦN (x),ΦN (x′)] = (iπ/2)sgn(x− x′), we can identify the
mode Φ1 (ΦN ) as a left (right) mover with a K-matrix
of K = −2 (+2). This implies half-Fermi (also known as
semion) statistics [7, 47].

The model further supports gapped bulk excitations
described by 2π-kinks in a sine-Gordon coupling of two
neighboring chains (10). Since the total spin of the sys-
tem is given by

Sz
tot =− 1√

2π

∑

b

∫

dx ∂xφ
(1b)
s = − 1

2
√
2π

∑

b
∫

dx ∂x

(

φ(1b)
s − θ(1b)s + φ(1b+1)

s + θ(1b+1)
s

)

(12)

modulo edge terms, the spin associated with a kink is
Sz = 1/2. The kinks describe spinon excitations, which
are fractionalized as the Hilbert space for a spin 1/2 Mott
isolator is spanned by spin flips operators with Sz = 1,
which act on a spin polarized vacuum.

Non-Abelian chiral spin liquids.—We now consider k >
1 flavors (or layers) of coupled wires (as illustrated in
Fig. 1), and assume kZ and kso as specified in Tab. I
for all flavors. Spin-spin couplings between neighboring
wires yield three types of cosine terms of Hamiltonian
densities, which do not commute mutually, but preserve
momentum and do commute with themselves at different
positions x along the wire. (In practise, the latter con-
dition implies that we only need to consider terms which
contain two left movers and two right movers, regard-
less of whether they stem from creation or annihilation
operators, when we expand four fermion couplings.)

The first type is as given in Eq. (10), which we al-
low for all a, a′ = 1, . . . , k with the same coefficient

t. (Note that the commutator between H(aa′b)
t (x) and

H(cc′b)
t (x′) vanishes only if either (a, a′) = (c, c′) or

a 6= c ∧ a′ 6= c′.) The second type is generated by the
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coupling 1
2Jxy(S

+
abS

−
a′b +H.c.) between different flavors a

and a′ on the same wire b and takes the form

H(aa′b)
u = 2u cos

(
√
2(θ(ab)s − θ(a

′b)
s )

)

, (13)

with u = −2Jxy/(2πα)
2. (The relative sign between

terms with different Klein factors can be determined by
insertion of UL↑UL↓UR↑UR↓ = 1.) Finally, the third type
is generated by the coupling JzS

z
abS

z
a′b of the operators

Sz
ab =

1

2

(

c
(ab)
↑

†c
(ab)
↑ − c

(ab)
↓

†c
(ab)
↓

)

=− 1√
2π

∂xφ
(ab)
s

+
U

(ab)
L↑

†U
(ab)
R↑

4πα
e−i2(kF+k

(b)
Z )x ei

√
2(φ(ab)

c +φ(ab)
s ) +H.c.

−
U

(ab)
L↓

†U
(ab)
R↓

4πα
e−i2(kF−k

(b)
Z )x ei

√
2(φ(ab)

c −φ(ab)
s ) +H.c.

(14)

between different flavors a, a′ on the same wire b, and is
given by

H(aa′b)
v = 2v cos

(
√
2(φ(ab)

s − φ(a′b)
s )

)

, (15)

with v = −Jz/(2πα)
2. (Note that if the couplings are

SU(2) symmetric, i.e., Jxy = Jz, one finds u = 2v in
accordance with the energy density of SxSx+SySy being
twice that of SzSz.)
The final Hamiltonian for the non-Abelian CSL at level

k is

Hk =

∫

dx

[

∑

a,b

H(ab)
0 (x) +

∑

a,a′,b

H(aa′b)
t (x)+

∑

a<a′,b

(

H(aa′b)
u (x) +H(aa′b)

v (x)
)

]

. (16)

A Hamiltonian related to Eq. (16) has been analyzed
by Teo and Kane [43] in the context of their CWC of
Abelian and non-Abelian FQH states. For k = 2, it
yields a Moore-Read (MR) [48] phase, and a strong pair-
ing phase of charge 2e bosons at ν = 1/4 depending on
the parameters t, u, and v. While the generic problem
is intractable due to the non-commutativity of the differ-
ent cosine terms, the phase diagram can still be obtained
from the decoupling of individual composite modes in
each wire. (Teo and Kane [43] assume the adjustment
of forward scattering terms in their analogous form of
Eq. (16) in such a way that the cosine field arguments de-
couple at the level of H0, and allow for refermionization
of their free chiral spin fields represented by pairs of Ma-
jorana fermions. For k = 2, this analysis transparently
resolves the MR and the strong pairing phase depend-
ing on how the Majorana modes are paired between or

within the wires.) As such, this allows for an effective im-
plementation of the coset construction in conformal field
theory, which then can be used to yield parafermionic
topological phases from the CWC. In particular, if we
choose the bare coupling parameter u = v (i.e., we set
Jz = 2Jxy), the analysis implies that we stabilize a non-
Abelian SU(2) level k = 2 CSL [14], which may be viewed
as the spin liquid pendant to the MR state. For arbitrary
k and u = v (but regardless of t), the same procedure
yields a non-Abelian CSL with level k parafermionic edge
modes. This phase constitutes the coupled wire pendant
of the SU(2)k non-Abelian CSL [14], which, on the level
of wave functions, is obtained from the symmetrization
of k Abelian CSLs in the layers. We should note at this
point, however, that an equality of the bare couplings
u and v in Eq. (16) does not guarantee that they re-
main equal under the RG flow towards lower energies.
Whether the SU(2)k parafermionic CSL is the RG fixed
point for a given bare parameter setup depends on the
relative coupling strengths of the cosine terms, and the
forward scattering amplitudes.

Conclusion and Outlook.—The coupled wire construc-
tion of Abelian and non-Abelian chiral spin liquids offers
a deconstructivist and yet physically motivated, micro-
scopic view on these unconventional topological quantum
states of matter. For the Abelian state, starting from
bosonic spin flip operators which carry spin 1 and cou-
ple the Mott-gaped wires, we have constructed a topo-
logical phase with a bulk gap, fractionalized spin 1/2
bulk quasiparticles (i.e., spinons), and a single chiral
edge mode. We identify this phase with a chiral spin
liquid, and the generalization to multiple layers with
SU(2)k parafermionic chiral spin liquids. The construc-
tion outlined above constitutes the starting point for fur-
ther study. First, the nature of the bulk, and in particular
the edge, excitations of the SU(2)k chiral spin liquids re-
quire further investigation. Second, a more rigorous RG
treatment of (16) is indispensable in acquiring an un-
derstanding of the phase diagrams of multi-layer Mott-
gapped wires as well as to assess the range of stability for
the SU(2)k chiral spin liquid states. For k > 2, this has
so far not even been attempted for the analogous FQHE
scenario, and might yield new insights. Third, from the
construction outlined in this Letter, we might also be
able to construct spin liquids without P and T break-
ing, i.e., the spin liquid pendants [49, 50] of a fractional
topological insulator [51].

We thank M. Barkeshli, B. Bauer, E. Fradkin, and
A. W. W. Ludwig for discussions. This work has been
funded by Helmholtz-VI-521, DFG-SFB 1143, DARPA
SPAWARSYSCEN Pacific N66001-11-1-4110, and ERC-
StG-TOPOLECTRICS-336012.

Note added. In the final stages of this work, we became
aware that a similar idea is being pursued by G. Goro-
hovsky, R. G. Pereira, and E. Sela [52].
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