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Strong interactions can give rise to new fermionic symmetry protected topological phases which
have no analogs in free fermion systems. As an example, we have systematically studied a spinless
fermion model with U(1) charge conservation and time reversal symmetry on a three-leg ladder
using density-matrix renormalization group. In the non-interacting limit, there are no topological
phases. Turning on interactions, we found two gapped phases. One is trivial and is adiabatically
connected to a band insulator, while another one is a nontrivial symmetry protected topological
phase resulting from strong interactions.

Introduction. Gapped quantum states can be classi-
fied by their quantum entanglement1. The long-range en-
tangled states carry intrinsic topological orders2–4, while
the short-range entangled states are trivial and can be
adiabatically connected to direct product states (or slater
determinant states for fermionic systems). If the system
has some symmetries, there will be more phases.

For instance, short-range entangled states without
symmetry breaking can belong to di↵erent phases. Be-
sides the trivial symmetric phases, there may exist sym-
metry protected topological (SPT) phases5,6 which have
nontrivial edge excitations. A typical example of bosonic
interacting SPT phase is the S = 1 Haldane phase7,8,
which is protected by spin rotational symmetry, or
time reversal symmetry, or spatial inversion symmetry.
Bosonic SPT phases with symmetry G in d-dimension
can be classified by the (d + 1)th group cohomology
Hd+1(G,U(1))9.

SPT phases also exist in free fermion systems. Topo-
logical insulators10–14 are well known SPT phases pro-
tected by U(1) charge conservation and time reversal
symmetry. Free fermion systems with di↵erent symme-
try groups in di↵erent dimensions can be classified using
homotopy theory, with 10 di↵erent classes of topological
phases15–19. SPT phases may also exist in the presence of
strong fermion-fermion interactions. However, the classi-
fication of the interacting fermionic SPT phases are usu-
ally di↵erent from those of free fermions. In 1D, interac-
tion fermionic SPT phases can be classified by projective
representations of the symmetry group20,21. In higher
dimensions, the classification is more di�cult and is par-
tially described by the super-cohomology of the symme-
try group22. Some examples of 2D interacting fermionic
SPT phases are studied recently23–25.

An interesting question is what is the relation between
the classification of SPT phases for the interacting and
non-interaction systems. For bosonic systems (including
spin systems), there are no nontrivial SPT phases with-
out interaction. So all nontrivial Bosonic SPT phases
are induced from interactions. In contrast, situations
are quite di↵erent for fermionic systems. Naively speak-
ing, strong interactions will reduce the number of SPT

phases for fermions. For example, 1D free femion super-
conductors with time reversal symmetry have Z classes
of topological phases, which reduces to Z8 under strong
interactions26,27. Another example is superconductors
protected by U(1) spin rotational symmetry and time re-
versal symmetry, where interactions reduce the classifica-
tion of SPT phases from Z to Z4

28. However, similar to
bosonic systems, it is also possible that interactions can
induce new SPT phases in fermionic systems. That is to
say, some interacting SPT phases may have no analogs in
free fermion systems. In this paper, we will illustrate this
possibility through a concrete model in one dimension.

Here we consider a spinless fermion model with U(1)o

ZT

2 symmetry, where U(1) = {eiN̂✓; ✓ 2 [0, 2⇡)} is the
charge conservation symmetry and ZT

2 = {I, T} is the

time reversal symmetry with TeiN̂✓ = e�iN̂✓T and T 2 =
1. The spinless fermions can be interpreted as fully polar-
ized electrons in a strong Zeeman field along z-direction,
whereas the time reversal is defined as T̃ = eiSx

⇡T with
T̃ 2 = 1. Without interaction, the classification of 1D
SPT phases for U(1)o ZT

2 symmetry is Z1
19, thus there

is only one trivial band insulating phase. However, since
H2(U(1)oZT

2 , U(1)) = Z2
9, the symmetry group has two

projective representations, indicating that there are two
SPT phases under strong interactions. One is trivial and
is adiabatically connected to the trivial band insulator.
On the contrary, another one is nontrivial and has sym-
metry protected edge states, which cannot be connected
to the trivial phase without closing the bulk gap if the
symmetry is reserved. In the following we will explicitly
construct the model and study the phase diagram using
density matrix renormalization group. Generalization of
our results to higher dimensions will also be discussed.

The model. We consider a spinless fermion model on
a three-leg ladder with Hamiltonian

H = H0 +H
U

+H
J

, (1)

where H0 is the non-interacting Hamiltonian including
the intra-chain hopping (with amplitude t0) and inter-
chain hopping (with amplitude t1) terms (see Fig. 1(a)
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FIG. 1. (Color online) (a) Schematic picture of the spinless
fermion model (1) on a three-leg ladder; (b) Dispersion of the
model with t1/t0 = 3 and U = J = 0 under periodic bound-
ary condition (here Nr = 48). The upper band is doubly
degenerate and the system is a band insulator at 1/3-filling.
If t1/t0 < 4

3 , the gap will close and the system becomes a
metal; (c) Dispersion under open boundary condition. There
are no zero modes.

for detail)
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are anihilation operators of three
species of spineless fermionons and N
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is the total particle number at the ith rung. H
U

is the
on-site Hubbard repulsive interaction

H
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and H
J

is a Heisenberg-like interaction

H
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X

i
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with spin operators defined as S↵ =
P

�,�

i"↵��c†
�

c
�

,
where ↵,�, � = x, y, z. Under symmetry operations, the
fermions vary in the following way

U
✓

c
↵

U�1
✓

= c
↵

ei✓,

T c
↵

T�1 = �c
↵

.

It is obvious that the model (1) is invariant under the
U(1)o ZT

2 group.
Non-interacting limit. We first study the free fermion

model at 1
3 -filling (i.e. there is one fermion at each

rung in average) with U = 0, J = 0. According to
the classification theory, there is only one gapped phase,
i.e. the trivial band insulator. This can be easily
seen from the bulk excitation spectrum. Under peri-
odic boundary condition, the band structure is given as
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FIG. 2. (Color online) Energy spectrum of a single rung (with
t0 = 0 and t1 = 1) as a function of Hubbard repulsive interaction
U . The red line denotes ground state energy, and the blue lines
denote excited states. The gap remains finite when U varies from
0 to +1.

Ev
k

= �2t1�2t0 cos(k), Ec
k

= t1�2t0 cos(k), where Ev is
the valence band and Ec stands for the 2-fold-degenerate
conducting bands. When t1 < 4

3 t0, the system is a metal
where both the valence band and the conducting bands
are partially filled. When t1 > 4

3 t0, only the valence
band is filled and the system becomes a band insulator
(see Fig.(1(b))). The trivialness of the insulating phase
can be reflected by the absence of zero edge modes un-
der open boundary condition (see Fig.1(c)). In the limit
t1/t0 ! 1, the bands become flat, and the ‘charges’ are
localized at each rung in the ground state.
Strong interaction limit. In the large U limit, the sys-

tem is deep in the Mott insulating phase and the ‘charges’
are localized at each rung. In this case, the three species
of fermions on each rung e↵ectively act as the three com-
ponents of a S = 1 spin. If t1 > 0, the spin degrees of
freedom will be fixed and the ground state is unique.
Suppose we increase the on-site repulsive interaction

U from 0 to infinity in the limit t1/t0 = 1 (i.e. t1 =
1, t0 = 0), where the system becomes decoupled rungs.
The ‘charges’ are always localized at each rung and there
is a finite gap above the ground state for all values of
U (see Fig. 2). That is to say, the band insulator at
U = 0 and the Mott insulator at large U are adiabatically
connected and belong to the same trivial phase. This
result also holds for nonzero t0 with t0 < 3

4 t1.
In the Mott region (when U is large enough), the

S = 1 spin degrees of freedom dominate the low energy
physics. If we couple the rungs via strong Heisenberg-like
interaction H

J

, the system will be in another gapped
phase — the fermionic Haldane insulating phase. The
di↵erence between the fermionic Haldane insulator and
the bosonic Haldane phase in spin-1 chains7,8 or ex-
tended Bose-Hubbard model29,30 is that the former has
finite fermionic charge fluctuations. The existence of the
fermionic Haldane insulator is guaranteed by the fact
that the symmetry group U(1)oZT

2 has a nontrivial pro-
jective representation(see the supplementary material) .
Numerical studies. Above we have analyzed some
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FIG. 3. (Color online) Phase diagram for the spinless fermion
model [Eq.(1)] at 1/3-filling with J = 0.5 and Nr = 48, as
determined by DMRG calculations. Varying parameters t1
and U , three di↵erent phases are found: metal, trivial insu-
lator and Haldane insulator. The question mark indicates a
possible tricritical point whose precise location is di�cult to
determine numerically.

limits of the spinless fermion model (1) and illustrated
that there are three phases, one of them is induced by
strong interactions. Now we will determine the ground
state phase diagram and properties of the system by
extensive and accurate density matrix renormalization
group31 (DMRG) simulations. In the calculation, we con-
sider a system with total number of sites N = 3N

r

, where
N

r

is the number of rungs (up to 96) and 3 is the number
of legs. For simplicity, we will set t0 = 1 as the energy
unit and use open boundary condition. We keep up to
m = 1536 states in the DMRG block with around 10
sweeps to get converged results. The truncation error is
of the oder 10�6 or smaller.

The main result is illustrated in the phase diagram
shown in Fig.3 at filling ⇢ = 1

3 and J = 0.5. Chang-
ing the coupling parameters t1 and U , three di↵erent
phases are found, including a gapless metal phase and two
gapped phases — the trivial insulator and Haldane insu-
lator. The Haldane insulator is a nontrivial SPT phase,
which has degenerate edge states under open boundary
condition. Numerically, the existence of the edge modes
can be identified by the real-space entanglement spec-
trum (ES)6,32, since the edge modes respect projective
representation of the symmetry group and the degener-
acy of the entanglement spectrum equals to the dimen-
sion of the irreducible projective representations. The ES
is defined as the set of eigenvalues of the reduced density
matrix ⇢

A

= TrB| ih |, with A being a subsystem(e.g.
the left half part of the ladder) and B the remainder of
the system, and | i is the ground state wavefunction of
whole system. As shown in Fig.6, the largest weight of
ES in the Haldane phase is 4-fold degenerate, and this
degeneracy is associated with the 2-fold degenerate edge
states33. On the contrary, there is no such degeneracy
in the ES of the trivial insulating phase and the metal
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FIG. 4. (Color online) Log-log plot of the density-density
Dij and spin-spin Pij correlation functions for t1 = 0.5, U =
0.5. The Dij is power law decaying. The Pij is strongly
fluctuating, and decays in power law on average. Here Nr =
96.

phase.

For small inter-chain hopping t1 and weak interaction
U , the metal phase is stable. In this phase, both the va-
lence band and conduction bands are partially filled, and
the system remains gapless. Both the fermion density-
density correlation function D

ij

= hN
i

N
j

i � hN
i

ihN
j

i
(here i and j are rung indices) and spin-spin correlation
function P

ij

= hSz

i

Sz

j

i�hSz

i

ihSz

j

i decay as power-law (see
Fig. 4).

With the increase of inter-chain hopping t1, the metal
phase becomes shrinked and eventually gives way to triv-
ial insulating phase. For weak interaction U , this trivial
insulating phase is nothing but a band insulator, where
the lower valence band is fully filled and the upper con-
duction bands are empty. For strong interaction U , the
system becomes a Mott insulator which is adiabatically
connected to the band insulator. In this trivial phase,
all the excitations are gapped in the bulk. Therefore,
both the density-density D

ij

and spin-spin P
ij

correla-
tion functions decay exponentially, as seen in Fig.5(b).
Although symmetry is unbroken in this phase, there are
no protected edge modes.

For moderate inter-chain hopping t1, the ground state
of the system becomes the nontrivial Haldane insula-
tor, when the interaction U is strong enough. Similar
with the trivial insulator, all the excitations in the bulk
are gapped, with exponentially decaying density-density
D

ij

and spin-spin P
ij

correlation functions [see Fig.5(a)].
However, as mentioned, the Haldane phase has nontrivial
gapless edge modes protected by the U(1)o ZT

2 symme-
try. The Haldane insulator has no analog in free fermion
models and is purely a consequence of strong interac-
tions, especially the J-term interaction. If we set J = 0,
then the Haldane insulating phase will disappear. On
the other hand, if we fix U at a very large number, then
if t1 = 0, the system is gapless and it is expected (but
very di�cult to verify numerically) that arbitrarily small
J > 0 will drive the system to the Haldane phase; if
t1 6= 0, then the critical J

c

will be larger than 0.
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FIG. 5. (Color online) Log-linear plot of density-density Dij

and spin-spin Pij correlation functions for (a) t1 = 0.4, U =
2.0, and (b) t1 = 1.2, U = 2.0, respectively. Here Nr = 96.

The phase transition between the metal and trivial in-
sulator, as well as the transition between the Haldane
insulator and trivial insulator are second order. There-
fore, the accurate phase boundaries can be directly de-
termined by the second order derivative of the ground

state energy density �@

2
E0

@t

2
1
, as seen in the inset of Fig.6.

The transition points obtained from the energy deriva-
tive are consistent with that obtained from the change
of degeneracy of the ES [see Fig. 6(a) for the data at
U = 1.5]. By contrast, the phase transition between the
metal and Haldane insulator seems Kosterlitz-Thouless
like since the first and second order energy derivatives
are smooth at the vicinity of the phase boundary. In
this case the phase boundary is solely determined by the
change of the degeneracy of ES [see Fig.6(b)].

Conclusion and discussion. In summary, we
have systematically studied the one-dimensional spinless
fermion ladder model (1) and shown that strong inter-
actions can give rise to a new SPT phase. Without in-
teraction, the model has only one band insulating phase.
Turning on strong interactions, there will be two Mott
insulating phases, one is adiabatically connected to the
band insulator, while another one is nontrivial and has
symmetry protected gapless edge modes.

In the Mott limit U = +1, the charge degrees of free-
dom are completely frozen and the system reduces to
a spin model with time reversal symmetry ZT

2 . In this
limit, the nontrivial SPT phase becomes the spin-1 Hal-
dane phase. At finite U , the nontrivial SPT phase has
similar spin dynamics but with nonzero charge fluctu-
ations. In other words, the system contains fermionic
charge excitations, although they exist at a relatively
high energy. In this sense, the fermionic Haldane insula-
tor at finite-U is di↵erent from the pure bosonic Haldane
phase. The stability of the fermionic Haldane insula-
tor against charge fluctuations is protected by the non-
trivial projective representation of the symmetry group
U(1)oZT

2 . Notice that the Haldane insulating phase has
also been discussed in two-legged spin-1/2 fermion ladder
models with Hubbard interactions34–37. However, com-
paring with our spineless fermion model there is a subtle
di↵erence between the symmetry groups. For spin-1/2
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FIG. 6. (Color online) Evolution of entanglement spectrum
(with the largest 4 weights ⇤1 ⇠ ⇤4) for the spinless fermion
model in Eq.(1), at (a) U = 1.5 as a function of t1, and (b)
t1 = 1.0 as a function of U . Inset in (a): Second derivative

of the ground state energy density � @2E0
@t21

with di↵erent U .

Inset in (b): Entanglement spectrum ⇤1 ⇠ ⇤20 for U = 1.5
as a function of t1 = 1.0. Here Nr = 48.

fermions T 2 = P
f

where P
f

is the fermion parity. As
a result, the symmetry group is G�

�(U, T )
19 instead of

G�
+(U, T ) = U(1) o ZT

2 . Since the group G�
�(U, T ) has

NO nontrivial projective representations, the Haldane in-
sulating ‘phase’ in the spin-1/2 fermionic ladder model
is not stable against charge fluctuations and can be adi-
abatically connected to the band insulatior unless the
model has extra inter-chain reflection symmetry36,37.

Since H2(U(1) o ZT

2 , U(1)) = H2(ZT

2 , U(1)) = Z2,
the interacting fermionic SPT phase corresponds to the
bosonic SPT phase in the extreme Mott limit. This corre-
spondence provides a method for constructing fermionic
SPT phases in higher dimensions. For example, in three
spatial dimensions, there are no nontrivial free fermion
SPT phases with the same symmetry group U(1)oZT

2
19,

but in the extreme Mott limit (U ! 1) the ZT

2 sym-
metry alone can protect three nontrivial bosonic SPT
phases38. If these phases can survive under the charge
fluctuations at finite U , then we will be able to obtain
three interacting fermionic SPT phase which can not be
realized in free fermion systems (a similar symmetry, i.e.,
the combination of U(1) and ZT

2 with T 2 = P
f

has been
discussed in 3D in Ref. 39). In two dimensions, U(1)oZT

2
can also protect one nontrivial SPT phase40,41 which can
not be realized without interactions.19 However, the real-
ization is quite di↵erent from that in 1D, since this non-
trivial phase can not be protected by the ZT

2 symmetry
alone (in the extreme Mott limit). Instead, the nontriv-
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ial SPT phase can be understood as a bosonic topolog-
ical Mott insulator42 of a molecule system where each
molecule is a bound state of even number of fermions.
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