
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Ionization of a P-doped Si(111) nanofilm using two-
dimensional periodic boundary conditions

Tzu-Liang Chan, Alex J. Lee, and James R. Chelikowsky
Phys. Rev. B 91, 235445 — Published 25 June 2015

DOI: 10.1103/PhysRevB.91.235445

http://dx.doi.org/10.1103/PhysRevB.91.235445


Ionization of a P-doped Si(111) nanofilm using 2D periodic

boundary conditions

Tzu-Liang Chan,1, 2, ∗ Alex J. Lee,1, 3 and James R. Chelikowsky1, 4, 3, †

1Center for Computational Materials,

Institute for Computational Engineering and Sciences,

University of Texas, Austin, Texas 78712, USA

2Department of Physics, Hong Kong Baptist University,

Kowloon Tong, Kowloon, Hong Kong

3Department of Chemical Engineering,

University of Texas, Austin, Texas 78712, USA

4Departments of Physics, University of Texas, Austin, Texas 78712, USA

Abstract

We examine the ionization of a P dopant in a Si(111) nanofilm using first-principles electronic

structure calculations with 2D periodic boundary conditions. The electrostatic divergence of a

charged periodic system is resolved by defining an electrostatic reference potential along the con-

fined direction. After ionization, there is an overall electrostatic potential drop of the system.

A nanofilm with larger periodicity can reduce the potential drop by screening the P ion, and

leads to a smaller ionization energy. We compare the ionization energy calculated for the P-doped

Si nanofilm with a P-doped Si nanocrystal and a P-doped Si(110) nanowire. As dimensionality

decreases, quantum confinement tends to lower the ionization energy by raising the defect level.

However, lower dimensionality also reduces screening after P ionization. This leads to a larger

electrostatic potential drop and offsets the effect of quantum confinement on the ionization energy.

PACS numbers: 73.21.Fg, 73.90.+f, 71.15.Dx
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I. INTRODUCTION

Electronic components are miniaturizing to the nanoscale in order to pack more func-

tionalities and enhance the speed of electronic devices1. The size of a transistor in a CPU

is currently in the range of 10-30 nm2. It is expected that strong quantum effect will start

to dominate the device properties when the semiconductor manufacturing process adopts

sub-10 nm technology. There are electrically charged components, for example, bits in the

computer memory are determined by whether the capacitors in the DRAM are charged or

discharged. A gate capacitor can be used to control the current flow through the channel re-

gion of a field effect transistor. Charged nanostructures can also be utilized in miniaturized

batteries as a high-power energy storage device due to the fast kinetics of electrons within

nanostructures3 and excellent recyclability.

The electronic properties of a charged nanostructure can be quite different from a macro-

scopic one. It is known that screening is weaker in a nanomaterial, hence its dielectric

constant is typically smaller4. A nanocapacitor has a much smaller density of states at the

Fermi level. Therefore, charging a nanocapacitor can easily affect its Fermi level, thus its

capacitance varies with its charge state5. Moreover, it is expected that its charging behavior

can be strongly affected by its detailed atomic structure and the interface structure of the

surrounding material. Unfortunately, the electronic properties of charged nanostructures

have yet to be fully explored even theoretically. This is because charged nanostructures

pose technical difficulties to first-principles electronic structure calculations. Nanowires and

nanofilms are typically modelled as periodically repeating structures. A charged periodic

structure has a divergent electrostatic energy6. The divergence originates from the long-

range Coulomb interaction, which becomes divergent when all the contributions from the

periodic images are added up. The issue can also be interpreted as the problem of defining

an electrostatic reference potential. Conventionally, the reference is defined to be zero in-

finitely far away. If the system is charged but also infinite in extent, it becomes problematic

to define the reference at a location where charges are located.

The divergent electrostatic energy of a charged nanowire or nanofilm is actually an artifact

and does not exist in experiments because all charged nanostructures have a finite size. The

periodicity is imposed for convenience theoretically. A typical approach to resolve the issue

is to remove the divergence and correct the total energy to recover a value that is physically
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meaningful. Popular first-principles electronic structure codes use plane waves as a basis set,

which imposes three-dimensional periodicity to the system. Plane wave codes set the average

electrostatic potential of the system to be zero. This corresponds to introducing a jellium

background into the unit cell to neutralize the charged system7. The total energy can be

corrected by the Madelung sum8,9, which evaluates the electrostatic interaction between the

periodic net charges of the system and the inserted jellium. Long-range Coulomb interactions

due to dipoles, quadrupoles and higher-order multipoles within a unit cell can be corrected

by the Makov and Payne scheme10 or compensated by introducing Gaussian charges11 and

local moments12,13 into the system.

If the absolute value of the total energy is not important, for example when comparing

total energies, then it is only necessary to calculate the total energies with respect to the

same electrostatic reference potential. This motivates the potential alignment technique: the

electrostatic potential of a small region of the unit cell can be aligned to a chosen value14–16.

The alignment procedure is equivalent to choosing a common reference vacuum energy level.

Total energy correction schemes can be coupled with potential alignment17. Using ZnO and

GaAs as prototypical systems, Zunger et al. demonstrated that the Makov-Payne correction

accompanied by a potential alignment scheme can lead to well-converged formation energies

of charged defects18.

There are computational schemes designed specifically for charged nanostructures with

three-dimensional periodicity imposed. The total energy of a charged nanowire can be

corrected by a generalized Madelung correction19. However, it is found that the total en-

ergies converge quite slowly with unit cell size20. Unless the intention is to simulate an

array of nanowires, the imposed periodicity perpendicular to the wire axis is superfluous.

There are efforts trying to eliminate the effect of this extra periodicity (while still using

plane wave codes) by the Coulomb-cutoff method21–24, which truncates the long-ranged

Coulomb interaction or restricting the wave functions along the directions perpendicular to

the nanowire25–27. The interactions along the perpendicular directions can also be corrected

by a corrective potential28. There are similar approaches for charged nanofilms. For exam-

ple, charged films can be neutralized by jellium or countercharge sheets29. The inter-film

dipole interactions can be evaluated and eliminated30–32.

In this paper, we shall develop a computational algorithm specifically designed for charged

two-dimensional periodic nanofilms. Our algorithm is based on PARSEC33,34, which is a first-
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principles electronic structure code using a real-space grid instead of a plane wave basis set.

PARSEC has already been implemented a partially periodic boundary condition such that

the system is only periodic along the x and y directions, but confined along the z direction35.

The advantage of such a computational approach is that the inter-film interaction does

not even exist, therefore it is not necessary to devise schemes trying to eliminate such

interactions. Another advantage is the flexibility on imposing boundary conditions along

the z direction. Since the z direction is not periodic, we are free to impose any physical

boundary conditions on the top and the bottom surfaces of the unit cell to simulate various

experimental conditions. Our new contribution is to make use of this flexibility to address

the issue of charged nanofilms. We shall use the boundary condition to define an electrostatic

reference potential. The reference can be defined consistently for different calculations such

that different total energies are comparable and the electronic structures are aligned. A

similar approach has been adopted for a charged nanowire calculated using a one-dimensional

periodic boundary condition36.

As a case study, we examined an ionized SiH4 molecule. The boundary condition is

designed such that the total energy and the electronic structure of the ionized molecule

is the same as those using a non-periodic confined simulation cell. We then illustrate our

scheme to study the ionization of a P-doped Si(111) nanofilm. After the P dopant is ionized,

there is an overall electrostatic potential drop of the system. The Si nanofilm can reduce

the potential drop by screening the P ion. As the nanofilm periodicity increases, we find

that the potential drop becomes smaller and the ionization energy lowers accordingly. The

dependence on periodicity can also be seen with a classical simulation of a positive charge

embedded in a dielectric slab. Finally, we compare the ionization energy of the P dopant

in the nanofilm with that in a nanowire or a nanocrystal. As the dimensionality decreases,

quantum confinement tends to lower the ionization energy by raising the defect level, but it

is not sufficient to offset the increase of the ionization energy owing to reduced screening.

II. THE 2D PERIODIC KOHN-SHAM PROBLEM WITH A NET CHARGE

The treatment of a neutral system with 2D periodic boundary conditions was described

in detail in Ref. 35. In this section, a brief review of the formalism will be given together

with our new modification to handle a charged system. Consider a two-dimensional periodic
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system with periodicity Lx and Ly along the x and y directions, respectively. Its electronic

structure can be obtained by solving the Kohn-Sham equation37,38:
(−~

2∇2

2m
+ Vion(r) + VH [ρ] + Vxc[ρ]

)

ψn,kx,ky(r) = εn,kx,kyψn,kx,ky(r). (1)

Vion is the ion-core pseudopotential, and we adopt the Troullier-Martins pseudopotentials39

in the Kleinman-Bylander form40. VH is the Hartree potential, which is obtained by solving

the Poisson equation for a given electronic charge density ρ. Vxc is the exchange-correlation

potential. In this study, the local density approximation (LDA) is used, and Vxc adopts

the Ceperley and Alder functional41 parameterized by Perdew and Zunger42. The system

of interest is enclosed by a rectangular box periodic along both the x and y directions, but

the z direction is confined. The height Lz of the box should be large enough to contain

the system plus a sufficient amount of vacuum space (at least 3-4 Å) such that the wave

functions ψn,kx,ky decay to 0 at the top and bottom of the box. For a 2D periodic system,

the solutions are labeled by the band index n and a wave vector (kx, ky) in the first Brillouin

zone by the Bloch theorem43. In this paper, we focus on isolated charged dopants such that

the lateral dimension of the box Lx and Ly are large and only the Γ point is used to sample

the Brillouin zone. Our algorithm for studying charged periodic systems applies to any

two-dimensional periodic systems in general. The Kohn-Sham equation should be solved

self-consistently since VH and Vxc depend on the unknown ρ.

The central issue of a charged periodic system is that its electrostatic energy diverges.

Hence, we focus on how the electrostatic potential is dealt with in the Kohn-Sham equa-

tion. Vion + VH comprise the electrostatic part of the self-consistent potential VSCF . The

idea is to add and subtract a compensating potential Vcom to the electrostatic potential as

(Vion + Vcom) + (VH − Vcom). Vcom neutralizes Vion such that the electrons in the system are

under the influence of an electrically neutral ionic potential (Vion + Vcom). The electrostatic

divergence is handled when we solve the Poisson equation for (VH − Vcom).

For the nth atom with ionic charge Zn in the system, we overlay at the atomic position

a potential of the form

vncom =
−Zn

r
erf

(

r√
2σn

)

. (2)

r is the radial distance from the atom. The potential corresponds to the electrostatic poten-

tial of a Gaussian charge with width σn. σn is chosen to be half of the cutoff radius of the

atom’s pseudopotential. This way, the added potential can roughly cancel the pseudopoten-
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tial beyond the cutoff radius. Vcom is to sum vncom over all the atoms within the unit cell.

Since the Gaussian charge is opposite to the ionic charge, (Vion + Vcom) corresponds to the

potential of a neutral system. Therefore, its influence to an electron will not be long-ranged.

(Vion + Vcom) within the unit cell can be evaluated by summing over the periodic images of

the system. The choice of σn affects how many periodic images are needed in the sum. For

our choice above, only a few periodic images is sufficient to converge the sum.

The Hartree potential can be solved by the Poisson equation

∇2V = −4π (ρ− ρcom) = −4πρtot. (3)

ρcom is the sum of all the Gaussian charges added when we evaluate (Vion + Vcom) above.

Thus, the solution of the Poisson equation V corresponds to (VH − Vcom). Vcom will be

cancelled out in the Kohn-Sham equation without any physical effect. The boundary con-

dition for the Poisson equation is specified as follows. For each plane zi within the unit

cell, a Fourier transform is performed for the planar charge density ρtot (zi). For a point

~r = (x, y, z) at the top or the bottom of the calculation domain, the Fourier component

ρtot0,0 contributes −2πρtot0,0|z − zi| to V (~r). The other Fourier components ρtotl,m contribute

2π
ρtot
l,m

|~kl,m|
ei
~kl,m·~re−|~kl,m||z−zi| to V (~r)44. Here, ~kl,m = (l 2π

Lx
, m 2π

Ly
, 0), where l and m are integers.

The contribution of ρtot from all the planes zi should be summed up to obtain V (~r) at the

boundary. For example, if ρtot is a uniformly charged plate at zi = 0, then the boundary

condition is simply −2πρtot0,0|z|. The electrostatic potential varies linearly with z and diverges

infinitely far away. We can see that the reference potential is set to be the location of the

charged plate. Such treatment of two-dimensional periodic systems was adopted in Ref. 35.

For a neutral system, it is known that the definition of the reference potential is not crucial

because it will be cancelled out in the total energy45. However, if the system is charged, the

total energy will depend on how the reference is defined. In fact, the above specification of

the boundary condition for the Poisson equation is equivalent to setting the self-interaction

energy of a two-dimensional array of charges to be zero. In this paper, we propose to take

into account the self-interaction energy contribution to the boundary condition of the Pois-

son equation. Later, we shall show that the eigenvalue spectrum and the total energy of

a charged molecule inside a two-dimensional periodic cell will be the same as an isolated

charged molecule.

Suppose a system has a net charge Znet = Zion − Ze, where Zion is the total ionic charge
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and Ze is the total number of electrons. In addition to the boundary condition of the

Poisson equation specified above, we can shift the electrostatic potential at the boundary

by an amount 2ZnetEself . Eself is the self-interaction energy of a charge placed in a two-

dimensional rectangular box with periodicities Lx and Ly (with the divergence removed)46:

Eself =

(

8
∑

i,j

K0

(

2πij
Ly

Lx

)

− 2 log

(

4π
Lx

Ly

)

+ 2γ

)

/Lx. (4)

K0 is the modified Bessel function of the second kind. γ is the Euler constant 0.5772. The

shift depends on the size of the box and redefines the reference for the electrostatic potential.

As a result, VSCF of the Kohn-Sham equation and the eigenvalue spectrum will be shifted

by the same amount. The total energy Etotal is given by:

Etotal =
∑

k

occ(k)
∑

n=1

εn,k −
1

2
EH +

∫

ρ (r) (εxc [ρ (r)]− Vxc [ρ (r)]) d
3r+ Eion. (5)

The band energy is to sum over all the occupied eigenvalues εn,k, and is shifted by an amount

2ZnetZeEself . EH =
∫

VH (r) ρ (r) d3r is the Hartree energy. EH describes the energy of the

electronic charge density ρ (r) under the electrostatic potential VH (r) due to the electrons

themselves. Both ρ and VH do not include the contribution from the Gaussian compensation

charges. After taking into account the self-interaction of the electrons between the periodic

cells, VH is shifted by −2ZeEself with EH adjusted accordingly by an amount −2Z2
eEself .

The negative sign is because the adjustment of the electrostatic boundary condition is oppo-

site for ion-electron and electron-electron interactions. εxc is the exchange-correlation energy

density which is unaffected by the electrostatic boundary condition. Finally, the change to

the ion-ion Coulomb interaction energy Eion is −Z2
ionEself . If the system is electrically neu-

tral (Zion = Ze), both the eigenvalue spectrum and the total energy will be unchanged as

expected. It is straight forward to show that the net adjustment to the total energy is

−Z2
netEself when the system carries a net charge. There is no change to the force evaluation

because only a constant shift to Etotal is introduced.

III. IONIZATION OF A SiH4 MOLECULE

To demonstrate how the scheme works, we calculated an ionized SiH4 (silane) molecule

in a two-dimensional periodic box. An electron is removed from the molecule such that
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Znet = 1. The molecular structure is kept fixed in this study. Since the goal here is not to

study the detailed chemistry of SiH4, but how the eigenvalue spectrum and the total energy

change with the box size, we performed non-spin polarized calculations for simplicity.

For the SiH+
4 molecule in a periodic box with Lx = Ly = 20 a.u., Fig. 1(a) depicts the

variation of VSCF from the position of the molecule to the top of the box. At a height

sufficiently far away from the SiH+
4 , the periodically repeating charged molecule starts to

resemble a uniformly charged plane, and VSCF increases linearly with height. The electro-

static potential of a uniformly charged plane 4π
LxLy

z is plotted as a comparison. The line is

shifted by 2ZnetEself such that both curves correspond to the same electrostatic reference.

The total energy of SiH+
4 is plotted as a function of box size in Fig. 1(b). Along the confined

z direction of the box, Etot converges quickly with a few Å of vacuum space between the

molecule and the edge of the box. Along the periodic x and y directions, the wave functions

between adjacent periodic cells can overlap, but separating the periodic molecules with ∼10

Å of vacuum space is sufficient to converge Etot. The converged value of Etot corresponds

nearly exactly to the result of a SiH+
4 molecule in a non-periodic confined box. The quick

convergence is made possible by shifting the electrostatic reference using the self-interaction

energy as detailed in the previous section. Without the shift, the convergence of Etot with

Lx and Ly will be very slow.

In our scheme, not only Etot is corrected, but the eigenvalue spectrum is properly aligned

at the same time. In Fig. 1(c), we plot the spectrum for different periodicities Lx = Ly = L.

Only the lowest eight eigenvalues are presented. Apparently, only four eigenvalues can be

observed because ε2 to ε4 are degenerate, so are ε5 to ε7. The L = ∞ case corresponds to

the spectrum of a SiH+
4 molecule in a non-periodic confined box. We can see that all the

eigenvalue spectrums are respect to the same electrostatic reference such that they can be

compared directly. The convergence is similar to that in Fig. 1(b). The convergence for the

unoccupied states (ε5 to ε8) is slightly slower because they split as the more extended wave

functions overlap between the periodic images.

IV. IONIZATION OF A P-DOPED Si(111) NANOFILM

We apply our scheme to an ionized P dopant embedded in a Si(111) nanofilm. As illus-

trated in Fig. 2, our Si(111) slab consists of 6 Si atomic layers. Each surface Si atom has
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FIG. 1. (a) The self-consistent potential VSCF plotted from the SiH+
4 position (z = 0) to the top

of the simulation box. The variation of VSCF approaches the electrostatic potential of a uniformly

charged sheet Vplate for sufficiently large z. Vplate = 4πσz+2ZnetEself , where σ = 1
LxLy

is the surface

charge density, Znet = 1 and Eself is defined in Eqn. 4. The second term in Vplate corresponds to

our choice of the electrostatic reference potential. (b) The total energy Etot of SiH
+
4 plotted as a

function of the height of the simulation cell Lz (�, Lx = Ly fixed at 30 aB) and the periodicity

Lx = Ly = L (•, Lz fixed at 15 aB). (c) The variation of the eigenvalue spectrum of SiH+
4 with

the periodicity L. The spectrum for L = ∞ corresponds to the result from a non-periodic confined

calculation.
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Si(111) nanofilm

(2D)

Si(110) nanowire

(1D)

Si nanocrystal

[111]

        (0D)

direction

FIG. 2. The atomic geometry of a P-doped Si nanocrystal, Si(110) nanowire and Si(111) nanofilm.

The three structures are oriented such that the (111) direction is pointing upwards, and the (110)

direction is into the paper. The Si atoms are colored grey, and the cyan atoms are the H passivation.

The large yellow atoms at the center of the structures are the P substitutional dopants.

only one dangling bond, which is passivated by a H atom. One of the Si atoms close to

the center of the slab is substituted by a P atom. The P atoms are covered by 2-3 layers

of Si and the P are well separated from each other such that the effect of P is to introduce

a defect level into the Si band gap. The P-doped Si nanofilm is ionized by removing an

electron from the defect level, which is the highest occupied energy level of the system.

Although the film thickness is small, our purpose here is not to simulate a Si surface, but

to illustrate our scheme for the case of a charged nanofilm. In our study, the Si atoms are

kept fixed at their bulk positions without atomic relaxation. Here, we want to study the

ionization energy of the P dopant in the Si(111) nanofilm. Previous studies on a similar

system show that atomic relaxation has a minor effect on the ionization of the P atom47. In

general, spin-polarized calculations are required for defect states. Here, we only performed

non-spin-polarized calculations as in the SiH+
4 study. This is because the ionization energies

differ by at most 0.01 eV even if spin polarization is included at the LDA level.

For our test case using SiH+
4 molecule, our adjustment of the electrostatic reference recov-

ers the eigenvalue spectrum and the total energy of an isolated non-periodic molecule. The

Coulomb interaction among the charged molecules are removed by the reference. An analo-

gous interpretation for the ionized P-doped Si nanofilm is that the total energy corresponds
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FIG. 3. (a) The ionization energy IE of the P-doped Si(111) nanofilm as a function of the

periodicity L. The • curve uses a total energy approach. The eigenvalue of the defect level |εd|

when the system is neutral (�) is plotted for comparison. (b) IE exhibits an exponential decay

with L. This is verified by a linear dependence when the • curve is plotted on a log-linear scale.

to a periodic film but with the Coulomb interaction among the P ions removed. Physically,

this can be related to a finite Si(111) slab of size Lx × Ly. Note that this association is not

exact because our periodic model is continuous without the four edges around a finite slab.

However, the total energy of our periodic model does progressively approach a finite one

when Lx and Ly are getting larger.

For a P-doped Si(111) nanofilm with periodicity Lx ≈ Ly = L, we calculate its ionization

energy IE by

IE = E+ − E0. (6)

E+ is the total energy of an ionized P-doped Si(111) film. E0 is the total energy of the

same system without the ionization. IE corresponds to the energy required to extract the
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defect electron from the doped Si nanofilm to the vacuum. Fig. 3(a) shows the variation of

IE with L (the film thickness is fixed). IE increases with decreasing L. A similar trend

can also be observed for a P-doped Si(110) nanowire with different axial periodicity36. The

curve can be fitted very well using an exponential function of the form:

IE = IE(∞) + ∆exp(−L/λ). (7)

In Fig. 3(b), the corresponding log-linear plot indicates a nearly straight line, which shows

that its L dependence is indeed exponential. The asymptotic value IE(∞) for large L is

extrapolated to be 3.95 eV. The decay length λ is fitted to be 24.7 Å. ∆ represents the effect

of L on IE.

In Fig. 3(a), IE is compared with the eigenvalue of the P defect level |εd| when the system

is neutral. According to the Janak’s theorem48, εd =
∂Etot

∂nd
. ∂nd corresponds to a differential

change in the occupancy of the defect level. Note that εd lowers as nd reduces from 1 to 0 in

LDA. IE should correspond to
∫ 0

1
εd (nd) dnd. In the neutral state, the |εd| in Fig. 3(a) does

not take into account the lowering of the defect level as its occupancy changes. IE exhibits

a change of ∼0.4 eV for the range of periodicity L examined in Fig. 3, while |εd| shows little
variation with L. Therefore, |εd| does not take into account the long-ranged phenomena

after P ionization. In the next section, we shall show that a classical electrostatic model of a

positive charge embedded in a dielectric can qualitatively reproduce the trend. This implies

that the final-state effects such as an electrostatic potential drop and polarization around

the P dopant after ionization are not included in |εd|. The small variation of |εd| with L

is related to the overlap of the defect wave function Ψ between periodic cells. Fig. 4(a)

shows that Ψ is quite localized around the P dopant. Ψ along the z direction is significantly

confined by the nano thickness of the Si(111) slab (Fig. 4(b)). Fig. 4(c) illustrates the radial

dependence of Ψ, which decays roughly exponentially from the P. By integrating along the

radial direction, Fig. 4(d) shows that most of the defect charge density is within a 2-3 nm

radius from the P dopant. The overlap of Ψ between periodic cells should not be significantly

enough to modify IE by ∼0.4 eV in Fig. 3. It is well-known that LDA predicts too small a

band gap49. In our study, the thickness of the Si film is fixed. As such, the band gap and

the confinement of Ψ within the film remains the same as L changes. Therefore, the LDA

error should only give rise to a systematic shift of εd in Fig. 3(a). While the long-range tail

of Ψ is also prone to the self-interaction error of LDA50, it should not affect our analysis
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FIG. 4. (a) A contour plot of the P defect wave function |Ψ|2. The red contour corresponds to the

value 0.005 Å−3. (b) The variation of |Ψ|2 is plotted against z (after integrating with respect to x

and y). The blue dot on the x-axis denotes the P location, and the two red dots correspond to the

z coordinates of the H passivation. (c) The average variation of |Ψ|2 against the radial distance r

(in cylindrical coordinates with θ and z dependence integrated out). (d) |Ψ|2r is plotted against r

(solid line). Its integral (dashed line) shows that Ψ is normalized.

qualitatively.

Thus, the large variation of IE with L as observed in Fig. 3(a) is mostly a consequence

of final-state effects, i.e. how the ionized P dopant is screened by the Si nanofilm. One such

final-state effect is the electrostatic potential drop ∆V of the system after the ionization. Fig.

5 depicts the density of states of the P-doped Si(111) nanofilm before and after ionization

for two different periodicities L. ∆V can be seen from the overall downward shift of the

potential. ∆V ≈ 1.7 eV in Fig. 5(a) with a smaller L is larger than ∆V ≈ 0.5 eV in Fig.

5(b). A larger ∆V leads to a larger IE for small L in Fig. 3(a). ∆V is related to the
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FIG. 5. The density of states of the P-doped Si(111) nanofilm before and after ionization of the

P dopant. There is an electrostatic potential drop of the system as a whole after ionization. The

drop is larger for a nanofilm with a smaller periodicity (a) L = 21.1 Å compared to the nanofilm

with (b) L = 94.4 Å. The three vertical dashed lines denote (from left to right) the energies of the

valence band maximum, the defect level and the conduction band minimum, respectively.

screening of the P ion by the Si nanofilm. A smaller L corresponds to a smaller piece of

dielectric to screen the positive charge.

V. A LINEAR DIELECTRIC MODEL OF AN IONIZED Si FILM

To examine the effect of screening, we perform a classical electrostatic simulation of a

positive charge embedded in a dielectric slab, and see if the classical simulation can reproduce

the observed trend of IE versus L. In our classical model, the positive charge is represented

14



by a Gaussian charge distribution of the form:

ρG (r) =
1√
2πσ

exp

(

−2r2

σ2

)

(8)

σ is chosen to be 2 aB, which corresponds roughly to the size of an atom. ρG is centered at

the origin and embedded inside a dielectric slab with dielectric constant K. The slab has

a thickness t with periodicity L along both the x and y directions. The dielectric constant

κ of the space does not drop abruptly from K to the vacuum value 1 across the interface.

Instead, it changes smoothly along the z direction with a smearing δ at the interface z = t
2
:

κ (z) =
K − 1

exp
(

z− t
2

δ

)

+ 1
+ 1 (9)

for z > 0. κ is defined similarly for z < 0. δ is chosen to be 0.5 aB. Here, δ is mostly

for numerical convenience. Physically, the Si-vacuum interface is also not abrupt with a H

passivation in between. κ has no x and y dependence. The generalized Poisson equation51

∇ · (κ∇V ) = −4πρG (10)

is solved because the dielectric constant varies in space. The boundary condition for the

Poisson equation is set in the same way as our first-principles electronic structure calculations

and the electrostatic reference potential is set using Eself in Eqn. 4 as well.

After the Poisson equation is solved, the electrostatic potential at the origin V (0, 0, 0) is

extracted. We calculate the ionization energy IE by 1
2
QV (0, 0, 0). Here, Q = 1 in atomic

units. The formula approximates the energy needed to create ρG within the dielectric slab.

Our plan is to study how IE varies with the periodicity L classically, and compare with our

first-principles result. Our classical model has two parameters: t and K. The slab thickness

t can be chosen roughly equal to the thickness of the H-passivated Si(111) slab. Note that

the thickness is not really well defined in the nanoscale. ForK, it is known that the dielectric

constants of nanostructures are usually smaller than the bulk value4. Here, we determine t

and K such that the L dependence of IE is similar between the first-principles and classical

simulations. By fitting our classical results by Eqn. 7, we try to find t and K such that the

classical IE has a similar ∆ and λ as our first-principles results.

First, we find that the classical IE does have an exponential L dependence (see Fig.

6(a)). This verifies that the L dependence of IE is related to screening in the Si nanofilm.

In Fig. 6(b), we illustrate how ∆ and λ change with the parameters t and K in our classical
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FIG. 6. (a) The ionization energy IE versus nanofilm periodicity L. IE is calculated from either

first-principles (quantum) or classical simulations. (b) The IE(classical) results can be fitted to

an exponential function of the form IE (∞) + (∆) exp(−L/λ). ∆ (red curves) and λ (blue curve)

depend on the thickness t and the dielectric constant K of the dielectric slab used in the classical

simulations. K is along the x-axis. The numbers within the plot are different values of t. The

classical curve plotted in (a) corresponds to t = 9.7 Å and K = 3.8.

simulations. Qualitatively, λ increases with dielectric constant K and film thickness t, while

∆ increases with larger K but smaller t. We found it impossible to fit K and t exactly to

∆ and λ from first-principles. A close fit can be obtained by choosing K = 3.8 and t = 9.7

Å. This t corresponds well to the geometry of the Si nanofilm, and the K is smaller than

the bulk value of 11.4 as expected. IE as a function of L is plotted in Fig. 6(a) for both

first-principles (quantum) and classical simulations. With a suitable choice of K and L,

the trend of both curves can be made quite similar to each other. We can notice that the

classical value of IE is ∼2 eV lower than the first-principles IE. This is expected because

the classical model does not contain information regarding the electronic structure of P-
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FIG. 7. Comparison of the ionization energy IE (•) between different P-doped Si structures:

a Si nanocrystal (0D), a Si(110) nanowire (1D), a Si(111) nanofilm (2D), and a Si bulk crystal

(3D). The P-doped nanostructures are illustrated in Fig. 2. The defect levels |εd| of the P-doped

Si structures (�) are plotted as well.

doped Si. Moreover, ρG as a model of a P atom in Si is probably too crude to reproduce the

correct IE value.

VI. COMPARISON BETWEEN P-DOPED Si NANOSTRUCTURES

The role of quantum confinement in dopant ionization can be assessed by comparing the

ionization energy IE of a P-doped Si(111) nanofilm with other P-doped Si nanostructures.

A P-doped Si nanocrystal and a P-doped Si(110) nanowire are illustrated in Fig. 2. All

three nanostructures are constructed such that there are six Si atomic layers in the (111)

direction. The Si(111) nanofilm is a two-dimensional periodic structure. The nanowire can

be carved out from the nanofilm such that it is one-dimensional periodic along the (110)

direction. The Si nanocrystal is roughly a spherical fragment of the nanowire. All three

nanostructures have their dangling bonds passivated by H atoms. One of the Si atoms at

the center of each nanostructure is substituted by a P atom.

IE is calculated by Eqn. 6 for all the P-doped structures. For the nanowire and nanofilm,

the IE corresponds to the asymptotic values as the periodicity L → ∞. The nanocrystal

was examined using a confined non-periodic boundary condition. The results for the bulk

three-dimensional periodic Si crystal corresponds to that of a P-doped Si nanocrystal with
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its radius extrapolated to infinity. IE as a function of dimensionality in plotted in Fig. 7.

0D, 1D, 2D and 3D correspond to the nanocrystal, nanowire, nanofilm and bulk crystal,

respectively. The 2D case is examined in this paper. The other cases were examined in our

previous studies36,47,52. Note that the value for 3D bulk is provided as a reference. Its value

can depend on the construction and the surfaces of the nanocrystals used to extrapolate to

the bulk crystal.

The trend of the defect level |εd| is plotted as well for comparison. |εd| decreases from

3D bulk to 0D nanocrystal, which is a consequence of quantum confinement on the defect

level. The 3D bulk value is also an extrapolation using P-doped Si nanocrystals. The final

state effects after the dopant ionization corresponds to the difference between the |εd| and
IE curves. Contrary to |εd|, the IE curve exhibits an opposite trend with dimensionality.

As the bulk crystal is truncated to a nanocrystal, there is a corresponding larger drop in the

electrostatic potential ∆V owing to reduced screening. The reduced screening offsets the

effect of quantum confinement on |εd|. As the influence of screening is found to be slightly

stronger, there is a mild rise of IE from 3D bulk to 0D nanocrystal (∼0.25 eV).

VII. CONCLUSION

We examined the ionization of a P-doped Si(111) nanofilm with periodicity L. Since

the electrostatic reference for a charged periodic system is divergent and thus not well-

defined, we devised a boundary condition for studying the charged nanofilm. The boundary

condition sets the electrostatic reference potential which takes into account the electrostatic

self-interaction of a two-dimensional periodic array of charges. We found that the total

energy of an ionized nanofilm effectively corresponds to a film with finite size L. A larger

L can screen the P ion better and lower the ionization energy. This picture is confirmed

by a comparison with classical electrostatics simulations using a positive Gaussian charge

in a dielectric slab. Finally, we compared the ionization energy IE of various P-doped Si

nanostructures constructed in a similar manner. We found that IE increases slightly as

more directions are becoming confined. This is a consequence of quantum confinement on

the defect level, which lowers IE, and reduced screening leading to a larger electrostatic

potential drop that raises IE.
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