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ABSTRACT 
 

Deposition on a vicinal surface with alternating rough and smooth steps is 
described by a solid-on-solid model with anisotropic interactions. Kinetic Monte Carlo 
(KMC) simulations of the model reveal step-pairing in the absence of any additional step 
attachment barriers. We explore the description of this behavior within an analytic BCF-
type step dynamics treatment. Without attachment barriers, conventional kinetic 
coefficients for the rough and smooth steps are identical, as are the predicted step 
velocities for a vicinal surface with equal terrace widths. However, we determine refined 
kinetic coefficients from a two-dimensional discrete deposition-diffusion equation 
formalism which accounts for step structure. These coefficients are generally higher for 
rough steps than for smooth steps, reflecting a higher propensity for capture of diffusing 
terrace adatoms due to a higher kink density. Such refined coefficients also depend on 
the local environment of the step and can even become negative (corresponding to net 
detachment despite an excess adatom density) for a smooth step in close proximity to a 
rough step. Our key observation is that incorporation of these refined kinetic coefficients 
into a BCF-type step dynamics treatment recovers quantitatively the mesoscale step-
pairing behavior observed in the KMC simulations. 
 
PACS Numbers: 81.15.Aa, 68.55.J-, 68.35.Fx 
 
1. INTRODUCTION 
 

The evolution of crystalline surface morphologies with a well-defined terrace-step 
structure and mesoscale terrace widths (from ~10 nm to ~100 nm) is naturally described 
within a Burton-Cabrera-Frank (BCF) type step dynamics treatment [1-3]. Such 
treatments utilize suitable evolution laws to track the motion of the step edges described 
by continuous curves. In principle, this approach is more efficient than tracking the 
motion of all surface atoms in stochastic lattice-gas modeling, and is more appropriate 
than a formulation in terms of a continuum height function which neglects vertical 
discreteness [4,5]. To describe surface evolution during deposition in the BCF 
treatment, one solves a simple deposition-diffusion equation on each terrace with 
suitable boundary conditions (BC’s) to determine the flux of diffusing terrace adatoms 
attaching to or detaching from the steps. This analysis, together with an accounting of 
possible contribution from step edge diffusion, allows determination of step velocities. 
This in turn enables propagation of step positions and thus of surface morphology with 
either Lagrangian front tracking methods [6] or with Eulerian level-set methods [7].   

However, there remain some significant obstacles to effective implementation of 
a precise step dynamics treatment of film growth, in contrast to atomistic models which 
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can be precisely analyzed by Kinetic Monte Carlo (KMC) simulation [4,5]. Firstly, there 
exist mainly heuristic formulations of the kinetic coefficients which appear in the 
Chernov-type BC’s [8] for the deposition-diffusion equation. There is evidence that 
these heuristic BC’s are inadequate to describe evolution on the mesoscale where 
characteristic lengths for the surface morphology such as terrace widths are not 
significantly greater than intrinsic lengths such as the mean separation of kinks on step 
edges [9]. This mean kink separation becomes large on straight quasi-facetted steps. 
These limitations are evident in analysis of both surface evolution during deposition [9] 
and post-deposition coarsening processes [10]. There exist some recent theoretical 
developments for more systematic determination of kinetic coefficients from atomistic 
models. These either utilize a kinetic model for step edge structure and dynamics (with 
edge atom and kink densities analyzed at the mean-field level in a non-equilibrium 
steady-state) [11], or employ discrete two-dimensional (2D) deposition-diffusion 
equations (DDE) where some details of step structure, i.e., kink distributions, can be 
incorporated [9]. Another issue (which we do not address in this study) is the lack of a 
rigorous formulation for step edge diffusion fluxes in far-from-equilibrium growth 
situations, in contrast to the Mullin’s type formulation for near equilibrium regime [3,5]. 

Our focus in this study is on step flow during deposition on so-called AB-vicinal 
surfaces which are characterized by alternating step types. This feature naturally occurs 
for vicinal surfaces of hexagonal close packed (hcp) metal crystals, and for 
reconstructed Si(100) and Ge(100) surfaces.  The specific solid-on-solid (SOS) lattice-
gas model considered here [9,12] was motivated by the latter semiconductor systems, 
and exhibits alternating rough and smooth steps with no additional barrier for step 
attachment. KMC simulations reveal step pairing where rougher steps initially advance 
faster than smoother steps. In contrast, a BCF-type treatment of this system using 
conventional kinetic coefficients in the Chernov BC’s fails to capture this feature. Thus, 
we will implement a refined BCF-type treatment in an attempt to correct for this failure. 

Specifically, in this study, we utilize the previous development in Ref.[9] of a 
basic discrete DDE formalism to determine kinetic coefficients for a specific fixed step 
geometry on a vicinal surface. However, going beyond Ref.[9], the current work: 
(i) extends the approach in [9] via an iterative analysis to treat evolving stepped surface 
morphologies, and applies the approach to describe step pairing on AB-vicinal surfaces;  
(ii) validates the 2D DDE formalism by detailed comparison against precise predictions 
for step pairing from KMC simulation of a suitable anisotropic solid-on-solid model; 
(iii) extends the basic formalism of [9] beyond simple periodic distributions of kinks 
along steps to better describe actual stochastic kink distributions; 
(iv) demonstrates the importance at least for narrower terraces of “direct deposition” at 
step edges (versus terrace diffusion to steps) in impacting step velocities;  
(v) reveals that the increase of kinetic coefficients with increasing kink density and thus 
step roughness is key for step pairing where rough steps catch up to smooth steps; 
(vi) reveals that not only do kinetic coefficients depend on the local environment of a 
step, but that they can become negative (corresponding to net detachment from a step 
even with excess local adatom density) for a smooth step close to a rough step. 

Sec.2 provides a brief description of the atomistic lattice-gas model and KMC 
simulation results. In Sec.3, we first describe the BCF type step dynamics treatment 
with conventional kinetic coefficients. Then, we present the 2D discrete DDE formalism 
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from which refined coefficients can be obtained which account for step structure. 
Results for and discussion of the behavior of these coefficients are also provided. Sec.4 
compares results from KMC simulation and our refined BCF (rBCF) treatment for step 
dynamics and specifically step pairing. Sec.5 provides conclusions. 
 
2. ATOMISTIC SOS MODEL FOR STEP FLOW ON AN AB-VICINAL SURFACE 
 

The basic SOS lattice-gas model for deposition on a vicinal surface considered 
here was initially developed and explored in Ref.[11]. First, we describe the surface 
structure and energetics incorporated into the model, which control equilibrium 
properties (behavior which is revealed in the absence of deposition). Below, T denotes 
the surface temperature, kB the Boltzmann constant, and β = 1/(kBT) the inverse 
temperature. SOS models adopt a simple-cubic crystalline lattice structure, where the 
lattice constant, a, is often set to unity for convenience. For the vicinal surface geometry 
of relevance here, the steps are aligned with a principal lattice direction and one adopts 
appropriate skewed periodic boundary conditions for the simulation cell.  The model 
considered here also includes anisotropic lateral nearest-neighbor (NN) interactions 
between atoms with strong attractions, φS > 0, and weak attractions, φW > 0, in 
orthogonal directions. Also, significantly, the direction of the strong (and weak) 
interactions alternates between adjacent layers or terraces of the vicinal surface.  

Thus, if on one terrace, the strong interaction is aligned with the direction of the 
steps (a principal lattice direction), then on the adjacent terraces the weak interaction 
will be aligned with the step direction. In the former case, the energy cost to create a 
kink at the ascending step bordering the terrace will be εS = φS/2 since one strong bond 
is broken upon separating one contiguous string of atoms at a step edge into two strings 
(which creates two kinks facing in opposite directions). On the adjacent terraces, the 
kink creation energy at the ascending steps will be εW = φW/2. Through a Boltzmann 
analysis neglecting multi-height kinks, the equilibrium probability per site, pk, of kinks is 
roughly given in terms of the kink creation energies, ε, by pk ≈ 2e-βε/(1+2e-βε) [2,13]. 
Thus, pk is lower for higher ε, and the model will display alternating rough (r) and 
smooth (s) steps on adjacent terraces. We set βφS = 6.3 (and βφW = 3.2) producing 
rough estimates for mean kink separations Lk = a/pk of Lks ≈ 12.7 a (and Lkr ≈ 3.48 a) for 
smoother (rougher) steps. See Fig.1a for simulated equilibrium configurations for our 
SOS model, analysis of which yields Lks ≈14.2 a (Lkr ≈ 3.69 a) for smoother (rougher) 
steps close to the above estimates. Despite the difference in step structure, steps of 
both types are associated with the same equilibrium adatom density, neq = exp(-βφB) 
where φB = φS + φW is the energy cost to extract an adatom from the kink site to the 
terrace. The unique neq follows as the chemical potential of both step types (which are in 
equilibrium with this adatom density and with each other) must be equal. 

Next, we first describe kinetic aspects of a general version of the SOS model, 
before restricting our consideration to a special case. The model includes: (i) deposition 
at rate F per site; and (ii) thermally activated hopping of surface adatoms to NN empty 
sites either within the same or adjacent layers with Arrhenius hop rates, hα =                  
ν exp[-βEact(α)], where the activation barrier for hopping, Eact(α), depends on the local 
environment, α. The coverage of deposited material is denoted by θ = Ft monolayers 
(ML), where t is the deposition time. In this model, intralayer terrace diffusion of isolated 
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adatoms is isotropic with barrier Eact = Ed, so the hop rate is given by h = ν exp(-βEd). 
For more general hops, the barrier is given by  
 
Eact = Ed + mS φS + mW φW + Δ± δ±.        (1) 
 
Here, mS (mW) is the number of adjacent adatoms in the same layer before hopping with 
a strong (weak) attraction to the hopping adatom. The + (-) sign applies for intra- (inter-) 
layer hops. Also for intralayer hops, Δ+ = 1 for hops corresponding to attachment to or 
detachment from an ascending step, and Δ+ = 0 otherwise [14]. Also, δ+ ≥ 0 represents 
an additional barrier for attachment to ascending steps, but we will set δ+ = 0 in our 
analysis. For interlayer hops up or down monoatomic steps, Δ- =1, and δ- corresponds 
to the additional Ehrlich-Schwoebel barrier for attachment to descending steps. In our 
analysis, we will also set δ-

 = 0, so that there are no barriers for attachment to either 
ascending of descending steps. This formulation for environment-dependent activation 
barriers is often referred to as Clarke-Vvedensky bond-counting [15] or the “initial value 
approximation” (IVA) [16]. The IVA is generally regarded as providing a reasonable 
description of thermally activated hopping on semiconductor surfaces, but does not 
effectively capture behavior on metal surfaces [5]. 

Fig.1 shows typical simulation results for evolution during deposition of the 
morphology of a vicinal surface ascending from left to right. Fig.1a shows the 
equilibrium surface structure prior to deposition with equal mean terrace widths of 20a 
for the two types of terraces bordered by alternating rough and smooth steps. 
Deposition results in more rapid initial advance of the rough steps (to the left), resulting 
in step pairing. See Fig.1b. Quantitative results related to this step pairing behavior will 
be presented in Sec.4 for comparison with results from the refined BCF treatment. 
 
3. REFINED BCF TREATMENT FOR MESOSCALE STEP-DYNAMICS 
 
 A. BCF Treatment with Chernov Boundary Conditions and Refinements 

The standard continuum BCF treatment of step flow during deposition is based 
on quasi-steady-state solutions for the adatom density, ρ(x, t), per unit area at lateral 
position x and time t. This density satisfies the continuum deposition-diffusion equation 
 
∂/∂t ρ(x, t) = F + D∇2ρ(x, t) ≈ 0,        (2) 
 
where F = a-2F denotes the deposition flux per unit area, and D = a2h is the terrace 
diffusion coefficient (again where it is often convenient below to set the lattice constant 
a = 1). General Chernov-type BC’s at step edges [8], also accounting for possible step 
permeability [17], have the form  
 
J± = ¡D ∇n ρ|± = K±(ρ± - ρeq) + P(ρ± - ρ¡ ).       (3) 
 
Here, ∇n denotes the gradient normal to the step. J± denote the net diffusion fluxes for 
attachment to an ascending step from the terrace below (+) and to a descending step 
from above (-), ρ± are the limiting values of the terrace adatom density approaching the 
step on the lower (+) and upper (-) terrace, K± are the corresponding Chernov kinetic 
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coefficients, P is the step permeability, and ρeq denotes the equilibrium adatom density 
at the step. The sign convention is chosen for a vicinal surface ascending to the right 
and where we define net attachment fluxes to be positive, J± > 0. The velocity of the 
step is given by V = J+ + J- + Jedge, where Jedge is the contribution from edge diffusion [5], 
which vanishes for the straight steps of interest here. 

Note that equation (3) ignores convection terms associated with the motion of the 
steps at finite velocity [18,19]. However, these terms a reasonably neglected as steps 
move very slowly on the time-scale of adatom density relaxation. More precisely, these 
terms can be neglected if the jump in adatom density per site across the step is far 
below unity. An upper bound on the adatom density per site, and thus on the jump in 
density, is given by (F/h)w2, where w is the typical terrace width in units of lattice 
constants. For example, one finds that (F/h)w2 is no higher than 10-4.5 for the studies of 
step flow on Si(100) in [11], so that convection terms are completely negligible. 

It is instructive to rewrite the kinetic coefficients (which reflect the ease of 
attachment to steps) as K± = D/Γ± where Γ± are the attachment lengths (large values of 
which imply difficult attachment). If the step permeability term is absent (as discussed 
further below), solution of the boundary value problem for the deposition-diffusion 
equation on a single linear terrace of width W yields [4,5] 
 
J± = F W (1/2 + Γ¡/W) / (1 + Γ+/W + Γ-/W).      (4) 
 
We caution that the + (-) in (4) indicate diffusion fluxes and attachment lengths for 
different ascending (descending) steps at the right (left) edge of the same terrace. Note 
that J+ + J- = F W by mass conservation.  

One significant refinement of the above treatment which will be needed for the 
success of our subsequent analysis is to account for the feature that the surface lattice 
constant, a, need not be insignificant compared to terrace widths, W. Within the context 
of SOS modeling, it is reasonable to assert that atoms depositing directly within a strip 
of width ‘a’ of the edge of the ascending step attach directly to that step, i.e., that 
atomistic effects should be accounted for in the continuum modeling [20].  Then, there 
exists a direct deposition contribution, Jdd = aF = a-1F, to the flux of atoms attaching to 
the step. Also, the step velocity is now given by V = J+ + J- + Jedge + Jdd, where for our 
application again Jedge = 0, but now the formulae (4) are replaced by 
 
J± = F (W-a) [1/2 + Γ¡/(W-a)] / [1 + Γ+/(W-a) + Γ-/(W-a)].    (5) 
 

Heuristic formulations for the kinetic coefficients, K = K±, or attachment lengths, 
L±, are often based on analysis of discrete one-dimensional deposition-diffusion 
equations [4,5,9]. For additional attachment barriers, δ±, this analysis reveals that the 
attachment lengths satisfy Γ± = [exp(βδ±) -1]a. See Ref.[21] for an alternative derivation 
of this result. In our SOS model without attachment barriers, this conventional 
formulation consequently shows that K± = ∞ which corresponds to imposing a simple 
Dirichlet BC, ρ± = ρeq at steps. However, we shall see that in reality for our model of 
mesoscale step dynamics without step attachment barriers, the kinetic coefficients K± 
remain finite. In addition, we find that ρ+ = ρ- for a single step, so that the permeability 
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term drops out. Consequently, the relation (5) will apply, but with appropriately refined 
K± or Γ±.   
 
B. Basic Discrete 2D Deposition-Diffusion Equation Formalism 

Our discrete 2D deposition-diffusion equation (DDE) formalism is constructed to 
mimic the geometry, energetics, and kinetics of the SOS model for deposition on a 
vicinal surface with alternating rough and smooth steps. In the simplest scenario, one 
could consider vicinal surface geometries of the type illustrated in Fig.2. On each 
terrace, there is a periodic square array or lattice of adsorption sites labeled (i,j) with 
lattice constant, ‘a’. Different terraces are separated by steps along which kinks are 
distributed periodically, where alternating smooth (s) and rough (r) steps have larger 
and smaller kink separations, respectively. The larger kink separation, Lks = L is an 
integral multiple, m, of the smaller one, Lkr = L/m, and the surface geometry is 
constructed where every mth kink on the rough step aligns with a kink on the smooth 
step. This scenario is shown in Fig.2 for m=2. The vicinal surface will in general be 
constructed with larger (smaller) terrace widths, W+ (W-), for terraces bordered by 
ascending smooth (rough) steps. Thus, the periodic unit cell for this system has the 
dimension L x (W+ + W-), as illustrated by the tan shaded region in Fig.2.  

At each adsorption site, we will specify an adatom density, n(i,j), corresponding 
to the probability that site (i,j) is occupied. To make a connection with the continuum 
description of Sec.3A formulated in terms of densities per unit area, if the lateral position 
on the surface corresponds to x = (ia, ja), then one has ρ(x,t) ≈ a-2 n(i,j). Model kinetics, 
which implicitly incorporates the underlying model energetics, is formulated in terms of 
evolution equations for the n(i,j). Specifically, the discrete 2D DDE for n(i,j) have the 
form (see also Ref.[9]) 
 
d/dt n(i,j) = F + hL(i+1,j)n(i+1,j) + hR(i-1,j)n(i-1,j) + hD(i,j+1)n(i,j+1) + hU(i,j-1)n(i,j-1) 
 

- [hL(i,j) + hR(i,j) + hD(i,j) + hU(i,j)]n(i,j),     (6) 
 
for 0 ≤ i < L/a and 0 ≤ j < (W- + W+)/a. We have assumed that the flux is sufficiently low 
that n(i,j) << 1, since otherwise the deposition term should be modified to take account 
of the possibility that site (i,j) might already be occupied. For kink sites, (ik, jk) = (0,0), 
(L,0), etc., one sets n(ik, jk) = 1. Here, hX(i,j) denotes the rate of hopping from site (i,j) to 
a NN site in a direction X = L (left), R (right), D (down), and U (up) in the (i,j)-plane. All of 
the energetics described for the SOS model and the associated IVA rates are 
incorporated into the specification of the hX(i,j). Retaining for the present the possibility 
of attachment barriers to steps, and also allowing the possibility of arbitrary rates for 
hopping along straight portions of steps, one has the following specifications: hX = h for 
an isolated terrace adatom, hX = hes (her) for an isolated adatom hopping along straight 
portion of a smooth (rough) steps, hX = exp(-βδ±)h to attach to steps including kink sites 
from the terrace (choosing δ+ for ascending and δ- for descending steps), hX =          
exp(-βφW -βδ±)h  [hX = exp(-βφS-βδ±)h] to detach from step edges to terraces, hX =            
exp(-βφS)hes [hX = exp(-βφW)her] to detach from kinks to step edge sites on smooth 
[rough] steps, and hX = exp(-βφB -βδ±)h to detach directly from kinks to terraces. See 
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Fig.2. To mimic our SOS model, edge diffusion rates hes and her are chosen in terms of 
h and the interactions according to the IVA formulation of Sec.2. 

For our application of the above formulation to describe step flow, we need 
consider only steady-state behavior of the above discrete 2D DDE. Note that the kink 
sites constitute both sinks for depositing adatoms and also sources for terrace adatoms. 
In the absence of deposition (F=0), the steady-state equilibrium density for all terrace 
sites (i,j) is determined by the density at the kink sites and is given by neq(i,j) =         
exp(-βφB), consistent with the SOS model. The equilibrium density for non-kink sites at 
smooth [rough] step edges is neq(i,j) = exp(-βφS) [neq(i,j) = exp(-βφW)]. This suggests 
natural rescaled adatom densities, n*(i,j) where n* = n for terrace sites, n* = exp(-βφW)n          
[n* = exp(-βφS)n] step edge sites at smooth [rough] steps, and n* = exp(-βφB)n =       
exp(-βφB) for kink sites. Then, it follows that n*eq(i,j) = exp(-βφB) for all sites for F=0. 
Deposition with rate F > 0 boosts steady-state n(i,j) or n*(i,j) above these equilibrium 
values reflecting a supersaturation of adatom density. Thus, the rescaled excess 
adatom density satisfies δn*(i,j) = n*(i,j) – n*eq(i,j) > 0, and this quantity can be shown to 
be directly proportional to F [9]. 

 
C. More General Discrete 2D Deposition-Diffusion Equation Formalisms 

As noted above, in our 2D DDE formalism, one should select the vicinal surface 
geometry to best match that of the SOS model. Selecting periodic kink distributions, one 
might anticipate that kink separations should be chosen to match the mean values for 
the SOS model. In Sec.3B, we described the simplest case where the ratio of kink 
separations on smooth and rough steps was an integer, m, in which case the dimension 
of the periodic unit cell along the steps equals the larger kink separation on the smooth 
steps. Of course, in the SOS model, typically the ratio of kink separations will not be an 
integer. Nonetheless, approximating this ratio by a rational number, one can still 
construct a (larger) periodic unit cell associated with the kink distribution.   

However, it is appropriate to critique the above philosophy for selecting kink 
separations. In the stochastic SOS model, the kinks are not periodically distributed 
along steps. For smoother steps with low kink density, pks, and large mean separation 
Lks = 1/pks, the kinks are essentially randomly distributed corresponding to a broad 
geometric kink separation distribution with standard deviation, σks ≈ Lks [13,22]. It is 
reasonable to expect that for a fixed Lks, a random distribution of kinks which includes a 
significant number of nearby kink pairs (with separation far below Lks) is less effective at 
capturing diffusing terrace adatoms than a periodic distribution of kinks. This perception 
will be confirmed in Sec.3D. Thus, we propose that when selecting kink separations in a 
discrete 2D DDE analysis with simple periodic kink distributions, it would be more 
appropriate to choose the kink separation to be larger than the mean value in the SOS 
model. This would better mimic the propensity for adatom capture by the quasi-random 
distribution of kinks in the SOS model. 

Another more sophisticated strategy is to go beyond incorporating simple 
periodic kink distributions into our discrete 2D DDE. To this end, we could consider the 
possibility of incorporating biperiodic, triperiodic, etc. kink distributions at least on the 
smooth step where separations between adjacent kinks cycle between two, three, etc., 
values, respectively. Note that these choices allow one to retain a periodic unit cell for 
the discrete 2D DDE analysis. With such distributions, one can match not just the mean 
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kink separation, Lks, in the SOS model, but also mimic other features of the kink 
separation distribution. For example, for a biperiodic kink distribution on smooth steps 
with separations Lks±, one selects Lks+ = 2Lks – δL and Lks- = δL with δL << Lks, which 
both matches the mean kink separation, ½(Lks+ + Lks-) = Lks, and also mimics the large 
standard deviation, σks ≈ Lks, of the kink separation distribution. To explicitly illustrate the 
results of such an analysis, we chose a biperiodic kink distribution with Lks+ = 26a and 
Lks- = 2a for the smooth step. Thus, Lks = 14a is close to our SOS model value. For the 
rough step, we choose Lkr = 4a just above the SOS value. Fig.3 shows typical results for 
the corresponding steady-state excess density, δn*(i,j), on a vicinal surface where the 
structure of the alternating rough and smooth steps is as described above, and where 
we choose terrace widths of W- = 30a and W+ = 50a below the rough and smooth steps, 
respectively. Naturally δn*(i,j) has a global maximum on each terrace around the middle 
of terrace far away from kink site sinks, but also a local maxima along step edges in 
between kink sites. Also δn*(i,j) smoothly approaches the same value at the step edge 
from both sides (so that ρ+ = ρ- in the notation of Sec.2), and δn*(i,j) also smoothly 
approaches δn* = 0 at kink sites. Of course, one could consider even more complex 
kink distributions better reflecting that in the SOS model, e.g., a biperiodic distribution 
on the rough step as well as the smooth step, but this has little effect on behavior for our 
model [23]. 
 
D. Kinetic Coefficients from the Discrete Deposition-Diffusion Equations 

Extraction of kinetic coefficients from the discrete 2D DDE model is designed to 
mimic the continuum BCF treatment for P = 0 where K±  = J±/(ρ± - ρeq) when ρ+ = ρ- from 
(3). To this end, we employ an average, < >, of key quantities along the step edge. First, 
we obtain the averaged net attachment fluxes, <J±>, which correspond to the net 
transfer of atoms from the rows of sites adjacent to the step edge to the row of sites 
constituting the step edge. Second, we determine the averaged excess adatom density, 
<δn*>, averaging along the row of sites constituting the step edge. Then, the refined 
kinetic coefficients are given by K± = a2<J±>/<δn*>. See Ref.[9] for a more detailed 
description of this procedure. Since both <J±> and <δn*> are directly proportional to F, 
the ratio is independent of F. We note that this formulation for kinetic coefficients is 
consistent with a determination of step velocities incorporating direct deposition at step 
edges, corresponding to (5) in Sec.3A, where V = <J+> + <J-> + Jdd and Jdd = aF = a-1F. 

We briefly mention a few basic and general features of these refined K±.             
  (i) finite values of K± < ∞ follow even in the absence of additional barriers for step 
attachment since <δn*> > 0 which in turn reflects the feature that incorporation of 
diffusing adatoms at steps actually requires diffusion to and attachment at kink sites. 
 (ii) More detailed analysis for periodic distributions of kinks along steps shows that K± ~ 
c/(Lk)2 where Lk is the corresponding kink separation.  
 (iii) More generally, K± depend not just on the density of kinks on the step, but also on 
the spatial distribution of those kinks.  
 (iv) Furthermore, K± depend not just on the structure of the step under consideration, 
but also on the local environment of that step including the widths of nearby terraces 
(i.e., the distance to nearby steps) and on the nature of those steps.  
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Next, we comment in more detail on the behavior of K± for a biperiodic versus 
periodic kink distributions on the smooth step in the special case where all terraces 
have equal width which implies that K+ = K- for the same step. Specifically, we compare 
behavior for a range of choices with fixed Lks = ½(Lks+ + Lks-) = 14a with the benchmark 
periodic case where Lks+ = Lks- = 14a. We also set Lkr = 4a so that this family of 
parameters includes that chosen in Fig.3 as a special case. Results shown in Table I 
reveal the expected trend already suggested in Sec.3C where the kinetic coefficient for 
the smooth step, Ks, decreases from the benchmark periodic case upon making Lks- 
smaller and Lks+ larger. This indicates that adatom capture is less efficient when kinks 
are clumped together rather than periodically distributed. The kinetic coefficient, Kr, for 
the rough step with Lkr = 4a is relatively unchanged.  

 
Lks+/a, Lks-/a 14, 14 18, 10 22, 6 24, 4 25, 3 26, 2 
aKs/D 0.0862 0.0826 0.0718 0.0635 0.0583 0.0520 
aKr/D 0.6373 0.6375 0.6381 0.6387 0.6390 0.6395 
velocity ratio 1.84 1.88 2.03 2.18 2.29 2.46 

 
Table I. Kinetic coefficients for a biperiodic distribution of kinks on the smooth step with 
various separations Lks±, but fixed Lks = ½(Lks+ + Lks-) = 14a and Lkr = 4a for a single 
terrace width of W = 20a.  The corresponding ratio of the rough and smooth step 
velocities is also shown. Note that the reciprocal of aK/D gives the dimensionless 
attachment length Γ/a. The right column corresponds to Fig.3.  
 

Finally, we provide a more complete analysis of the variation of the kinetic 
coefficients during step flow (specifically, step pairing) during deposition choosing kink 
separations Lks+ = 26a and Lks- = 2a on the smooth step, and Lkr = 4a on the rough step. 
This matches the choice of parameters selected in Fig.3. In the following, W1, denotes 
the mean width for the terrace below ascending rough step, and W2 the mean width for 
the terrace below smooth steps. Prior to deposition, one has W1 = W2 for which kinetic 
coefficients are given in the right column of Table I. After the onset of deposition and 
step flow, we will find that W1 < W2, where the sum W1 + W2 remains constant. For the 
current study, the key requirement is to “iteratively” assess the kinetic coefficients for 
each of the rough and smooth steps as a function of the varying terrace widths. We will 
denote the averaged fluxes to the steps bordering the narrower (wider) terrace by <J1±> 
(<J2±>) as indicated in Fig.4 where W1 + W2 = 80a. A graphical representation 
elucidating associated behavior comes first determining the excess adatom density 
averaged along the terrace, δn*(j) = ∑i δn*(i,j)/∑i 1 (summing over a unit cell), and then 
plotting the variation of δn*(j) across the terrace, i.e., versus j.  

The averaged profile δn*(j) versus j corresponding to the 3D adatom density plot 
in Fig.3 for a vicinal surface with W1 = 30a and W2 = 50a is shown in Fig.4a. In this 
case, it is clear that all of <J1±> > 0 and <J2±> > 0, and that <δn*> > 0 for both steps, so 
the corresponding kinetic coefficients satisfy K1± > 0 and K2± > 0.  Analysis for more 
unequal terrace widths, W1 = 17a and W2 = 63a, which corresponds to a later stage of 
surface evolution than the above case, is shown in Fig.4b. The key difference is that 
now J1- < 0 has become negative (while the other fluxes remain positive), i.e., there is a 
net flux of detachment from this smoother step towards the rougher step across the 
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narrower terrace. This novel behavior reflects the feature that the rough step is a “strong 
sink” for diffusing adatoms in close proximity to the smooth step. Since still <δn*> > 0 for 
both steps, J1- < 0 also implies that K1- < 0. A more extensive analysis shows that J1- 
and thus K1- change sign from positive to negative as W1 decreases from 21a to 20a. 

To demonstrate that this unusual sign-change behavior is not restricted to the 
special choice of parameters, we also analyze behavior for W1 + W2 = 40a (versus W1 + 
W2 = 80a above), retaining the kink separations Lks+ = 26a, Lks- = 2a and Lkr = 4a. In 
fact, for this case, we provide a complete analysis of the variation of kinetic coefficients 
with terrace width in Table II. Again we see that K1- changes sign from positive to 
negative as W1 decreases in this case from 13a to 12a. 
 
Terrace 
Widths 

Deposited 
Monolayers aK1-/D aK1+/D aK2-/D aK2+/D 

20,20 0 0.05201 0.63953 0.63953 0.05201
19,21 0.05925 0.04518 0.62573 0.65335 0.05883
18,22 0.11837 0.03830 0.61205 0.66708 0.06569
17,23 0.17725 0.03129 0.59861 0.68061 0.07265
16,24 0.23576 0.02412 0.5855 0.69384 0.07978
15,25 0.29380 0.01670 0.57285 0.70666 0.08713
14,26 0.35127 0.00896 0.56078 0.71893 0.09479
13,27 0.40808 0.00080 0.54942 0.73053 0.10285
12,28 0.46419 -0.00790 0.53892 0.74131 0.11145
11,29 0.51957 -0.01729 0.52944 0.75113 0.12074
10,30 0.57427 -0.02759 0.52114 0.75981 0.13093
9,31 0.62840 -0.03905 0.51421 0.76717 0.14234
8,32 0.68225 -0.05210 0.50886 0.77302 0.15540
7,33 0.73628 -0.06728 0.50529 0.77714 0.17073
6,34 0.79142 -0.08550 0.50372 0.77932 0.18934
5,35 0.84936 -0.10814 0.50435 0.77936 0.21282
4,36 0.91351 -0.13763 0.50730 0.77709 0.24399

 
Table II. Variation of kinetic coefficients as a function of terrace width where the sum of 
the mean width of narrower and broader terraces is fixed at W1 + W2 = 40a. We set Lks 
= 26a and 2a, and Lkr = 4a. The second column indicated the deposited monolayers 
corresponding to the different terrace widths and follows from our analysis in Sec.4. 
 
4. RESULTS FOR STEP PAIRING: ATOMISTIC MODELING VERSUS REFINED BCF 

 In an attempt to describe the step pairing observed in the anisotropic SOS model 
of Sec.2, we utilize a refined BCF (rBCF) analysis of the type described in Sec.3A. We 
incorporate as input the refined kinetic coefficients determined from analysis of the 
discrete 2D DDE in Sec.3D with Lks+ = 26a, Lks- = 2a and Lkr = 4a. (Again, one could 
input such coefficients for a more complex kink distribution better reflecting that in the 
SOS model, but we do not expect this to significantly change predicted behavior [23].)  
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In Fig.5, the results from our rBCF analysis are compared with behavior determined 
from KMC simulation of the anisotropic SOS model described in Sec.2. For clarity, it is 
appropriate to describe in more detail the iterative approach used in this rBCF analysis. 
First, at the onset of deposition t0 =0 where terraces below both step types have equal 
mean widths, i.e., W1 = W2 = W0 (either 20a or 40a in our simulations), we determine 
the kinetic coefficients and thus the velocities of the smoother and rougher steps (cf. 
right column of Table I). From these velocities, we estimate the time, t1 and thus the 
coverage, θ1 = Ft1, when W1 = W0 – a and W2 = W0 + a. Then, we evaluate the kinetic 
coefficients for these modified terrace widths (cf. Table II), and from them determine the 
modified velocities of the rougher and smoother steps. From these, in turn, we 
determine the time, t2, and coverage, θ2 = Ft2, when W1 = W0 - 2a and W2 = W0 + 2a. 
Iterating this procedure, we determine from the rBCF analysis the evolution of terrace 
widths, step velocities, and the step velocity ratio for a sequence of increasing 
coverages and show by the symbols in Fig.5.   

Predictions from the rBCF analysis (shown as symbols in Fig.5) are in good 
agreement with results from KMC simulations of the corresponding SOS model (shown 
as continuous curves in Fig.5). For the evolution of the terrace widths, the BCF 
prediction shows only a slightly greater difference in terrace widths for higher amounts 
of deposited material around 1 ML. The predictions are also reasonable for more subtle 
quantities with non-trivial behavior such as step velocities and even the ratio, Rvel, of 
velocities for rougher and smoother steps. The prediction of the initial ratio of step 
velocities is Rvel = 2.46 (2.61) from rBCF (KMC) for W1 + W2 = 40a, and Rvel = 1.77 
(1.74) from rBCF (KMC) for W1 + W2 = 80a.  The lower Rvel for wider terrace widths is 
expected since the terrace widths are larger in that case compared with the attachment 
lengths Γ± = D/K±. Note that as Wi →∞, one finds that Rvel → 1 since attachment at steps 
becomes limited by diffusion across terraces (irrespective of step structure). 

The rBCF treatment also captures the non-trivial behavior of Rvel including a slow 
initial variation before an increase to a maximum, and subsequent decrease towards the 
asymptotic value of unity. The predicted maximum is Rvel = 2.74 (2.75) from rBCF 
(KMC) for W1 + W2 = 40a occurring at θ ≈ 0.68 (θ ≈ 0.52) ML where the ratio of terrace 
widths equals 4.0 (2.8). The predicted maximum is Rvel = 2.25 (2.26) from rBCF (KMC) 
for W1 + W2 = 80a occurring at θ ≈ 1.20 (θ = 1.12) ML where the ratio of terrace widths 
equals 7.0 (5.7). We emphasize that successful recovery of this behavior by the rBCF 
treatment does not just require significantly different kinetic coefficients for rough and 
smooth steps. It also requires the feature that kinetic coefficients of a single step differ 
for upper and lower terraces, and also that they vary in time reflecting the changing 
local environment of the step.  

In support of the above statements and to provide a more detailed elucidation of 
the behavior of Rvel, we compare predicted behavior from our rBCF treatment with that 
of a simpler BCF-type treatment where we allow distinct kinetic coefficients for rough 
and smooth terraces, but force these to be constant in time. Specifically, we choose 
these fixed kinetic coefficients to adopt the (initial) values for equal terrace widths, so 
these take the same value on upper and lower terraces for each type of step (see, e.g., 
the top row in Table II). Then, analysis of the corresponding vicinal surface evolution 
shows that Rvel decreases monotonically from its initial value rather than exhibiting a 
local maximum as in the full rBCF treatment (and in the KMC simulations of the SOS 
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model). See Fig.6. For the simpler BCF-type treatment with constant K’s, it is in fact 
straightforward to show from (4) or (5) that Vrel should decrease monotonically to a 
smaller non-zero value of the point of step collision. The origin of the increase and local 
maximum in the full rBCF treatment (and in KMC simulations for the SOS model) 
derives primarily from the feature that the kinetic coefficient for the upper terrace of the 
smooth step decreases from a small positive value to a significant negative value 
corresponding to net detachment from this step and enhanced attachment to the nearby 
trailing rough step. This increases the velocity of the latter.  

Finally, we remark that neglecting the role of direct deposition at step edges, i.e., 
using a treatment based on (4) rather than (5), fails dramatically to recover KMC results 
for the ratio of step velocities. In fact, in this rBCF treatment, the velocity of the smooth 
step slow towards zero, so correspondingly Rvel grows dramatically. The presence of 
direct deposition tends to equalize step velocities and avoid this anomalous behavior. 
See Appendix A for more details. Additional comments on the success and limitations of 
our rBCF modeling are provided in the conclusions. 
 
5. CONCLUSIONS 
 
 Our rBCF treatment has been shown to reliably capture the key features of non-
trivial step pairing behavior which was observed in an anisotropic SOS model and 
precisely quantified by KMC simulation. This SOS model describes a vicinal surface 
geometry with alternating rough and smooth steps and no additional energetic 
attachment barriers for either step type. It should be emphasized that a conventional 
BCF treatment which incorporate infinite kinetic coefficients for both types of steps 
(which are thus treated as perfect traps) fails to describe the SOS model behavior even 
qualitatively. In contrast, success of the rBCF treatment requires incorporation of refined 
kinetic coefficients obtained from the 2D discrete DDE formalism. These coefficients 
reflect the feature that attachment at step edges in the SOS model requires diffusion-
mediated incorporation at kinks, so that the coefficients are finite and decrease (roughly 
inverse quadratically) with mean kink separation. This feature produces faster initial 
motion of the rough steps relative to smooth steps, and thus step pairing. Another 
feature of the refined kinetic coefficients is that they depend on the local environment, 
i.e., on the widths of nearby terraces. In fact, kinetic coefficients for the smooth step 
which is a “weak sink” for diffusing adatoms can become negative (reflecting net 
detachment) in the presence of a sufficiently close rough step, which is a “strong sink”. 
 The key goal of this paper was a “proof of principle” that a suitably refined BCF 
treatment can capture subtle step dynamics behavior not described by conventional 
formulations. Thus, the SOS and rBCF model parameters were selected to clearly 
display step pairing rather than to describe a specific system. However, it is possible to 
readily transfer insights from this study to specific systems. For vicinal Si(100), one has 
that εS ≈ 0.15 eV and εW ≈ 0.01-0.03 eV [13,24] With these values, one can determine 
the corresponding mean kink separations Lk = a/pk = ½ ae+βε(1+2e-βε) for various 
surface temperatures. The kink separation, Lkr, is effectively always small on rough 
steps due to the very low εW, so these can be regarded as perfect traps with Γw well 
below the terrace width (just as for the rough steps in our modeling). For the smooth 
steps, one has that Lks ≈ 16a, for lower growth temperatures around 500K. Thus, for 
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strongly miscut Si(100) surfaces with narrower terrace widths of 20-40a ~ 10-20 nm, the 
reduced effective kinetic coefficient would produce step pairing similar to that seen in 
our modeling. One caution is that step equilibration may be inhibited at such lower 
temperatures, limiting the reliability of the thermodynamic estimate of Lk. 

Finally, we remark that although the extent of agreement with KMC simulation 
results is satisfying, there are limitations to our rBCF treatment. Our rBCF description of 
step edges involving a periodic or even biperiodic distribution of kink sites is of course 
an oversimplification to the actual a distribution of kink separations and also neglects 
the presence of multiple height kink at least for rough steps [12]. Another feature which 
is absent in the rBCF treatment, but present in the SOS model, is effective step-step 
repulsion. For an actual vicinal surface, repulsion of nearby steps can have entropic or 
strain origins, but in the SOS model step repulsion is purely entropic. It is possible to 
modify the rBCF treatment to capture this feature accounting for the feature that 
entropic repulsion will modify the chemical potential of steps and thus the associated 
equilibrium adatom density. See Appendix B. However, we have performed selective 
analyses which indicate that such modifications do not strongly impact step propagation 
over the range of coverage and step separations considered above.  
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APPENDIX A: EFFECT OF DIRECT DEPOSITION AT STEPS 
 

As noted in Sec.4, it is necessary to implement a rBCF treatment explicitly 
incorporating direct deposition at step edges in order to even qualitatively capture the 
behavior of the velocity ratio, Rvel, determined from KMC simulation. To demonstrate 
this feature, we compare in Fig.7 the predictions for Rvel from rBCF treatments with and 
without direct deposition at steps (with Lks+ = 26a, Lks- = 2a and Lkr = 4a). In the latter 
case, the dramatic growth in Rvel reflects the feature that the smoother step slows 
towards zero velocity.   

To elucidate the above behavior, we note that the inclusion of direct deposition at 
step edges is to equalize the step velocities. However, this effect is relatively small so a 
more complete analysis requires examination of differences in the predicted fluxes, J1± 
and J2±, with and without direct deposition. Fig.8 shows that there is relatively little 
difference for fluxes on the broad terrace, but a significance difference for fluxes on the 
narrow terrace. Of most significance is the difference in J1- which is the net detachment 
flux of atoms from the smooth step across the narrow terrace to the rough step. 
Significantly higher net detachment rate in the model without direct deposition leads to 
the above-mentioned dramatic slowing of the smooth step. 
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APPENDIX B: EFFECT OF STEP-STEP REPULSION 
 

The basic effect of step-step repulsion [2] is to increase the chemical potential of 
the faster moving rougher step as it approaches sufficiently close to the slower moving 
step (for which the chemical potential is correspondingly reduced). This has the effect of 
inhibiting attachment to the rougher step and enhancing attachment to the smoother 
step, thus equalizing the velocities and avoiding step collision. These effects can be 
incorporated into a BCF or rBCF treatment by appropriately modifying the equilibrium 
adatom densities at the steps recalling that these densities are directly related to the 
step chemical potentials. 

The connection between the equilibrium adatom density, neq, and the step 
chemical potential, μstep, is given by neq = exp(βμstep), where we decompose μstep =          
-φB + μrep. The contribution, μrep, represents the effect of step-step repulsion and was 
neglected in the main text.  To quantify this term, we assume that the total step 
repulsion energy can be written as a sum of pairwise contributions, V(W) > 0, for each 
nearest-neighbor pair of steps separated by a terrace of width W. Then, for a specific 
step with adjacent upper (lower) terrace of width WU (WL), it is straightforward to show 
that μrep = V′(WL) - V′(WU), where the prime represents the derivative with respect to 
terrace width [2]. It is believed that V(W) has an inverse square form for entropic 
repulsion with strength, g, so that [2,25] 

 
V(W) = g/W2 and μrep = 2g[(WL)-3 – (WU)-3].      (7) 
 
Applying this result to our system with alternating rough and smooth steps, we find that 
 
neq(rough) = Arep neq

0 and neq(smooth) = neq
0/Arep,   

            (8) 
where neq

0 = exp(-βφB) and Arep = exp[2βg(W-)-3 - 2βg(W+)-3] ≥ 1. 
 The rBCF treatment can be modified to incorporate these different equilibrium 
adatom densities for different step types. However, we find that for reasonable values of 
βg, this modification does not significantly change the step dynamics over the range of 
coverage (and step separations) considered above. For higher coverages (i.e., longer 
deposition times), such a modification would limit the approach of rough steps towards 
the smooth steps. 
 
  



15 
 

REFERENCES 

[1] W.K. Burton, N. Cabrera and F.C. Frank, Phil. Trans. Roy. Soc. London 243, 299 
(1951). 
[2] H.-C. Jeong and E.D. Williams Surf. Sci. Rep. 34, 171 (1999). 
[3] C. Misbah, O. Pierre-Louis, and Y. Sato, Rev. Mod. Phys. 82, 981 (2010). 
[4] T. Michely and J. Krug, Islands, Mounds, and Atoms (Springer, Berlin, 2004). 
[5] J.W. Evans, P.A. Thiel, and M.C. Bartelt, Surf. Sci. Rep. 61, 1 (2006). 
[6] G. Dziuk and C.M. Elliot, Acta Numerica 22, 289 (2013). 
[7] C. Ratsch, M. F. Gyure, R. E. Caflisch, F. Gibou, M. Petersen, M. Kang, J. Garcia, 
and D. D. Vvedensky, Phys. Rev. B 65, 195403 (2002) 
[8] A.A. Chernov, Sov. Phys. Usp. 4, 116 (1961). 
[9] D.M. Ackerman and J.W. Evans, Multiscale Model. Simul. 9, 59 (2011). 
[10] C.-J. Wang, Y. Han, H. Walen, S. M. Russell, P. A. Thiel, and J. W. Evans, Phys. 
Rev. B, 88, 155434 (2013). 
[11] D. Margetis and R.E. Caflisch, Multiscale Model. Simul. 7, 242 (2008). 
[12] B. Voigtlander, T. Weber, P. Smilauer, and D. E. Wolf, Phys. Rev. Lett., 78, 2164 
(1997). 
[13] B. S. Swartzentruber, Y.-W. Mo, R. Kariotis, M. G. Lagally, and M. B. Webb 
Phys. Rev. Lett. 65, 1913 (1990). 
[14] For Δ+ = 1, the total number of lateral neighbors is zero before and non-zero after 
hopping for attachment, or the opposite for detachment. 
[15] S. Clarke and D.D. Vvedensky, J. Appl. Phys. 63, 2271 (1998). 
[16] T. Ala-Nissila, R. Ferrando, and S.C. Ying, Adv. Phys. 51, 949 (2002). 
[17] M. Ozdemir and A. Zangwill, Phys. Rev. B 45, 3718 (1992). 
[18] R. Ghez and S.S. Iyer, IBM J. Res. Devel. 32, 804 (1988) 
[19] R.E. Caflisch, M.F. Gyure, B. Merriman, S.J. Osher, C. Ratsch, D.D. Vvedensky, 
and J.J. Zink, Applied Math. Lett. 12, 13 (1999). 
[20] C. Ratsch, M. Kang, and R.E. Caflisch, Phys. Rev. E 64, 020601 (2001). 
[21] A. Pimpinelli and J. Villain, Physics of Crystal Growth (Cambridge, UP, Cambridge, 
1998). 
[22] The probability for kink separation n≥1 is given by P(n) = pk(1-pk)n-1, so that <n> = 
1/pk = Lk, and <(n-<n>)2>1/2 = (1-pk)1/2Lk ≈ Lk for small pk <<1.  
[23] Consider choosing a biperiodic kink distribution on both steps where we retain   
{Lks+ = 26a, Lks- = 2a} for the smooth step, but replace Lkr = 4 with {Lkr+ = 5a, Lkr- = 3a} or 
{Lkr+ = 6a, Lkr- = 2a} for the rough step. The initial rBCF value for Lkr = 4 of Rvel = 2.46 
when W1 + W2 = 40a changes only slightly to Rvel = 2.44 or 2.36, respectively. 
[24] D. Chadi, Phys. Rev. Lett. 59, 1691 (1987). 
[25] D. Margetis and N. Nakamura, Physica D 240, 1100 (2011). 
 
  



16 
 

 

 
 
Fig.1. KMC simulation results for step evolution on a vicinal surface ascending to the 
right in the anisotropic SOS model: (a) initial pre-deposition geometry with equal mean 
terrace widths of 20a; (b) morphology after deposition of ~0.54 ML. The simulations set 
h/F = 108. Image size: 40a x 80a. 
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Fig.2. Schematic of the basic discrete 2D deposition-diffusion equation model 
formulation for a vicinal surface with alternating rough and smooth steps and a ratio m = 
2 of kink separations on these steps. For convenience, we set a = 1. 
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Fig.3. Discrete 2D DDE results for the steady-state excess adatom density δn*(i,j)/F 
versus (i,j) for our SOS model for a vicinal surface with alternating rough and smooth 
steps. Kink separations are Lks = 26a and 2a for smooth steps, and Lkr = 4a for rough 
steps. Alternating narrow and broad terraces have widths W- = 30a and W+ = 50a, 
respectively. The inset shows a different 3D perspective of the adatom density variation. 
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Fig.4. Variation of averaged adatom density profiles across terraces, δn*(j) versus j, for 
a vicinal surface with alternating rough and smooth steps: (a) W1 = 30a and W2 = 50a; 
(b) W1 = 17a and W2 = 63a. We set Lks = 26a and 2a, and Lkr = 4a. Symbols: average of 
2D DDE results. Curve: 1D continuum DDE results with K’s from 2D DDE. 
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Fig.5. Comparison of rBCF (symbols) and KMC (curves) analysis for step pairing: (a,d) 
terrace widths W1 ≥ W2 (in units of a); (b,e) rescaled step velocities V/(aF); (c,f) step 
velocity ratio. (a-c) W1 + W2 = 40a; (d-f) W1 + W2 = 80a. We set Lks = 26a and 2a, and 
Lkr = 4a. 
 

 
 
Fig.6. Comparison to step velocity ratio, Rvel, for the full rBCF treatment with a BCF type 
treatment incorporating distinct but time-independent K’s for rough and smooth steps: 
(a) W1 + W2 = 40a; (b) (a) W1 + W2 = 80a. We set Lks = 26a and 2a, and Lkr=4a. 
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Fig.7. Comparison of rBCF predictions for step velocity ratio with and without direct 
deposition at step edges. We set Lks = 26a and 2a, and Lkr = 4a. 
 
 

 
 
Fig.8 Comparison of rBCF predictions for fluxes with and without direct deposition (dd) 
at steps. We set W1 + W2 = 80a, Lks = 26a and 2a, and Lkr = 4a. 
 
 


