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A mean-field theory formalism is employed to analyze the non-local plasmon dispersion relation
of monolayer graphene which is Coulomb-coupled to a thick conductor. We calculate numerically
the undamped plasmon excitation spectrum for arbitrary wave number. For gapped graphene, both
the low-frequency (acoustic) and high frequency (surface) plasmons may lie within an undamped
opening in the particle-hole region. Furthermore, we find undamped plasmon excitations in a region
of frequency-wave vector space which has no counterpart for free-standing gapped graphene.
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I. INTRODUCTION

Recent research on plasmon excitations1–4 has covered fundamental aspects such as nonlocality5, quantum effects in
nanoscale structures including fullerenes6–8, graphene9–12, carbon nanotubes13,14, silicene15,16 and metallic dimers17,
also surface plasmon lasing18, plasmon-electron interaction19 and the potential role played by plasmon excitations in
electronic sensors20,21 and radiation degradation of electronic and optoelectronic devices22. The surge in activity to
understand and discover novel plasmonic materials is stimulated by possible applications such as light concentration for
solar energy23, devices for telecommunications24, and near-field instrumentation25. Investigation of damped terahertz
plasmons in graphene, interacting with surface plasmons of a substrate with a heavy doping due to a large scattering
rate, was addressed in Ref.[26]. The authors demonstrated that the field penetration of the graphene plasmons into
the substrate is suppressed.

In view of the clear importance of achieving a detailed understanding of plasma excitations, we devote this paper
to a specific area which has not been adequately covered so far in the literature. It concerns plasmon excitations
in monolayer graphene. There are several papers dealing with calculations of the dispersion relation for monolayer
graphene that is doped9,11,27–29 as well as pristine graphene whose collective charge density oscillations are driven
by temperature30. The work on gapped graphene10 was partially motivated by the observation that when monolayer
graphene is on a substrate such as boron nitride, an energy gap between the valence and conduction bands is produced
yielding a plasmon and single-particle excitation spectrum which can be drastically different from that of gapless
monolayer graphene. In Refs.9 through10, the fundamental calculations of graphene polarizabilities were carried
out for all frequencies and wavelengths. This fundamental formulation is brought to full fruition herein a thorough
investigation of the computationally challenging role of nonlocality in the plasmon spectrum of gapped as well as
ungapped graphene, both free-standing and at arbitrary height over a substrate accounting for both plasma mode
frequency and damping.

In a recent paper31, it was demonstrated that high-frequency-plasmon excitations in graphene have a linear disper-
sion rather than a square root dependence on wave vector. This unexpected result came as a surprise since theoretical
calculations on free-standing graphene clearly do not yield a linear dependence in the long wavelength limit of plasmon
excitations. An attempt was made to attribute this linear dependence of the plasmon frequency on wave vector to the
local field corrections to the random-phase approximation. Horing32 showed that when graphene is Coulomb-coupled
to a conductor, the surface plasmon causes the low-frequency π-plasmon to have a linear dispersion. In the paper
by Despoja et.al33, the electronic excitations were calculated using time-dependent density functional theory. There,
anisotropy and splitting of the π plasmons were found, as well as dispersive differences in the plasma spectrum, which
seem to have been experimentally verified. However, so far these results have not been reproduced using an effective
mass model.

Unlike three-dimensional bulk conductors and thick conducting materials with planar surfaces possessing bulk and
surface plasmons, respectively, at finite frequency34, 2D inversion layers can sustain low-frequency collective modes.
At these low energies, the plasmon excitations may contribute to a wide range of time-dependent processes leading to
physisorption and chemisorption, for example. It has even been suggested that low-frequency plasmons might play a
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role in high-temperature superconductivity.35 For these reasons, there has been considerable interest in these collective
excitations both experimentally and theoretically and more recently in information transfer in nanostructures.

Recently, graphene was combined with prefabricated metamaterials and plasmonic nanoarrays, which led to the
creation of tunable hybrid optical tools. Consequently, it is highly desirable to obtain detailed information about the
behavior, especially the dispersion and damping of the plasmon modes of 2D layers interfaced with various types of
substrates36–39. Also, we should mention some novel applications of graphene plasmonics to optics40, microscopy41

and nanolithography42.

In this paper, we calculate the full dispersion relation for undamped plasmons in a hybrid monolayer graphene-
conductor structure. We apply non-local simulations to determine how the plasmon dispersion is affected when there
is an energy gap between the valence and conduction bands, thereby generalizing the results in10 where a surface is
assumed to play a role.

The longitudinal excitation spectra of allowable modes will be determined from a knowledge of the frequency-
dependent non-local dielectric function ε(r, r′;ω) of the composite system, which depends on the position coordinates
r, r′ and frequency ω. Alternatively, the normal modes correspond to the resonances of the inverse dielectric function
K(r, r′;ω) satisfying

∫
dr′ K(r, r′;ω)ε(r′, r′′;ω) = δ(r− r′′). The significance of K(r, r′;ω) is that it embodies many-

body effects43,44 through screening by the medium of an external potential U(r′;ω) to produce an effective potential
V (r;ω) =

∫
dr′ K(r, r′;ω)U(r′;ω). In Sec. II, we briefly review the formalism for calculating the inverse dielectric

function for a 2D layer interacting with a semi-infinite conductor. Section III is devoted to an exhibition of our
numerical results for the dispersion relations at arbitrary wavelength for this hybrid structure. We show explicitly
how the gap for monolayer graphene affects both the dispersion relation for the surface plasmon and the low-frequency
acoustic mode.

Specifically, we demonstrate that, due to the interaction with the substrate plasma, the low-frequency plasmon
branch may exist undamped in a region of frequency-wave vector space that was not obtained for free standing
gapped graphene. We conclude with a summary of our results in Sec. IV.

II. GENERAL FORMULATION OF THE PROBLEM

In this work, we consider a composite nano-scale system consisting of a 2D layer separated from a thick dielectric
material by a special gap. The 2D layer may be monolayer graphene (or a 2DEG such as a semiconductor inversion layer
or HEMT (high electron mobility transistor)). The 2D graphene layer may have an energy gap, thereby broadening
the applicability of the composite system model which also incorporates a separation layer and a semi-infinite plasma,
as depicted in Fig. 1. The excitation spectra of allowable plasma modes will be determined from a knowledge of
the non-local dielectric function ε(r, r′;ω) which depends on position coordinates r, r′ and frequency ω or its inverse
K(r, r′;ω) satisfying

∫
dr′ K(r, r′;ω)ε(r′, r′′;ω) = δ(r, r′′). The field structure for K(r, r′;ω) is determined, using the

technique of Ref. [32].

FIG. 1: (Color online) Schematic illustration of a thick (semi-infinite) metallic plasma interacting through the Coulomb force
with a thin layer such as monolayer graphene at a distance a.

In operator notation, the composite dielectric function ε̂ and its inverse, K̂ = ε̂−1, for the 2D layer and semi-infinite
substrate is given by adding their polarizabilities α̂2D and α̂SI , respectively, i.e.,

K̂−1 = ε̂ = 1̂ + α̂SI + α̂2D ≡ ε̂SI + α̂2D = K̂−1SI + α̂2D . (1)
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Multiplication of Eq. (1) from the right by K̂ and left by K̂SI yields the basic random-phase approximation (RPA)
integral equation

K̂ = K̂SI − K̂SI · α̂2D · K̂ . (2)

Additionally, K̂SI is the inverse dielectric function for the semi-infinite substrate alone, whose surface lies in the z = 0
plane. In explicit integral form, after Fourier transforming with respect to coordinates parallel to the translationally
invariant xy-plane and suppressing the in-plane wave number q|| and frequency ω, we obtain

FIG. 2: (Color online) Density plots of the real part of the inverse of the dispersion factor Sc(q‖, ω+ i0+) for extrinsic (doped)
graphene with no band gap (∆ = 0): peaks correspond to the plasmon resonances. Panels (a)− (d) demonstrate the plasmon
spectrum for various separations between the graphene layer and the surface - a = 1, 3, 5 and 10 k−1

F , where kF is the Fermi
wave number.
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FIG. 3: (Color online) Exact numerical solutions for the plasmon dispersion of gapless graphene. The highest and lowest curves
are the solutions of the plasmon dispersion equation <SC(q‖, ω) = 0 for graphene at a distance a = k−1

F from a conducting

surface, whereas the curve in between these two solutions corresponds to the zeros of 1 + 2πe2/(εsq‖)<Π
(0)
2D(q||, ω) = 0 for free

standing graphene. Panel (a) corresponds to a smaller distance between the layer and the surface a = k−1
F , whereas panel (b)

demonstrates the case when a = 5k−1
F In both (a) and (b), the plasmon energy is scaled with respect to the chemical potential

µ and we superimpose all plasmon curves on a background of a density plot of = Π
(0)
2D(q||, ω) to illustrate the effects due to

Landau damping.
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FIG. 4: (Color online) Exact numerical solutions of < SC(q‖, ω + i0+) = 0 for gapped graphene at a distance a = k−1
F

from a conducting surface. The plasmon excitation spectrum is superimposed on a background showing the density plot of

= Π
(0)
2D(q‖, ω + i0+) whose values determine Landau damping. The red lines correspond to undamped plasmons when the

magnitude of the plasmon dispersion factor
∣∣SC

(
q‖, ω + i0+

)∣∣ vanishes. Panels (a) and (b) show the case of ∆ = 0.95 and 0.5,
panels (c) and (d) demonstrate the behavior of the plasmon spectra for µ = 1.5µ0 and ∆ = 0.93µ and ∆ = 0.33µ, respectively.
Here, µ0 = 0.2 eV is the chemical potential used in the calculations of Fig. 3. This value for µ0 is chosen to ensure the
applicability of isotropy of the energy band structure at low doping.29 Also, in our notation, k∆

F ≡
√
µ2 −∆2/(~vF ).

K(z1, z2) = KSI(z1, z2)−
∫ ∞
−∞

dz′
∫ ∞
−∞

dz′′ KSI(z1, z
′)α2D(z′, z′′)K(z′′, z2) . (3)

Here, the polarization function for the 2D layer is given by

α2D(z′, z′′) =

∫ ∞
−∞

dz′′′ v(z′, z′′′)D(z′′′, z′′) , (4)

where v is the Coulomb potential energy and the 2D response function’s localization to the layer at z = a is expressed
as

D(z′′′, z′′) = Π
(0)
2D(q||, ω)δ(z′′′ − a)δ(z′′ − a) , (5)

with Π
(0)
2D(q||, ω) as the 2D ring diagram of the RPA and for graphene is given by9–12

Π
(0)
2D(q‖, ω) =

gg′

4π2

∫
d2k‖

∑
s,s′=±1

F ss
′
(q‖,k‖)

f0
(
εs(k‖)

)
− f0

(
εs

′
(|k‖ + q‖|)

)
εs(k‖)− εs′(|k‖ + q‖|) + ~(ω + i0+)

(6)

with εs(k‖) the energy dispersion for the conduction (s = +) and the valence (s = −), g = 2 denotes the valley

degeneracy and g′ = 2 the spin degeneracy, Also, f (0)(εα) is the occupation factor of the state |α〉 = |q‖, s〉 determined
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by the Fermi-Dirac distribution function. We have f0(εα) = (exp [(εα − µ)/(kBT )] + 1)
−1

in terms of the chemical

potential µ, Boltzmann’s constant kB and temperature T . We have also introduced the form factor F ss
′
(q‖,k‖) =∣∣< α|eiq‖·r|α′ >

∣∣2. Upon substituting this form of the polarization function for the monolayer into the integral equation
for the composite inverse dielectric function K, we have

K(z1, z2) = KSI(z1, z2)−Π
(0)
2D(q||, ω)

∫ ∞
−∞

dz′ KSI(z1, z
′)v(z′ − a)K(a, z2) . (7)

We now set z1 = a in Eq. (7) and obtain

K(a, z2) = KSI(a, z2)−Π
(0)
2D(q||, ω)

{∫ ∞
−∞

dz′ KSI(a, z
′)v(z′ − a)

}
K(a, z2) . (8)

Solving algebraically for K(a, z2) yields

K(a, z2) =
KSI(a, z2)

SC(q||, ω)
(9)

with the “dispersion factor”’ SC(q||, ω) given by

SC(q||, ω) ≡ 1 + Π
(0)
2D(q||, ω)

{∫ ∞
−∞

dz′ KSI(a, z
′)v(z′ − a)

}
, (10)

whose zeros determine the plasmon resonances of the composite system. In our numerical calculations, we employ
KSI(z, z

′) given by Eq. (30) of Ref. [44] for the semi-infinite metallic substrate in the local limit as follows:

KSI(z, z
′; q‖, ω) = θ(z)

{
δ(z − z′) + δ(z′)e−q‖z

[
1− εB(ω)

1 + εB(ω)

]}
+ θ(−z)

{
δ(z − z′)
εB(ω)

+ δ(z′)eq‖z
1

εB(ω)

[
εB(ω)− 1

εB(ω) + 1

]}
. (11)

Eqs. (7) through (11) yield32

K(z1, z2) = KSI(z1, z2)−Π
(0)
2D(q||, ω)

KSI(a, z2)

SC(q||, ω)

{∫ ∞
−∞

dz′ KSI(z1, z
′)v(z′ − a)

}
(12)

with

SC(q||, ω) = 1 +
2πe2

εsq||
Π

(0)
2D(q||, ω)

{
1 + e−2q||a

1− εB(ω)

1 + εB(ω)

}
(13)

Here, we have defined εs = 4πε0 εb, where ε0 is the permeability of free space and εb is the background dielectric
constant. Also, εB(ω) = 1− ω2/ω2

p with ωp standing for the bulk plasma frequency.

Although the principal focus here is to examine the role of 2D graphene plasma nonlocality embedded in Π
(0)
2D(q‖, ω)

on the coupled plasmon spectrum of the composite system, we briefly revisit the local results of Ref.[32] to point out
their generalization to include gapped graphene along with the previously discussed gapless results. In this regard,

the graphene polarizability is also taken in the local limit with Π
(0)
2D(q||, ω) ≈ Cq2‖/ω

2 so that Eq. (13) yields

1− 2πCe2

εsω2
q‖

{
1 + e−2aq‖

ω2
p

2ω2 − ω2
p

}
= 0 , (14)

where the inclusion of a gap is described by10
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FIG. 5: (Color online) Schematics showing the regions having differing analytic expressions for the non-interaction polarization

function Π
(0)
2D(q‖, ω). Each part (real or imaginary) is determined by a different analytic expression, as in Refs. [10,15,16]. The

regions with ω > ~vF q‖ are presented as Ω1−Ω5, while the opposite are given by Q1−Q4. Regions with non-zero =Π
(0)
2D(q‖, ω)

are Ω1, Ω5, Q4 (where undamped plasmons exist) and Q3. Plot (a) demonstrates the case of a small bandgap ∆ = 0.2µ,
whereas the panel (b) shows the case of relatively large gap ∆ = 0.6µ.

C =
2µ

π~2

{
1− ∆2

µ2

}
, (15)

µ is the chemical potential and ∆ is the gap between valence and conduction bands. Consequently, Eq. (14) yields
the local plasmon frequency as follows32:

ω2 = K1 ±
√
K2 , (16)

with K1 and K2 defined by

K1 =
πe2C

εs
q‖ +

(ωp
2

)2
K2 =

πe2C ω2
p

εs
e−2aq‖q‖ +

[(ωp
2

)2
− Ce2π

ε
q‖

]2
. (17)

In the low wave number limit q‖ � 1/a these expressions are reduced to:

ω1 ≈ 2e

√
πaC

εs
q‖ (18)

ω2 ≈
ωp√

2
+

√
2πCe2

εsωp
q‖

which are both linear in q||, differing from the q
1/2
|| -dependence for free-standing graphene or the 2DEG9–11,45–48.

Nonlocality of the graphene plasma introduces changes in the features of K(z1, z2) of Eq. (12) and in its coupled
2D-surface plasmon spectrum in two respects. First, the local coupled mode spectrum described in the preceding

paragraph is modified by nonlocality corrections in Eq. (13) with the use of the polarization function Π
(0)
2D(q‖, ω) for

all wave numbers as calculated by10 for gapped graphene. Secondly, nonlocality introduces natural damping through
the occurrence of regions in which plasmons can decay into electron-hole pairs49 consistent with energy-momentum
conservation. The intersection of the plasmon dispersion curve ω(q‖) with such a particle-hole excitation region
(PHER) signals the onset of damping at T = 0K. with = SC(q||, ω) 6= 0. However, it is the undamped coupled
plasmons that are of interest with

= SC(q||, ω) = =
(

Π
(0)
2D(q||, ω)

) 2πe2

εsq||

{
1 + e−2q||a

1− εB(ω)

1 + εB(ω)

}
= 0 . (19)
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FIG. 6: (Color online) Density plot of the real part of the inverse dispersion factor Sc(q‖, ω+i0+) for extrinsic (doped) graphene
having a finite band gap (∆ 6= 0) with the peaks corresponding to the plasmons. The panels are for various values of the energy
gap ∆ and distance a between the surface and the graphene layer. Panel (a) shows the case when a = k−1

F and ∆ = 0.3µ, (b)

a = 5k−1
F and ∆ = 0.3µ, (c) a = k−1

F and ∆ = 0.6µ and (d) describes a = 5k−1
F and ∆ = 0.6µ. We define k∆

F ≡
√
µ2 −∆2/(~vF ).

The features of the interacting graphene-surface plasmon spectrum are analyzed here numerically using the real and
imaginary parts of the polarizabilities of B.Wunsch9 as well as Hwang and Das Sarma11 for gapless graphene, and
Pyatkovskiy10 for gapped graphene (all at zero temperature).

In regard to the mechanism of damping, the procedure used in our numerical calculations treats metallic surface
plasmons in the local limit, while the acoustic plasmon attributed to the graphene layer was taken into consideration
non-locally with the inclusion of its Landau damping. This is reasonable because the high-frequency surface plasmon
is not Landau damped by single-particle excitations arising from the metallic substrate over a wide wave number range
for q ≤ 1/λF , in which the Fermi wavelength in metals is comparable with the lattice constant λF w 0.5nm. Two
be clear, we point out that this Landau damping from the substrate can be broken down into two contributions (see
Eqs.(28)-(30) of Ref.[44]). The one corresponding to particle-hole excitations which were included when an integration
was executed over qz to obtain the inverse dielectric function for the SI substrate. The second contribution comes
through damping in the ω− q‖ plane from bulk SPE’s. We took the local limit which is reasonable since the damping
arising from the SPE’s within the 2D layer is dominant compared to the bulk SPE’s as the carrier density in the
substrate is high. Correspondingly, within the range of validity it is sufficient to neglect plasmon damping originating
from the conducting half-space, confining our attention to Landau damping from the 2D layer. Our calculations
are carried out so as to complement the already published works of9–11 and others, all of whom considered only
Landau damping from the monolayer to the exclusion of other damping mechanisms. We also show in our numerical
simulations that our model yields the intensity and dispersion of the plasmon branches are in agreement with recent
experimental results50,51 Our model thus seems reasonable for sufficiently clean samples. Damping due to finite
temperature effects could also be of interest.12

If the bandgap in graphene is opened due to the presence of a substrate, this might lead to the existence of
significant plasmon damping other than Landau damping. However, the interaction with a substrate is not the only
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way to create an energy bandgap in graphene. A bandgap of up to ∆ w 117meV could be achieved by exposing
graphene to a laser-generated circularly-polarized electromagnetic field. In this regard, we would like to mention a
paper by Kibis.52 Theory for the polarization function, plasmon dispersion and damping was reported in Ref.[ 53].
In connection with an investigation of strong non-Landau damping, we also mention Ref.[ 54], in which an analytical
model for coupled exciton-plasmon states was presented. However, that model is quite different from ours, mainly
because of the coupling between the plasmon in graphene and the excitons in a narrow gap semiconductor quantum
wells.

III. CALCULATED RESULTS AND DISCUSSION

First, we consider graphene with no energy gap and linear energy dispersion for the valence and conduction bands.
The boundaries of the particle-hole modes region are linear, enclosing a triangular region, where the plasmons are not
damped. The plasmons for gapless graphene are shown in Fig.[2]. We discern two plasmon branches, one attributed to

the surface (the upper branch, originating from ωp/
√

2 frequency) and the other due to the graphene sheet (starting
at the origin). We present results for various values of the distance a between the layer and the surface. When this
separation is increased, the two branches evolve into a merged spectral line, similar to the plasmon of extrinsic gapless
graphene. The surface plasmon branch tends to be dispersionless and to exist in the long wave length limit only. For
all presented cases, the upper plasmon mode shows a stronger and broader peak. We display the absolute value of
the real part of S−1C (q||, ω) to emphasize each peak.

We also solve the equation < SC(q‖, ω) = 0 numerically, demonstrating the exact solution for the plasmon dispersion
relation for both cases of zero (see Fig. 3) and finite (Fig. 4) energy band gap. These solutions become extremely
interesting when the upper branch splits into two parts for the case of small energy gap. When the gap is zero, once
again we see that the upper branch (which we attribute to the presence of a surface) adopts certain features of the
plasmon in gapless graphene mainly because the branch is located in the same {ω, q‖} regions, both inside and outside
the PHER. However, according to our analytical results, for long wavelengths both branches possess finite slope, in
contrast to v √q‖ behavior in free standing graphene.

The case of a small energy gap is presented in Fig. 4 for various energy gap and doping values. Similar to free
standing graphene, the upper branch is extended due to splitting of the PHER. It might also be split into two different
branches as mentioned in Ref. [10]. When the distance a of the 2D layer from the surface is increased, the two plasmon
branches merge into a single branch, which is similar to the plasmon dispersion in gapped free-standing graphene. The
general conclusion is that when one of the factors (energy gap, chemical potential or the separation a) is appreciable,
the changes caused by a sizable change in one of the others is not significant.

The role played by the energy band gap is an important part of our investigation. For monolayer graphene,
an energy gap leads to to an extended region of undamped plasmons10. In Fig. 5, we present the regions of the
real and imaginary parts of the non-interacting polarization function which have distinct functional forms. We pay
particular attention to the regions outside of the single-particle excitation continuum since, as mentioned previously,
they encompass plasmon frequencies in the domains of {ω, q‖} in which the plasmons are not damped. We denote

these planar regions (Ω1, Ω5 and Q4) with reddish colors. The condition =Π
(0)
2D(q‖, ω) = 0 is also satisfied in Q3, but

no plasmons are observed in this region. Region Q4 with ~vF q‖ > ω plays a crucial role in our study because this is
where the extended undamped lower plasmon branch is located. This is a new finding, which was not encountered in
previous works of Refs. [9–12,27] and it is attributed to screening by the carriers in the thick substrate adjoining the
2D layer.

Figure 7 exhibits our results for plasmon excitations of a composite system consisting of a layer of gapped graphene
and a thick substrate for various values of the energy gap, chemical potential and the distance between the two
bodies. The PHER and its boundaries constitute an important factor determining the plasmons. Consequently, the
upper branch, located mainly in regions Ω1 and Ω5, bears some similarity to the plasmons in free standing gapped
graphene, including its splitting into two parts in the vicinity of the boundary of Ω2. The results for both the lower
and upper branches definitely depend on the gap. In the long wavelength limit, we demonstrate that ω1 w

√
C and

ω2 w ωp/
√

2 + · · · w C, where C w
(
1−∆2/µ2

)
. The plasmon dispersion relation for a free standing graphene layer

with a finite energy gap is ω w
√
Cq‖, which differs from our solution and Ref. [32]. However there is an interesting

similarity in that the plasmon frequency is decreased with increased energy gap. This dependence is observed for
increased values of q‖.

The important differences in the plasmon spectra between free standing graphene and graphene interacting with
a half space arise from the lower plasmon branch which lies on both sides of the straight line ω = vF q‖ and has a

linear dispersion for small q‖. According to previously published results10, the size of the Q4 region is determined
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FIG. 7: (Color online) Density plot of the real part of the inverse dispersion function Sc(q‖, ω) for extrinsic (doped) graphene
when the band gap is finite and where its peak positions correspond to the plasmon frequencies. The results in the panels
were obtained for various chosen values of the energy gap ∆, the distance a between the surface and the graphene layer and
the chemical potential µ, so that panel (a) shows the case when kF a = 1 and ∆ = 0.6µ, (b) kF a = 5 and ∆ = 0.6µ, (c)
µ = 1.5µ0, kF a = 1 and ∆ = 0.93µ and in (d) µ = 1.5µ0, kF a = 1 and ∆ = 0.33µ. In our notation, µ0 is an arbitrary doping,

parameter in terms of which we measure chemical potential. We introduced k∆
F ≡

√
µ2 −∆2/(~vF ).

by doping as well as the energy gap. The boundary between Q4 and Q2 (with finite =Π
(0)
2D(q‖, ω)) is described by

ω = −µ+
√

(~vF )2(q‖ + kF )2 + ∆2 with ~vF kF =
√
µ2 −∆2. For ∆ = 0, this boundary line is reduced to ω = vF q‖.

The plasmon dispersion for various doping concentrations is presented in Fig. 7. Increasing both µ and ∆, we find
more extended branches where undamped plasmons exist. Figure 7(d) clearly demonstrates anti-crossing and an
extended region of undamped plasmons for both branches. In all cases, the lower plasmon branch does not rise above
the line ω = ωp/

√
2. The curvature of the upper branch is determined by the ratio ∆/µ rather rather than by the

gap itself. For certain values of this ratio, the upper branch consists of two different, separated plasmon branches.
We note that the exact numerical solutions in Fig. 4 corresponding to < SC(q‖, ω) = 0 are in agreement with the

data for the density plots in Figs. 6 and 7. The results in these plots confirm the anti-crossing and the extension of
the lower plasmon branches with increased doping and energy gap. We also note that for large values of the ratio
∆/µ ≥ 0.9 the lower branch becomes nearly dispersionless.

We now consider in detail the case for a layer closely located to a surface. This is relevant to recent experiments
conducted by Politano, et al.36,50,51. Our numerical results are presented in Fig. 8. They demonstrate that if the
distance between the surface and the layer becomes less than some critical value ac, the lower acoustic plasmon branch
becomes overdamped. This is similar in nature to the experimentally obtained data. We note that since the imaginary

part of the polarization function for gapless graphene is non-zero below the diagonal (v q2‖θ(vF q‖−ω)/
√
|ω2 − v2F q2‖|),

the acoustic plasmon is damped only if it lies below the diagonal Ωd = vF q for q‖ → 0. The critical distance is

determined as ac = εsv
2
F /(4πe

2 C) for the zero energy gap.

Also, we would like to mention, that if a plasmon branch is located below the main diagonal Ωd = vF q, and the
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FIG. 8: (Color online) Plasmons for a closely located layer and surface. The left panels (a) and (c) demonstrate the density
plots for a real part of the inverse dispersion function S−1

c (q‖, ω+ i0+) for extrinsic (doped) graphene with no band gap (∆ = 0)
with the peaks corresponding to the plasmon resonances. The right panel shows the corresponding exact numerical solutions
for the plasmon branches (both damped and undamped). While the upper panels (a) and (b) show the case of extremely small
distance between the layer and the semi-infinite conductor a = 0.01k−1

F with the lower plasmon branch damped, the lower
panels (c) and (d) correspond to a critical value ac w 0.3k−1

F of the distance, when the undamped acoustic plasmon branch still
exists for q → 0. Technically, the lower acoustic branch now consists of two separated plasmons.

plasmon is overdamped, one can no longer separate the real and imaginary parts of the plasmon frequency, since the
correction to the real frequency coming from the higher even powers of the imaginary frequency (such as γ2 , where
γ = =ω ) and the higherbpowers in q‖ are no longer a small parameter. Consequently, one cannot find a real plasmon

dispersion using the analytical formulas for the polarization provided in9–12.

In general, the energies of surface states lie within the gap of a bulk crystal energy band structure. Consequently,
these states are characterized by an imaginary wavenumber which leads to an exponential decay into the bulk.
However, the imaginary wave vector plays no role here because we use the local limit in approximating the inverse
dielectric function for a semi-infinite medium which is represented by the jellium model. Furthermore, the in-plane
wave vector is always real and the plasmon may lose energy due to Landau damping. For this, we calculated both real
and imaginary parts of the inverse dielectric function in our numerical simulations.

IV. CONCLUDING REMARKS

In summary, we have calculated the nonlocal plasmon dispersions within RPA for monolayer graphene interacting
with a substrate, for arbitrary wavelength. In this, we investigated numerically the effects of the energy gap for
extrinsic graphene, as well as the effects of its distance from the surface, on the plasmon dispersion relation. Our
considerations were motivated by recent experimental work showing a linear plasmon dispersion in the long wavelength
limit51 and the earlier theoretical work by one of the authors32 to account for this observation, which is extended here
to a fully general numerical description of nonlocal effects in monolayer graphene when the separation a is varied and
when the energy gap is increased. Our new results in this paper vividly demonstrate that a thorough investigation
necessitates incorporating the polarization into the dispersion equation at shorter wavelengths.

It should be emphasized that we have found an important region devoid of Landau damping for the coupled
plasmons, which was previously unrecognized. This could be achieved by careful and extensive numerical simulations.
Our results on the split plasmon branches due to a depolarization shift arising from the layer-substrate coupling
and represent an interesting feature in the excitation spectrum. In this respect, exact numerical solutions played a
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crucial role. As a matter of fact, most of our data were obtained within the framework of carrying out numerical
experiments and could not have been predicted theoretically based only on an analytic formalism. Demonstration of
the extended regions of undamped plasmons is a key result. Furthermore, as we discussed, its existence can expand
the applicability of plasmon mode excitations to applications in optoelectronics, for example. Apart from all the
above mentioned results, there is another finding which deserves mentioning. When the

thick conductor and 2D layer are not coupled, we normally obtain two plasmon branches, associated with the
2D layer (acoustic plasmon, starting at the origin) and the other branch is associated with the surface plasmon,

originating at ωp/
√

2. If the Coulomb interaction between the layer and the conductor is sufficiently strong and an
energy bandgap is introduced, the upper “surface” plasmon acquires interesting features (being either damped or
undamped, depending on the energy gap; for certain gap values it could be divided into two undamped branches), as
it was reported for graphene. So the plasmon branches are hybridized, and the surface plasmon branch is significantly
affected by the layer. Finally, if the distance between the layer and the surface is decreased a < 0.3nm, our model
faithfully reproduces the finding recently reported experimentally in the papers36,50,51. Our theory, in conjunction
with the numerics, can provide an explanation for the data, reported for the plasmon frequencies, their intensity and
damping, and to predict other potential experimental features.

The distance a between monolayer graphene and the surface was varied in our nonlocal numerical calculations. In
all cases, there are two plasmon branches; one originating from the surface plasmon and the other from the graphene
layer. Both gapless and gapped graphene have been investigated. The most important consequence of introducing
the energy gap in graphene is the extended region of undamped plasmons for both branches. Specifically, referring to
Fig. 3(a), we note that the upper plasmon dispersion curve enters the gap in the particle-hole spectrum like that for
gapped free standing graphene and these two curves are close to each other within this gap. In addition, the lower
plasmon branch is undamped for a wider range of wave vectors q‖ by entering the gap in the particle-hole region. As
revealed in Fig. 4(c), the lower branch may anti-cross with the upper one for sufficiently high doping concentration
and large band gap. Both plasmon frequencies decrease with increased energy gap. This is also the behavior for free
standing gapped graphene. However, the exact functional dependence is different in each case. Also, either one of
the plasmon branches may bifurcate into two branches in the the single-particle excitation region, as demonstrated in
Fig. 7(b). These new results for the plasmons may potentially lead to a number of applications in electronic devices
since the plasmons play an important role in the response properties to external electromagnetic fields.
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