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Abstract

The effects of voltage bias on magnetic hysteresis in single Ni particles 2-3nm in diameter are

measured between temperatures of 60mK and 4.2K, using sequential electron tunneling through

the particle. While some Ni particles do not display magnetic hysteresis in tunneling current

versus magnetic field, in the Ni particles that display hysteresis, the effect of bias voltage on

magnetic switching field is nonlinear. The magnetic switching field changes weakly in voltage

interval ∼1mV above the tunneling onset voltage, and rapidly decreases versus voltage above that

interval. A voltage-driven mechanism explaining this nonlinear suppression of magnetic hysteresis

is presented, where the key effect is a magnetization blockade due to the addition of spin-orbit

anisotropy ǫso to the particle by a single electron. A necessary condition for the particle to exhibit

magnetization blockade is that ǫso increases when the magnetization is slightly displaced from

the easy axis. In that case, an electron will be energetically unable to access the particle if the

magnetization is sufficiently displaced from the easy axis, which leads to a voltage interval where

magnetic hysteresis is possible that is comparable to ǫso/e, where e is the electronic charge. If ǫso

decreases vs magnetization displacement from the easy axis, there is no magnetization blockade

and no hysteresis.

PACS numbers: 73.23.Hk,73.63.Kv,73.50.-h
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I. INTRODUCTION

The loss of magnetic hysteresis in nanomagnets arises due to the irreversible coupling

of a magnetic sample to its environment, and is well understood in the case of thermal

equilibrium1–3. In this article, we address the loss of magnetic hysteresis in the case of a

voltage-biased nanomagnet. Such a nanomagnet is attached to electric leads via two high

resistance tunneling junctions, and the electron transport through the nanomagnet at low

temperatures exhibits Coulomb blockade and sequential electron tunneling. Prior measure-

ments of voltage biased single magnetic molecules, in a double tunneling barrier device,

showed no magnetic hysteresis, even at temperatures much lower than the blocking temper-

ature.4,5 In contrast, bulk measurements in ensembles of such molecules show hysteresis at

low temperature6,7. Recent scanning tunneling microscopy experiments show that antiferro-

magnetic and ferromagnetic spin chains of only a few atoms can display hysteresis, though

the lifetimes of ferromagnetically stable states are much shorter8,9. In single Co particles

a few nm in diameter, in a double tunnel barrier device, electron transport measurements

find hysteresis10–12. In this article we find that voltage-biased single Ni particles 2-3nm in

diameter lie at the threshold of stable magnetic hysteresis. While some of our Ni particle

samples do not display magnetic hysteresis at low temperature and low bias voltage, other

Ni particle samples display hysteresis in current versus magnetic field. In the latter case, we

find that the magnetic switching field is initially weakly dependent on bias voltage. But at

voltages ∼1mV above the voltage threshold for sequential electron tunneling, the magnetic

switching field quickly diminishes with further increase in bias voltage, and the signatures

of magnetic hysteresis are quickly lost. This property is explained in this article in terms

of bias voltage control of magnetic hysteresis. The possibility of bias voltage-control of

magnetization dynamics in a voltage-biased ferromagnetic nanoparticle was first proposed

by Waintal and Brouwer.13 In their proposal, the magnetization relaxation time is tunable

by the bias voltage and temperature. Their model has limited scope, however, because the

spin-orbit (so) interaction is taken into account only trivially, by the simple uniaxial mag-

netic anisotropy energy of the particle. The effects of so-shifts (ǫso) of discrete energy levels

were not considered. Since ǫso in transition metal particles (∼ 1meV) is much larger than

the magnetic anisotropy energy (per spin, ∼ 0.01meV),10,11,14 the model does not apply to

realistic transition metal ferromagnetic particles. In this work, we extend the model from
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Ref. 13 to include the spin-orbit shifts of discrete levels, and find that the extended model

explains our results well. We find that the necessary condition for magnetic hysteresis is

that ǫso increases in response to magnetization movement from the easy axis, due to an

effective magnetization blockade. If the condition is satisfied, the voltage scale governed by

ǫso determines the bias voltage range where hysteresis can be detected. If ǫso decreases in

response to magnetization displacement from the easy axis, then magnetic hysteresis will be

unstable with respect to sequential electron tunneling.

The outline of this article is as follows. In section II, we describe the measurements of

magnetization dynamics as a function of temperature and bias voltage, and the differential

conductance spectra characteristics. In section III, we introduce the basic theory and nu-

merical models to explain the main effects observed in section II. In section IV, we describe

the detailed theory behind our observation of an effective magnetization blockade induced

by voltage control of hysteresis. Finally, in section V, we summarize our main results and

point to future research areas.

II. EXPERIMENTAL METHODS

As shown in Fig. 1-A and 1-B, our samples consist of one or few Ni particles immersed

between two Al leads in a high-resistance aluminum-oxide double tunnel junction. The

sample fabrication process has been described in our earlier work12, and additional details

are given in appendix A. Fig. 1-B shows the image of Ni particles created by the fabrication

process. The I(V ) curve of a Ni sample at T = 0.06K and an applied magnetic field of

B = 0.5T is displayed Fig. 1-C. The sample exhibits clear Coulomb blockade, which is the

low voltage region where the current is negligibly weak.

To determine if the particle has magnetic hysteresis, a magnetic field is applied parallel to

the film plane. The bias voltage and temperature are held fixed, and the current is observed

while sweeping the magnetic field slowly, at low temperatures.

We study the effects of magnetization dynamics in the Ni particle by measuring the fol-

lowing quantities: (1) temperature dependence of the magnetic switching field at fixed bias

voltage, (2) bias voltage dependence of the magnetic switching field at fixed temperature,

and (3) tunneling spectra and current noise versus magnetic field. Five Ni particle samples

from the same sample fabrication batch have been studied, and are mounted in the dilution
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FIG. 1. Experimental arrangement of tunneling through single Ni particles. (A) Double barrier

tunneling geometry. (B) Transmission Electron Micrograph of Ni particles on amorphous Al2O3

background. Inset: zoomed figure that displays crystal facet of Ni particle. (C) Current (I) vs.

voltage (V ) curve at B = 0.5T and T = 0.06K.

refrigerator at the same time. Only two of the five samples display magnetic hysteresis

in tunneling current versus magnetic field at low temperature and bias voltage, while the

remaining three samples show no detectable hysteresis at 0.06K temperature, for any bias

voltage. For the presentation in this paper, we select a representative sample that displayed

magnetic hysteresis at low temperatures and bias voltage. The samples displaying no mag-

netic hysteresis will be discussed in a separate publication. The second sample that exhibits

magnetic hysteresis reproduces the key observations from Ni sample 1.

A. Temperature Dependence of the Switching Field

First, we study the hysteresis of the tunneling current vs. magnetic field, as a function

of temperature at fixed bias voltage.

Figs. 2-A and 2-B display hysteresis loops in current versus magnetic field, at T = 1.5K

and T = 0.06K, respectively, at a bias of 7.8mV.15 There is pronounced current noise, in
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FIG. 2. Hysteresis loops in current versus magnetic field and temperature dependence of switching

fields. (A),(B) Representative measured hysteresis loops of the Ni sample. Red (Black) curves

corresponds to decreasing (increasing) magnetic field sweep direction. (C) Temperature dependence

of the switching field averaged over 10 sweeps of magnetic field. (D),(E) Simulated hysteresis loops

at different temperatures. (F) Simulated switching field vs. temperature as taken over 50 simulation

runs. Error bar indicate ± standard deviation.

the form of downward spikes in current. After such a spike, current generally returns back

to the value before the spike. The magnetic field locations of the spikes are random and not

reproducible between repeated field sweeps, so the spikes represent noise. In addition to the

noise, however, one can see that the current switches between two different values in the

vicinity of ±0.12T at T = 1.5K and ±0.16T at T = 0.06K in Fig. 2-A and 2-B, respectively.

Those switches are reproducible between different sweeps, with the standard deviation of

the switching field shown by the error bars in Fig. 2-C. Similar to the work in Refs. 10–12,

the switching fields as measured from the current switches will be identified here as the

magnetic switching fields of the Ni particle. Fig. 2-B shows the temperature dependence
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of the switching field at 7.8mV. At each temperature, 10 magnetic hysteresis loops are

measured, to obtain the average switching field. The largest temperature where magnetic

hysteresis is resolved is 2.3K. Above that temperature, there is a loss of magnetoresistance

contrast at the expected switching field. The extrapolated temperature where the switching

field goes to zero (similar to the blocking temperature TB) is ∼ 4 − 5K. In comparison,

in previously studied similarly sized Co particles, which had magnetic hysteresis at 4.2K,

the extrapolated temperature for the suppression of magnetic hysteresis was ≈ 12K.12 The

blocking temperature in our Ni nanoparticle is comparable to that of a magnetic molecule

Mn-1216. Figs. 2-D,2-E, and 2-F display numerical simulations that will be discussed in

the theory section of the paper. In that section, we will estimate the size of the particle

and find a diameter ≈2-3nm. We note that the measured switching field versus decreasing

temperature saturates at ∼ 1K.

B. Hysteresis dependence on voltage bias

Next, we discuss our measurements of the current versus magnetic field at T = 0.06K,

as a function of the bias voltage applied across the particle, and discuss the main result of

the paper. Fig. 3-A displays the experimental data in the form of single sweeps of current

vs. a decreasing magnetic field, for different bias voltage values. Fig. 3-B contains line

profiles taken from individual constant-bias sections of Fig. 3-A. The line profiles are offset

by 0.08pA for clarity. One notable feature in Fig. 3-A and 3-B is the symmetric positive

peak in current versus field, of width ∼ 30mT centered at 0T. the peak is an artifact arising

from the field reversal in the superconducting magnet. The artifact disappears when the

sweep rate is sufficiently but impractically reduced, and thus will not be discussed further.

The magnetic switching fields are marked by arrows in Fig. 3-A and 3-B. Our main

result is that the magnetic switching field is weakly dependent on voltage in the interval

6.5 − 9mV, and drops rapidly between 9 and 10mV, while above 10mV, there is a loss of

magnetoresistance contrast at the anticipated switching field. At low voltages, below the

onset of tunneling current, there is also a loss of magnetoresistance contrast at the switch-

ing field because the current is too small to be resolved. The tunneling current increases

relatively quickly in the voltage interval 6.5 − 9mV, where the switching field is constant

(that is, ∆I1 ≈ 0.4pA over this bias range). However, the current is only weakly chang-
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FIG. 3. Colorscale plots of dependence of hysteresis on the applied bias voltage. In all cases,

magnetic field is only swept from right to left. Black arrows correspond to magnetic switching

events. (A) Experimental data of hysteresis in current as a function of magnetic bias voltage V . (B)

Data slices at constant voltage values of 7.1,7.3,7.7,9.3,9.7,9.9, and 10.7 mV, taken from colorplot

in (A). Each slice is offset vertically by 0.08pA for visual clarity. (C) Simulation of hysteresis of

particle current as a function of V . (D) Simulation of hysteresis of particle magnetization projection

on z-axis as a function of V .

ing over the narrow voltage regime where the magnetic switching field is reduced (that is,

∆I2 ≈ 0.05pA). So, it can be concluded that the magnetic hysteresis suppression is bias-

voltage driven, rather than proportional to the tunneling current as in our previous work12.

In the power range (0, 3.6)fW the switching field is nearly constant, while it takes only an

additional 0.5fW to suppress the switching field above 9mV. This shows that the effect is

not due to simple heating, which would be proportional to the power. Further evidence that

heating is not responsible for the suppression of magnetic hysteresis is supplied by the width

of the spectral levels in high field, and will be discussed in the next section. Additional data
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on bias voltage dependence of magnetic switching field, over a wider voltage range than

here, are provided in appendix C.

C. Tunneling Spectra

In a voltage biased quantum dot, the differential conductance (dI/dV ) versus bias voltage

at low temperature is known as the tunneling spectra, due to the fact that the differential

conductance peaks map to quantum levels of the particle. At voltages corresponding to such

peaks, the Fermi level in one of the leads is equal to the energy difference between the final

and the initial quantum state of the particle, after and before a single electron tunneling

event, respectively. In our Ni particles, while magnetic field sweeps at fixed voltage bias

display both current noise in the form of spikes, and reproducible magnetic switching at

low voltage, as already discussed, the tunneling spectra for a given sample possess a higher

complexity. In the measurement of the tunneling spectra vs magnetic field, the magnetic

field sweeps slowly while the bias voltage sweeps more quickly.17 The current noise leads to

strong noise in differential conductance, making identification of the magnetic switching field

in the tunneling spectra difficult. A further complication is that the spectra may not display

hysteresis as a function of magnetic field; that is, the presence of hysteresis vs. magnetic

field in a given conductance spectra is dependent on the voltage range where the spectra is

measured.

Fig. 5A displays the tunneling spectra of Ni sample 1 in a voltage interval 4 − 12 mV

and a magnetic field interval of ±11.5T. The noise in differential conductance is manifested

as apparent speckle noise over the large voltage bandwidth in the low magnetic field region.

However, in the higher field regime, the noise is reduced as the spectral width of the lowest

level sharpens into two linear functions of field. This is shown in Fig. 5-B and 5-C, which

show data slices of Ni sample 1 at B = 0.17T and B = 11.3T, respectively, taken from Fig.

5-A. In Fig. 5-B, over wide voltage bandwidth, the differential conductance exhibits noise

and rapidly oscillating values, while in Fig. 5-C, the noise is much less pronounced. Rather,

the spectra have collapsed into a smaller voltage range.

The full width-half maximum (FWHM) of the lowest conductance peak can be obtained

by fitting the conductance peak to a Gaussian function, which is indicated by full line in

Fig. 5C. The fit leads to a FWHM of 220µeV. The FWHM can be related to the electron
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temperature Te in the leads as kBTe < FWHM/3.5(1 + c1/c2) = FWHM/7.7, leading

to electron temperature of approximately 0.3K. Here, c1/c2 ≈ 1.2 is the capacitance ratio

obtained from the ratio of the current onset voltage at positive and negative bias, and 3.5

is from the FWHM of the derivative of the Fermi function. Since the electron temperature

is much smaller than the temperature below which the switching field saturates (see Fig.

2), it confirms that sample heating cannot be responsible for the bias voltage dependence of

the switching field.

Fig. 5-D,E,F display the numerically simulated spectra, showing qualitative agreement

with the magnetic field dependence of the observed conductance speckle noise and band-

width. This will be further discussed in the theory section of the paper.

III. MODELING USING MASTER EQUATIONS

We model the physics of electron transport through Ni particles using two magnetic

Hamiltonians, and assume that the particle is in the sequential electron tunneling regime,

wherein the electron number on the particle alternates between N and N + 1. The particle

magnetic Hamiltonian therefore alternates between H0 and H1, where H0 = −KS2
z/S0 +

2µBBSz and H1 = H0 + ǫ [cos θSESz + sin θSESx]
2 /S2

0 + ǫzS
2
z/S

2
0 + E0. where B is the

magnetic field. S0 is the ground state spin of the N-electron particle, in units of h̄. For the

sake of notational simplification, we have not written explicitly that S0 changes by 1/2 upon

the electron tunneling event18. The extra terms in H1 correspond to the anisotropy added

by a single electron. To motivate this form of the single electron anisotropy, we note that

the discrete electron-box levels in a transition metal ferromagnetic particle are anisotropic

with respect to the direction of the total magnetization, and they fluctuate on the order

of ǫso = h̄/τso ≈ 1meV due to the so-interaction.14,19 Here τso is the so-flip time and is

estimated to be 0.58 ps for Ni particles of this size.14 Therefore, upon the addition of a

tunneling electron onto a discrete level of the particle, an anisotropy energy shift ǫso (which

is played by the role of ǫ and ǫz) will be added to the particle Hamiltonian. Such so-shifts

in a ferromagnetic nanoparticle were first studied experimentally by Deshmukh et al.11 We

explored a parameter space of 24 different H1 operators by varying θSE , ǫ, and ǫz. In each

case, we obtain the eigenenergies for the N+1 and the N electron particle EN+1,α and EN,Sz
,

for the eigenstates |N +1, α〉 and |N, Sz〉, respectively. We also add a constant energy term
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FIG. 4. Differential conductance spectra (dI/dV vs. V ). (A)Experimental data of differential

conductance spectra. The gray-scale range is between -0.1 nS (dark) and 0.8 nS (light). (B)

and (C) display display the line profiles in conductance taken from B = 0.17T and B = 11.3T,

respectively. The offset smaller curve in (C) is a local Gaussian fit to the level. (D) Simulations of

the differential conductance spectra given by the main Hamiltonian considered in this paper. (E)

and (F) display simulated dI/d(V ) curves at zero and 3.5 Tesla, respectively, taken from the gray

scale in (C).

E0 = 2.5meV to the N + 1 electron particle Hamiltonian, which accounts for the charging

and the orbital energy contributions in a tunneling transition. We convert from energy to

voltage using capacitive division between source and drain lead of 1 : 1.
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In this article, we consider a particular realization ofH1, where S0 = 100, K = 10µeV, ǫ =

200µeV, ǫz = −200µeV, and θSE = π/6, which qualitatively agrees with our measurement.

Using such parameters, we simulate the time evolution of both the tunneling current through

the particle, and the total magnetization of the particle, as a function of magnetic field and

bias voltage. As we will show later, S0 ∼ 200 − 300 for our experimental particle, and

ǫso ∼ 1meV. The reason for using spin S0 = 100 in our computations is to make the

simulations feasible in a reasonable time frame. Consequently, we reduced the effective ǫso

in the simulation to maintain a comparable ratio of the total anisotropy (which scales with

S0), and ǫso.

When modeling the effects of electron transport on the eigenstates of the particle, a

common approach uses a master equation to calculate the evolution of the ensemble prob-

ability distribution, among all eigenstates of the particle, until temporal convergence is

achieved13,20. We will discuss such a calculation later (See appendix B for more details on

the implementation process). Another, complementary method that yields simulation data

with a more direct mapping to our experimental data is to calculate the magnetization and

tunneling current as a function of time, assuming that the particle at each time step is in one

of its eigenstates. We then calculate transition probabilities and generate a random event

each time step based upon these transition probabilities in order to determine if the particle

transitions to a different eigenstate for the next time step. Even with this relatively simple

model, we are able to reproduce a significant number of characteristics of the experimental

data, including the apparent noise in the measured current. We have confirmed that the

statistical distribution histogram among different quantum states in time is the same as the

ensemble distribution obtained from the solutions of the total master equation.

A. Modeling Temperature Dependence of Switching Field

As in the experiment, simulations are carried out at a fixed bias voltage. The voltage

in the source lead is fixed at 4.9mV, which corresponds to the energy of tunneling current

onset at the edge of the Coulomb blockade at zero applied magnetic field and the particle

in the spin-ground state. The Fermi function value of 0 is assumed in the drain lead. The

magnetic switching field Bsw(T ) as a function of temperature is determined from the switches

(that is, largest discontinuity) as observed in both current and magnetization. The effect
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of changing the particle temperature is taken into account in the simulations only through

the shape of the Fermi level in the source lead. That is, the particle receives indirect

temperature equilibration with the environment through the transport of electrons, rather

than explicitly linking the particle to a thermal bath. Fig. 2-D and 2-E display simulated

hysteresis in current for two representative values T = 0.7K and T = 0.06K, and Fig. 2-F

shows the average simulated switching fields vs. temperature, with the error bar indicating

± standard deviation. The noise in the current hysteresis loop increases in magnitude as

the field approaches the switching value. The results are in good qualitative agreement with

our experimental data.

The blocking temperature in the simulation is ≈ 2K, approximately two times smaller

than that estimated from measurements, while the magnetic switching fields near zero tem-

perature are comparable between measurement and simulation. Since the blocking temper-

ature generally scales with the size of the particle,1,2 we can conclude that the measured

particle is two times larger in volume than the simulated particle, or S0 = 200− 300, which

corresponds to the particle diameter in the range 2-3nm, in agreement with the transmission

electron micrograph in Fig. 1.

B. Modeling Bias Voltage Dependence of Switching Field

The simulated negatively-swept hysteresis curves in the colorplots of Fig. 3-C and 3-

D were calculated using the same scheme as in the temperature dependent scans, but we

varied the bias voltage for each sweep and held the temperature fixed at T = 75mK. In

the simulations, we can also observe the particle magnetization directly. In Fig. 3-D, the

magnetic switch is indicated by the sudden shift from red to blue, and is well-defined and

slowly varying over a large voltage range. Once the bias reaches 5.16mV, the magnetic

switch becomes unstable and the switching field value decreases quickly. For bias values

above 5.18mV, the magnetization switches at random fields. In Fig. 3-C, the simulated

tunneling current, rather than the magnetization, is displayed.

The simulation data in Fig. 5 consists of individual line profiles from the colorplots of

Fig. 3-C and 3-D, plus data from the other field sweep direction. At the lower bias values

in 5-A,B, the switches in current and magnetization occur at clear, reproducible values.

The magnetization vs. field begins to exhibit small-amplitude noise as the field approaches
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the switching field, but the amplitude of noise in the current relative to average is much

higher than the corresponding relative noise in the magnetization. However, in Fig. 5-C, the

current has already reached its saturated value for the higher bias voltage value, and thus the

magnetization in Fig. 5-D exhibits no hysteresis, but rather, random switching events. When

current becomes saturated at the highest bias values, fluctuations in current diminish, but

the switches are no longer resolvable. It is precisely this high bias voltage region of current

saturation where the switching of the magnetization exhibits the most noise. This is in good

agreement with our experimental data in Fig. 3-A, where the switching field varies little

over a large current range, but quickly falls of when the voltage is raised further, while the

current noise is suppressed above that voltage.
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C. Modeling Energy Spectra and Noise

The numerical simulations of the tunneling spectrum versus magnetic field are displayed

by the gray scale image in Fig. 4-D. As with our measured spectra, there is significant noise

in the conductance at low field in the simulation, which appears as speckle noise at low

field values of the differential conductance spectra. Fig. 4-E and 4-F show data slices taken

from the simulation data at B = 0T and B = 3.5T, respectively. In Fig. 4-F, the noise in

conductance is reduced, and there is only a single smooth peak. This directly reproduces

the qualitative structure observed in the experimental data and provides very good visual

agreement; that is, there is clear noise in the spectra in the low field regions, but the noise

is diminished in the high field regions. The reason for the difference in magnetic field scale

between Fig. 4-A and Fig. 4-D in both bias voltage and magnetic field range again lies

with the fact that our simulations used smaller spin (and therefore total anisotropy) and

corresponding smaller ǫso than in the experimental case.

IV. UNDERSTANDING VOLTAGE CONTROL OF MAGNETIC HYSTERESIS

As discussed in the previous section, there is a good qualitative agreement between the

observed parameters and master equation simulations. The purpose of this section is to

illuminate the physics of bias voltage control. The model of voltage control of hysteresis can

be understood from the perspective of an effective magnetization blockade, similar to the well

known spin-blockade phenomenon studied previously in semiconducting quantum dots.21–27

In the case of spin blockade, the tunneling current through consecutive quantum dots is

diminished due to the Pauli exclusion principle. In the case of magnetization blockade,

the motion of the magnetization is blocked in the neighborhood of the easy axis, due to

the interplay between Coulomb blockade and the energy cost associated with deflecting the

magnetization at too large an angle away from an easy axis. Consider first the case where

ǫso increases as the magnetization is displaced from the easy axis. If the bias voltage is low

compared with ǫso/e, then the potential energy in the leads cannot supply enough energy for

the particle to transition into the excited magnetization state (that is, an electron cannot

tunnel onto the particle to displace the magnetization beyond a maximum angle determined

by the bias voltage), and thus the magnetization remains localized near the easy axis. Once

14



the bias voltage is raised past ǫso/e, however, the electron can surmount the magnetization

blockade and tunnel into higher particle magnetization states. Next, consider the case where

ǫso decreases as the magnetization is displaced from the easy axis. In this situation, there

is no hindrance to electron transport because further displacements of the magnetization

from the easy axis require decreasing amounts of energy. This runaway effect causes the

magnetization to displace arbitrarily far from the easy axis as soon as the tunneling process

has been initiated.

In the remainder of this section, we will explain this phenomenon of magnetization block-

ade in detail. In the simulations that follow, we will assume that the applied magnetic field

is zero. As discussed earlier, the eigenenergies for the N + 1 and the N electron particle

are labeled EN+1,α and EN,Sz
, for the eigenstates |N + 1, α〉 and |N, Sz〉, respectively. The

values α = 0, 1, 2, ... are sorted in order of increasing 〈α|Sz|α〉. In the vicinity of the ener-

getic minimum with negative 〈α|Sz|α〉, α also sorts the excited states of the N + 1 electron

particle, that is, EN+1,α increases versus α for the Hamiltonian that we use.

We found that the tunneling density of states (DOS) is a useful structure to explain

how voltage controls magnetization dynamics. For the aforementioned realization of H0

and H1, Fig. 6 displays the results for the tunneling density of states (DOS) for the N -

electron particle with spin component Sz, where we define DOS(Sz, E) =
∑

α

|〈N, Sz|N +

1, α〉|2δ(EN+1,α−EN,Sz
−E). The δ−functions are broadened by convolving with a Gaussian

of width 1µeV. The darkest regions correspond to zero DOS, while the white corresponds

to the maximum DOS.

We simulate the single-electron-tunneling using a master equation following the procedure

described in Ref. 13, to determine field and bias dependence of the converged probability

distribution PN,Sz
and PN+1,α of quantum states of the particle (see Appendix for more

details). The source Fermi level energy of 2.45meV (or a bias voltage of 4.9mV) corresponds

to the onset of tunneling at the edge of the Coulomb blockade. In this section, we discuss

the bias in terms of energy rather than voltage. As mentioned previously, the conversion

from voltage to energy requires capacitive division, which amounts to a factor of 2 difference

between the two quantities. The Fermi function in the drain lead is set to 0 for the energy

range in Fig. 6.

The white curves in the grayscale image of Fig. 6-A represent energies of various tunneling

transitions between the magnetic states of the N and N+1 electron particle, as a function of
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FIG. 6. Master equation simulations: (A) Tunneling density of states. Red, solid curve with circle

markers corresponds to non-magnetic transitions. Green dashed curve corresponds to calculated

〈Sz〉 (bottom axis) as a function of bias EF (left axis). (B) Zoomed region of the DOS from (A),

displaying a so-shifted level increasing as a function of magnetization-displacement from easy axis.

(C) Current (blue solid line) and 〈Sz〉 vs. bias EF (green dashed line, the same as in (A)).

the initial state of the N electron particle. The distance between the curves along the y-axis

is dictated by the magnon excitation energy (20µeV for this case). The tunneling transitions

in the DOS span an energy range determined by ǫso, which is an order of magnitude larger

than the magnon energy. Fig. 6-B shows zoomed-in DOS in the vicinity of Sz = −S0. Note

the transition indicated by circle markers connected with a line. At Sz = −100, the total

DOS below the circle-marked line is zero. This indicates that, for the N-electron particle

in the ground state, the tunneling transition indicated by the circle-marked line has the

lowest energy, which means that after the transition the particle will be in the N+1-electron

ground state. If initially Sz = −S0+1, there will be only one tunneling transition with energy

below the circle-marked line, which will be the transition from the first excited state of the

N electron particle to the ground state of the N +1 electron particle. In such transition, the

magnetic energy decreases. Overall, the circle-marked line indicates nonmagnetic transitions

|N,−S0+n〉 → |N +1, α〉, where α = n. The curves at energies above (below) the energy of

the nonmagnetic transition, correspond to the magnetically exciting (relaxing) transitions,
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in which α > n (α < n).

In the vicinity of Sz = −S0, the integral of the DOS over magnetically exciting transitions

(i.e. the total weight for the transitions above the circle-marked line) is slightly higher than

the integral over magnetically relaxing transitions. Consequently, if EF in the source lead

is above all tunneling transition energies, there will be a net positive energy inflow from the

lead into the magnetic subsystem. Similarly, we find that the electron outflow to the drain

also produces a net positive energy inflow into the magnetic subsystem. However, if EF in

the source lead is reduced to lie within the energy range spanned by the white curves, then

the Fermi function in the source lead will suppress some magnetically exciting transitions.

The net energy flow into the magnetic subsystem can be negative, which means that the

magnetic relaxation time is finite. A similar effect was studied in Ref. 13. Due to this

relaxation, a steady state value of Sz will follow.

As an example, consider the N electron particle initially in its ground state Sz = −S0,

and apply a bias energy of 2.55meV. Initially, for Sz = −S0, all of the DOS is below EF .

Since the total probability of the magnetically exciting transitions is higher than that for the

magnetically relaxing transitions, Sz will initiate a random walk in response to the applied

bias, leading to Sz increasing linearly with time. A similar magnetization random walk in

the absence of so-interaction was studied previously13. When Sz reaches ≈ −88, as shown

by the yellow cross in Fig. 6-A, then a magnetically exciting transition will turn on in the

DOS above EF , as indicated by the yellow arrow in Fig. 6-A. Since this level is energetically

prohibited due to the height of EF , the magnetic energy inflow diminishes, and 〈Sz〉 will

converge to slightly above Sz = −88. We can conclude that the required condition for the

localization of Sz near the energetic minimum at Sz = −S0, which is also the condition for

magnetic hysteresis, is that the energy of the magnetically exciting transitions increase as

Sz shifts from the ground state value. This verifies our picture of magnetization blockade,

wherein the energy conservation of the tunneling process pins the magnetization within

a small localized region, inducing an effective barrier against magnetization motion. The

simulations produce a striking separation in the bias voltage values where the current onset

occurs and where 〈Sz〉 increases to zero, as shown in Fig. 6-C. The dashed green curve in

Fig. 6 is the converged 〈Sz〉 as a function of bias energy E = EF , while the solid blue curve

in the Fig. 6-C is the converged I(EF ) curve. So, the magnitude of the current alone is

not a sufficient parameter for magnetization control. Rather, it is the bias Fermi energy
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that determines the control of magnetization dynamics. As we varied the parameters to

study different H1 operators, we found many Hamiltonians that would altogether prevent

the possibility of magnetic hysteresis. Those H1 operators lack magnetic levels that increase

in energy as Sz shifts away from −S0. This explains our numerous experimental Ni samples

that showed no observable hysteresis.

V. CONCLUSIONS

In summary, we have presented an experimental realization of a bias voltage control

of magnetic hysteresis in a ferromagnetic particle. Through master equation simulations

and probabilistic eigenstate evolution equations, we have demonstrated the emergence of

an energy scale from the spin-orbit anisotropy contribution from a single electron, which

is able to explain how the range of magnetization motion is controlled by the applied bias,

irrespective of the size of the tunneling current. A necessary condition for the bias voltage

control of the magnetization is that the anisotropy contribution of a single electron increases

in response to a small magnetization displacement from the easy axis. This constraining of

magnetization motion within a localized orientation due to the energy conservation of the

electron tunneling acts as an effective magnetization blockade. The qualitative results of

our simulations agree remarkably well with our experimental data. In terms of spin based

electronics, the next step could be to explore the use of voltage, rather than current, to

control spin-transfer torque in a ferromagnetic particle or molecule, which would require

spin-polarized drain and source leads.

VI. APPENDICES

A. Sample Fabrication

Samples are fabricated by using electron-beam lithography and a shadow evapora-

tion technique. We spin-coat a bilayer of methyl methacrylate/polymethyl methacrylate

(MMA/PMMA) electron-beam resist on a SiO2 substrate. An SEM is used to define the de-

sired sample dimensions and geometries on the substrate. Developing the samples exposes

the areas of substrate exposed to the localized electron beam. Samples are placed on a

rotatable stage in a vacuum chamber, which is pumped down to 10−7 Torr. Layers of metal
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contacts and nanoparticles are evaporated in the vacuum using current-induced Joule heat-

ing of the metals. A crystal monitor is used to track the amount of metal deposited on the

sample. In the first step, conducting planes of Al, 40 nm thick, are deposited, followed by 20

nm of insulating Al2O3 which conformally covers the conducting Al. This forms the capaci-

tive shunt filters which divert extraneous microwave noise away from the sample electrodes.

We spin-coat the samples with MMA/PMMA again and pattern the tunnel junctions. The

tunnel junction consists of an Al electrode (14 nm thick) followed by a layer of insulating

Al2O3 ≈ 1.8 nm thick. Next a nominal thickness of 5-6 Angstroms of ferromagnetic metal

are deposited, which nucleate due to surface tension and form isolated nano-islands with

diameters on the order of 2 − 3 nm. The lattice constant extracted from the structure in

Fig. 1 of the main text confirms faced-centered-cubic Ni. In addition, energy dispersive

X-ray spectra (EDS) demonstrate that the particles are made from Ni. Next, another layer

of Al2O3 ≈ 1.8 nm thick is deposited to form the other half of the double tunnel junction.

Finally, a second conducting contact of Al (14 nm) is deposited. The remaining metal on

the PMMA is washed away during a liftoff process in acetone. Samples are then wired up

and attached to a dipstick to be inserted into the dilution refrigerator. The basic structure

of the tunnel junction samples is as shown in Fig. 7-A, which has the capacitive ground

plane beneath the tunnel junction in order to filter any unwanted high-frequency signals

away from the sample. A zoomed SEM image of an exemplary device junction is displayed

in Fig. 7-B.

Samples are studied in a dilution refrigerator, and the sample leads are additionally cryo-

genically filtered using a high loss transmission line with an exponential cut-off at frequencies

∼ 10MHz. The samples sit in a Faraday cage at temperature ≈ 30mK. An on-chip filter in

the form of a capacitively coupled ground plane lies beneath the sample, with a frequency

cut-off also ∼ 10MHz. Typical junction resistance is ≈ GΩ, and typical current per discrete

levels is quite low, ∼ 0.1pA.
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FIG. 7. (A) Optical microscope image (stitched from multiple images of the same device) of nickel

tunneling device geometry with conducting ground plane beneath. The black scale bar indicates

250 microns. (B) SEM image of typical tunnel junction device. White scale bar indicates 0.5

microns.

B. Master Equation Simulations

The master equation utilized in our present work is adapted from references 20 and 13:

∂Pα

∂t
=

∑

β

∑

l=L,R

∑

σ=up,down

Γlσ

[

|〈β|cµσ|α〉|
2 (fl(Eα −Eβ)Pβ − (1− fl(Eα −Eβ))Pα)

+
∣

∣〈β|c†µσ|α〉
∣

∣

2
(−fl(Eβ − Eα)Pα + (1− fl(Eβ −Eα))Pβ)

]

The above equation determines the evolution of the probability Pα of occupation of a given

particle state |α〉 in time. The spin of the electron is σ, and the tunneling rate Γlσ in general

could be different for the source and drain leads, and could depend on the spin polarization.

The time rate of change of Pα depends on the Fermi level in the source and drain leads (L

and R, respectively). These Fermi functions are evaluated at the energy differences Eα−Eβ

between the states involved in tunneling. Each term in the sum also depends on the overlap
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between states |α〉 and |β〉, upon the addition (c†µσ) or subtraction (cjσ) of an electron, where

c†µσ is the electron creation operator for the µth level, and cµσ is the electron annihilation

operator for the µth level.

While the total spin S0 on the N -electron particles in our experiments is likely ∼ 200,

such calculations become very time consuming and computationally intensive, and since

our goal with the master equation simulations was to derive qualitative results rather than

a quantitative fit to our experimental data, we elected to do simulations with S0 = 100.

Additional parameters for our simulations include tunneling rate Γ = 60Mhz for both leads,

time step ∆t = 1ns, and total integration time t = 25µs. The probability distribution and

magnetic energy are checked for saturated convergence in time.

We studied a Hamiltonian parameter space ofK = 10, ǫ = [−200, 200], ǫz = [−200, 0, 200],

and θSE = [π/6, π/4, π/3, π/2]. All energies are in units of µeV. Due to mesoscopic fluc-

tuations, these adjustable parameters will vary from sample to sample, and our goal was

to merely sample the large possible parameter space. Note, in order to convert from E to

voltage, one needs to add the orbital, the exchange, and the charging energy to E, and

account for the capacitive division of the voltage. We assume there is only one quasiparticle

state µ within the energy range of tunneling, and that the Fermi level in the drain is −∞;

that is, fR = 0.

When determining the I(V ) characteristics, the state is initialized in the ground state of

the N -electron particle. For subsequent bias voltage data points, the initial state probability

distribution is taken as the saturated value from the previous voltage point. In this way,

the progression of current and 〈Sz〉 will occur in the same way as in experiments.

The complementary simulation that we used in the calculation of the hysteresis loops

and spectra involves the same Hamiltonian and evolution equation as used in the master

equation simulations. One key difference, however, is that instead of evolving the proba-

bility distribution of all eigenstates in time simultaneously until temporal convergence, we

initialize the particle in its ground state, and then calculate transition probabilities for each

time step. That is, we integrate the master equation for one time step, and read all the

transition probabilities in that time step. We then generate a random event according to

those probabilities, leading to the new eigenstate for the particle before the next time step.

For small time steps, the most likely event is that the particle will remain in the same state.

We have tested this scheme for a given Hamiltonian and bias voltage, and found that the
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long-time histogram of eigenstate probabilities using this method is identical to the steady

state distribution of states given by the master equation, as expected.
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C. Additional Hysteresis vs. Voltage Data
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FIG. 8. Additional voltage sweep data displaying one-sided current hysteresis loops for Ni sample

1. (A) Colorplot displaying the reproducible effect of hysteresis in a specific voltage range. Blue

(Red) correspond to 0pA (0.65pA). (B) Data slices taken at constant voltage values from the

colorplot in (A). Curves are offset by 0.017pA for visual clarity. Black arrows indicate switching

events. At the lowest and highest biases, switching resolution has been lost.

To emphasize the reproducibility of the importance of voltage bias, rather than current,

on the hysteretic properties of Ni sample 1, we provide in Fig. 8-A an additional colorscale

plot of current hysteresis in a narrow voltage range. Fig. 8 is an average over four voltage

ramps, and the the main effect as observed in the data from Fig. 3 is reproducible. Fig. 9-B

displays individual data slices from the colorplot at the following increasing voltage values:

5.4, 6.2, 6.8, 8.2, 8.4, and 10.3 mV.
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