
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Double-charge model for classical force-field simulations
Christopher Barrett and Lin-Wang Wang

Phys. Rev. B 91, 235407 — Published  8 June 2015
DOI: 10.1103/PhysRevB.91.235407

http://dx.doi.org/10.1103/PhysRevB.91.235407


Double charge model for classical force field simulations 

Christopher Barrett1,2 and Lin-Wang Wang2* 

1Department of Materials Science and Engineering, University of California, Berkeley, California 

94720, USA  

2Material Sciences Division, Lawrence Berkeley National Laboratory, Berkeley, California 94720, 

USA 

*lwwang@lbl.gov 

Date received: October 13th, 2014 

Abstract: In a traditional classical force field model, the atomic point charge that generates the 
electrostatic potential, and the Born charge induced by atomic movement, are represented by the same 
charge parameter.  But their actual values can be very different, and correct values for both of them are 
needed in order to yield the correct atomic structure (electrostatic charge) and phonon spectrum (Born 
charge). This is particularly true for nanostructure calculations. Here, we introduce a Double Charge 
Model (DCM) to reconcile the difference between the electrostatic charge and Born charge. The DCM 
allows us to reproduce the accurate ab initio phonon spectrum not only in bulk systems, but also for 
nanostructures (slabs and nanowires). This enables the use of classical force fields to study phonon 
spectra of large nanostructures, which are important for many phenomena from carrier dynamics to 
thermo conductivities.  

 

PACS: 63.22.-m; 63.20.D-; 62.23.Hj;  

 

There are two common approaches to simulate material properties at the atomic level.  One is the ab 
initio quantum mechanical method (e.g., density functional theory (DFT) [1], or quantum chemistry [2]), 
the other is the classical force field model (e.g., bond-potential models for covalent systems [3], or 
embedded atom models for metallic systems [4]). Although ab initio methods have advanced and 
popularized in recent years, many problems still are better studied by force field methods, e.g., large 
biological or organic systems, nanosystems, and molecular dynamics simulations.  The achievements of 
combining classical force field and quantum chemistry methods have been exemplified recently by the 
awarding of the Nobel Prize to three of its pioneers in 2013. Force field development is still an active 
research field. One example is the reactive force field development, which incorporates the bond 
breaking and forming during chemical reactions [5]. Another is the charge model, which often 
determines the accuracy of the potential, and is the focus of this study.  In a force field [3], the atom-
atom interaction is divided into two parts: the chemical bonding part, and the non-bonding part, which 



includes the van der Waals interactions and electric charge interactions. Beyond the point-charge 
model, the current development of charge models focuses mostly on the point charge dipole, and the 
related point charge polarizability on each atom [6]. However, there is another problem that has been 
overlooked. That is, the Born effective charge (BEC) tensor [7], which describes how the electric dipole 
changes when a nucleus moves, can have amplitudes much larger than the point charge obtained by 
fitting the molecular electrostatic potential [8]. This is a serious problem for nanostructure simulations. 
To predict correct atomic structures, the correct electrostatic charge is needed, and to predict the 
correct phonon spectra, which is the concern of this study, the correct BEC is needed (e.g., to get the 
correct longitudinal optical (LO) and transverse optical (TO) phonon splitting in a bulk [9]). 
Unfortunately, in a simple atomic point-charge model, these two are the same, both equal to the atomic 
point charge, and this cannot be resolved by any polarization model mentioned above. In this work, we 
introduce a new point charge model to any classical force field, which reconciles the BEC with the 
electrostatic charge. We call this the Double Charge Model (DCM) since it assigns two charges on each 
atom. We apply this model to nanostructure simulations. The goal of the force field is not just to relax 
the atomic positions of large nanostructures, but to calculate their phonon spectra. Although there are 
many previous calculations of quantum dot phonon modes [10, 11, 12], they all involve crude treatment 
of the surface passivation, thus their surface-related phonon modes are not reliable. The development 
of the DCM allows us to elevate such calculations to a new level where the ab initio surface phonon 
modes can also be accurately reproduced. Accurate calculation of nanosystem phonon spectra is 
important for many studies, e.g., to calculate their thermo conductivity, or to study hot carrier 
relaxation through electron-phonon coupling. Since these systems are often beyond direct ab initio 
calculations, we expect the DCM can be used for such studies in the future.  

         While there are many force field models for organic systems [13-18], here we will focus on the 
Valence Force Field (VFF) model originally developed by Keating [19] for solid state calculations. The 
general VFF model can be written as:  
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where  refers to an atom,  and  refer to nearest neighbors of ,  refers to a nearest neighbor of ,  

is the position of atom , ,   refers to the ideal bond length of atom pair - , θ ,  refers 

to the ideal angle - - , and , , , , and  are parameters  to be fitted.  The five terms in Eq.(1) are 
bond harmonic, angle harmonic, bond-angle, bond-bond, and angle-angle interaction terms. Contrasted 
with force fields for organic systems [13-18], this force field doesn’t have terms like torsion angle 
rotations. VFF models of this form have been used to model the bulk diamond phonon spectrum [20], 
phonon spectra of bulk Si and Ge [21, 22], as well as silicon nanowires by Paul et al. [23]. These, 
however, are all single-element systems with no need to introduce atomic charges.  



         For other systems, e.g., III-V or II-VI semiconductor compounds, it is necessary to introduce atomic 
charges. The simplest charge model is to assign one fixed point charge on each atom. Thus, the long-
range electrostatic energy will be described as ∑ ⁄ , where  is the high-frequency dielectric constant.  For CdSe, which will 

be studied in this work, we use =5.8, as given by Gorska et al. [24].  We will note that bulk phonon 
spectra calculated must additionally account for a “nonanalytic term” in the dynamical matrix [25], 
which results from a long-range Coulomb interaction of phonon modes that cannot be represented in 
the finite chosen cell. This nonanalytic term computationally gives rise to the LO-TO splitting at the 
gamma point and essential singularities in non-isotropic structures, including wurtzite.  If Ecc is simply 
added to Eb in Eq.(1),  it will exert a compressive stress and the minimum energy structure will no longer 
be at the ideal bond lengths d0 and bond angles θ0. That would be a major drawback for such models 
since the parameters (d0, θ0) would need to be fitted along with the coefficients in Eq.(1). To overcome 
this, Martin [26] has introduced a linear term to counterbalance the Ecc stress: ∑ ∑ , where the summation can run through the nearest neighbor list 

(e.g., for zinc blend (ZB)), or both first- and second-nearest neighbor lists (e.g., for wurzite (WZ)). By 
properly adjusting η, for bulk systems, it is possible to maintain the ideal d0, θ0 values.  

       With the above  formalism, Martin [26] generated relatively accurate phonon spectra for 
bulk ZB structures. We have tested this for ZB CdSe, setting q to be the CdSe Born charge of 2.2 (using 
the trace average of the BEC tensor) as calculated by Dal Corso et al. [27]. The density functional theory 
(DFT) calculated phonon spectrum and the force field counterpart are shown in Fig.1(a) and (b), 
respectively. In the DFT calculation, the generalize gradient approximation (GGA) of the PBE [28] density 
functional is used, and the projector augmented-wave method is used as implemented by the VASP 
code [29].  The DFT result in Fig.1(a) is in good agreement with previously published DFT results [27].  
The same can be calculated for bulk CdSe WZ, as shown in Fig.2(a) and (b).  While the comparisons 
between Fig.1(a) and (b), and Fig.2(a) and (b), are very good, this force field model fails dramatically for 
nanostructures. To demonstrate this, we studied CdSe WZ (10-10) surfaces (as shown in Fig.2), with the 
atomic positions {R0} first calculated using DFT. Using the above force field, ,  the 
surface becomes unstable: the atomic positions collapse to a dramatically new and unphysical structure 
(see Fig.3) due to the imbalance of the linear term El caused by the surface truncation. The more 
fundamental reason for this instability is the overly large Coulomb force from Ecc and the unphysical 
linear term El.   

      In molecular systems, one way to get the electrostatic atomic point charge is to fit the electrostatic 
potential at the periphery of a molecule [8]. Fig.4 shows the electrostatic potential profiles on a plane 
3.6 Å away from the CdSe WZ (10-10) surface, calculated from DFT and the point-charge model using 
q=2.2. We see that the variation of the force field potential is about 5 times that of the DFT potential. 
Similar conclusions can be drawn based on the comparison on a vertical plane. This implies the BEC is 5 
times larger than the electrostatic atomic charge, yielding a 25-fold overestimation of the electrostatic 
Coulomb forces on the atoms.  This causes the collapse of the surface atomic structure when the 
electrostatic force is not counter-balanced by the artificial linear term El. Note, the plane 3.6 Å away 
from the surface atoms is used instead of a plane closer to the surface, or a plane cutting through the 



atoms. This is to avoid the DFT electron charge density and its local Coulomb potential; those local 
effects are described by the bonding terms Eb in Eq.(1), instead of the point charge terms of Ecc.  

To solve the above problem of over estimation of the electrostatic potentials, we introduce the 
Double Charge Model (DCM), which simultaneously provides the correct BEC and electrostatic potential 
charge. As illustrated in Fig.5, in this model, there are two point charges associated with one atom: One 
is q at atomic position R, another is q’ with its position at R’, which in turn is determined by the positions 

of the nearest neighbor atoms Rn of atom R. More specifically, nn nRCR ∑=' , 1=∑n nC , and at the 

minimum energy structure {R0}, R’=R (this uniquely determines Cn for an atom with 4 nearest neighbors).  
For example, for bulk ZB, Cn=1/4. For bulk CdSe WZ, the Cn differ slightly from 1/4 in order to have R’=R 
due to its deviation from the ideal WZ structure position.  The same formula can be applied to surface 
atoms, which have only three nearest neighbors, if we treat the average position of all second-nearest 
neighbor atoms as an additional pseudo-nearest neighbor atom.  This formula can be further extended 
to atoms with less than three bonds if the second nearest neighbor atoms are again used to determine 
the position of R’, this time to define multiple pseudo-nearest neighbor atoms.  Obviously this formula 
can be trivially extended to systems where atoms have five or more nearest neighbors, with the help of 
symmetry to determine Cn.  Thus, besides surface atoms, in principle, this formula can also be used to 
describe defects in the system. However, since our charge model is based on the VFF model, we do need 
to assume a bonding topology for a given system.  Under this model, at the structure {R0}, the 
electrostatic potential charge for a given atom is q+q’, while the BEC is q-q’ for the bulk systems, hence 
we have successfully distinguished these two charges (here we assume q(Cd)=-q(Se), q’(Cd)=-q’(Se)). To 
see that this is true for the BEC, note that displacing one atom not only changes the position of its q 
(while the position of its q’ remains fixed), it will also displace the qn’ positions Rn’ of its nearest neighbor 
atoms Rn as illustrated in Fig.5. As a result, the total BEC is q+qn’=q-q’. The energy in the DCM includes 
Coulomb interactions for all q-q, q-q’ and q’-q’ pairs, except q-q’ from the same atom. We use q and q’ 
of a given atom to represent the electron plus the nucleus charge cloud for that given atom. Thus, we 
will not have a Coulomb interaction between q and q’ for a given atom. We can regard such interaction 
as self-interaction, and the related local Coulomb effects should have already been included in the 
bonding term of Eq.(1).   Thus we now have: ∑ 2                           Eq.(2) 

For periodic systems, this can be calculated via Ewald summation [30].  

In our case, since the electrostatic potential charge is much smaller than the BEC, we can use 
the approximation q’=-q to simplify the model, hence there will be zero electric potential at the relaxed 
ground state atomic configuration {R0}. Then for bulk CdSe, we have 2q=2.2, the BEC.  This has the 
additional benefit that the structure {R0} of the force field model will have the bond lengths and angels 
described by the parameters d0

ij and θ0
ijk in Eq.(1) without the linear balancing term.  This is extremely 

useful in force field parameter fitting because the ground-state atomic positions, d0
ij, and θ0

ijk can be 
read from ab initio calculations.  With EDCM replacing Ecc+El, the parameters in Eq.(1) are refitted, and the 
resulting phonon spectra are shown in Fig.1(c) and Fig.2(c).  Note that EDCM at {R0} does not exert force 



under the approximation q’=-q because there is no net charge. More specifically, the electrostatic force 

given by Eq.(2) can be defined as: ijRj
j

DCMRiDCMiDCM dRdRREREdRdE
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first term is the electrostatic force on charge qi due to all other atoms qk and q’k, while the second term 
is the electrostatic charge on q’j, where j is the nearest neighbor of i. Since the charge qk+q’k=0 for all the 
atoms, and at R0, Rk=R’k, there is no net charge at any atom, then both term equals zero. Although the 
atomic force contribution of EDCM is zero, it still contributes significantly to the Hessian matrix (since net 
charge appears after atomic displacement), and hence to the phonon spectrum.  As we can see, the 
phonon spectrum quality is similar to the original Ecc+El results.  

The biggest advantage of this model comes in its application to surfaces and nanostructures, 
which are most in need of efficient force-field calculations.  We studied the WZ CdSe (10-10) surface, 
which is self-passivated and has a well-known reconstruction [31], with its relaxed atomic positions 
calculated by ab initio methods, shown in Fig.6(a). Our VFF+DCM procedure then takes the ab initio 
calculated atomic structures and refits the surface-related force parameters.  The resulting phonon 
spectrum for a WZ slab is shown in Fig.6(c), together with the DFT result in Fig.6(b). The phonon modes 
with 51% of their amplitudes in the outer-most two Cd and Se layers are shown as red lines. As can be 
seen, not only do we get relatively accurate bulk phonon modes, we also get quantitatively correct 
surface phonon modes. The major difference comes at low frequency, e.g., below 50 cm-1. The 
VFF+DCM model yields some acoustic modes with energy lower than that of the DFT result. This 
difference is mostly due to the bonding term Eb of the bulk VFF model, instead of the charge interaction 
term.  It is a common deficiency of such VFF models to not fit the bulk soft acoustic bands very well, e.g., 
to produce transverse-acoustic bands along the Γ-K direction too high in energy for the zinc-blende 
system (Fig.1(b) and Fig.1(c)) while producing too-low band energies around the M point in the wurtzite 
system (Fig.2(b) and Fig.2(c)).  To further evaluate the difference between the DFT and VFF+DCM 
phonon mode vectors, we have calculated their correlation function as
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phonon mode indices, νk is the eigenvector of phonon k, and ω(k) is the frequency of phonon k. f(ω1,ω2) 
is plotted in Fig.6(d) with a small broadening for the two delta functions. If DFT and VFF+DCM phonon 
mode vectors and frequencies are exactly the same, all peaks of f(ω1,ω2) would fall on the ω1=ω2 line. As 
can be seen in Fig.6(d), they fall close to the ω1=ω2 line, indicating good agreement.   Note that the 
charge is important in getting such a good agreement. If we set the BEC to zero, repeat the fitting 
process, and use the refitted parameters to generate the ZB bulk phonon spectrum, we get a rather 
different optical phonon spectrum as shown in Fig.7, qualitatively different from the DFT result.   

In the above application of the DCM to surfaces, there is an issue that has been ignored so far, 
and that is the validity of using the bulk BEC and dielectric constant values at the surfaces.  Ideally, the 
ab initio Born charge for atoms at the surface and surface-corrected dielectric constants should be used. 
In practice, we found that the Born charge tensor for a surface atoms can be highly asymmetric, and can 
hardly be described by a single scalar charge. The surface-corrected dielectric constant, which should 
depend on the specific Coulomb interaction atomic pair, can also be extremely complicated. Thus, 
instead of introducing such overly complicated models, and to keep the spirit of simplicity of the model, 



we have used the bulk BEC and dielectric constant values to the surface atoms.  Such approximation can 
be further justified by the two facts: (1) any local effect due to the change of BEC and dielectric constant 
should be absorbed by the refitting of the surface bonding term parameters of Eq.(1); (2) the main 
purpose of the charge model is to fix the long-range behavior of the electrostatic potential, to the one 
embodied in the bulk nonanalytic expression for the LO-TO splitting. Such long range terms come mostly 
from the bulk electric charge, which has been captured correctly by our model. In the end, the adequacy 
of the approximation is confirmed by the relative good comparison of the slab DFT phonon modes and 
VFF+DCM phonon modes as shown in Fig.6.  

Obtaining an accurate nanostructure phonon spectrum from a force field is non-trivial, 
especially if both accurate surface atomic positions and phonon spectra are needed.  As mentioned 
above, Paul et al. [23] have used force fields to calculate the phonon spectra of Si nanowire. But Si is a 
system where atomic charge is not needed. Fu et al. [10] and Ren et al. [11, 12] have used force fields 
with point-charge Coulomb interactions to calculate the phonon modes of III-V quantum dots. However, 
in their treatments, the surface bonds are cut abruptly and surface atoms are not fully relaxed, so the 
exact features of the surface phonon modes are not described accurately. Kelley [32] has used the 
Lennard-Jones pair potential fit by Rabani [33] to calculate the phonon spectrum of CdSe quantum dots. 
While this pair potential produces the correct CdSe bulk crystal structure, there is no guarantee its 
phonon spectrum is accurate even for the bulk. Lin et al. [35] have conducted a comparison between the 
Rabani force field (including Lennard-Jones and Coulombic terms) to the Tersoff force field (including 
two- and three-body terms but no charge model at all) for CdSe structures.  They conclude that both 
models produce similar-quality results for the bulk, although they sometimes produce opposite results 
relative to experiment (for example, the LO/TO frequency ratio), while the Tersoff potential is preferable 
for nanocrystals. The Rabani force field [33] can produce unphysically drastic atomic rearrangement at 
the surface.  Along this line, Han and Bester [34] have introduced three-body terms on top of the pair 
potentials to fit the bulk phonon spectra. But even in that case, there is no guarantee that surface 
atomic positions and surface phonon modes are accurate. In contrast with all of these models, the 
VFF+DCM has the advantage that it can take the ab initio calculated atomic positions to determine the 

 and θ ,  in Eq.(1), thus only the force constants need to be fit with no need for subsequent 

relaxation. The drawback, however, is that we can only study well-understood surfaces. Nevertheless, so 
far, we are not aware of other works where ab initio surface phonon modes have been accurately 
reproduced by a force field model. Furthermore, recent advances enable us to accurately know more 
about the atomic structures of surface passivations for many nanostructures [36].  Note that, in the 
fitting procedure, ab initio calculations need to be used to determine the atomic structures of some 
prototype surfaces. But in actual applications of the VFF+DCM to nanostructures, there is no need to use 
ab initio calculations. The atomic positions of such nanostructures may be obtained through the 
VFF+DCM, by minimizing the structures’ total energies when necessary.  

     The true purpose of developing the VFF+DCM is for large nanostructure calculations that are too 
expensive using ab initio methods.  Figure 8 shows the phonon spectrum of a nanowire, 26 Å in 
diameter, with model parameters taken from the slab fitting.  While its unit cell only has 108-atoms, to 
yield the dynamical matrix an 864-atom system is used, corresponding to 8 unit cells in its z direction.  



Figure 8 reveals some interesting features. The produced phonon spectrum has no imaginary 
frequencies, indicating the nanowire structure constructed from slab surface atomic positions is stable 
under the VFF+DCM model. The highest frequency mode is a surface mode, similar to the top mode 
found in the slab (Fig.6(c)). This mode corresponds to adjacent surface cadmium and selenium atoms 
moving in opposite directions in the plane perpendicular to the axis of the wire. This mode is animated 
in the supplemental materials.  Besides this and similar modes, the surface modes have a relatively small 
contribution to the optical mode spectrum of the wire. On the other hand, there is a large surface 
contribution to the lower branch of the acoustic phonon modes. Furthermore, there is one single 
surface dominated phonon mode whose frequency approaches zero at the Γ point. At the gamma point, 
this mode corresponds to rotation of the nanowire about its axis. Strictly speaking, this is not a surface 
mode, although it does have the largest amplitudes at the surface. Similar unique far-infrared modes for 
nanostructures have been observed experimentally for CdSe quantum dots [37]. Such modes can be 
described using macroscopic continuous elastic models [37]. The phonon modes shown in Fig.8, coupled 
with its electronic structure calculation, e.g. by charge patching method [38], could be used to study 
nanostructure carrier transport and carrier cooling in the future.  

          In conclusion, we have introduced a Double Charge Model to describe the Coulomb interaction 
within a classical force field model. Such a model can be used to provide the correct charge values for 
electrostatic potentials and the Born effective charges.  While the electrostatic potential is important for 
atomic relaxation, the Born effective charge is important for the phonon modes. The implementation of 
the DCM provided both a stable atomic structure and a good phonon spectrum for the surface 
compared to the DFT results, which were not both attainable using traditional charge models.  For the 
first time, accurate phonon spectra of large nanostructures are available. The calculation of such phonon 
spectra will not only enable the study electron-phonon interactions, but also allow one to study phonon 
dynamics and heat transportation in such systems.   Finally, the DCM should also be applicable to 
general classical force field models, e.g. the ones used for organic and biological systems.  
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Figures  

  
FIG. 1.  Phonon dispersion relations in high-symmetry directions, with accompanying density of states 
plots, for bulk zinc-blende CdSe.  (a) VASP GGA DFT.  (b) VFF using BECs as atomic charges with linear 
terms.  (c) VFF+DCM. 

 

 
FIG. 2.  Phonon dispersion relations in high-symmetry directions, with accompanying density of states 
plots, for bulk wurtzite CdSe.  (a) VASP GGA DFT.  (b) VFF using BECs as atomic charges with linear terms.  
(c) VFF+DCM. 

 
FIG. 3. The quasistable atomic structure of the WZ slab with (10-10) surfaces after relaxation under VFF 
using the BECs as atomic charges with linear balancing terms. This structure should be compared with 
the correct structure shown in Fig.6(a).  If the mirror symmetry (into the viewing plane shown here) at 
each atom is broken via a tiny displacement for any atom, the structure will relax further and become 
completely unstable. 

 



 
FIG. 4.  Surface plots representing the electrostatic potential felt by an electron approximately 3.6 
Angstoms above the surface of a CdSe slab, VASP results plotted in green and  results from BECs as 
atomic charges in red.  The unit cell of the slab is doubled along the x axis, with the positions of the 
peaks in both plots corresponding to points in the plane above the surface selenium atoms. 
 

 
FIG. 5. A cartoon of the DCM applied to a zinc-blende CdSe supercell with a single cadmium atom 
displaced.  The second charge associated with that cadmium atom (purple dashed circle) remains 
unmoved while the second charges of the four neighboring selenium atoms (green dashed circles) are 
displaced by one fourth of the cadmium atom’s displacement.  All other atoms’ second charges remain 
unmoved. 



 
FIG. 6. (a) An isometric view of the wurtzite CdSe slab atomic structure with (10-10) surfaces, viewed 
down the (0100) direction.  Cadmium atoms are represented in purple, selenium atoms in green.  The Z-
Γ direction is along the horizontal direction in (a), The Γ-X direction is into the plane (both in reciprocal 
space).  (b), (c) Phonon dispersion relations in high-symmetry directions, with accompanying density of 
states (DOS) plots, for the slab in (a): (b) DFT; (c) VFF+DCM. Phonon eigenstates to which the outermost 
two layers of atoms (dashed line in (a)) contribute at least 51% are colored in red, both in the dispersion 
and DOS.  The black line in DOS is the total DOS. (d) The correlation function f(ω1,ω2) which tests the 
phonon frequencies and phonon mode vectors, plotted here for the Z, Γ, and X points (see text for 
definition). 



 
FIG.7. Phonon dispersion relations in high-symmetry directions, with accompanying density of states 
plots, for a bulk zinc-blende cadmium selenide system.  (a) VASP GGA DFT results.  (b) VFF using no 
atomic charge.  (c) VFF using the DCM. 

 

 
FIG. 8. (a) Phonon dispersion along the z-axis, with accompanying density of states plot, for a wurtzite 
CdSe nanowire with cross section shown in (b) (cadmium atoms in purple, selenium atoms in green).  A 
VFF potential with the DCM, fit to the slab CdSe system of Fig.6 is used here.  Phonon eigenstates to 
which the outermost layer of atoms contributes at least 51% are colored in red, and their collective 
contribution to the density of states is plotted in red along with the total DOS (in black). 


