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Abstract

In the field of linear transport, adjoint formulations exploit linearity to derive
powerful reciprocity relations between a variety of quantities of interest. In this
paper, we develop an adjoint formulation of the linearized Boltzmann transport
equation for phonon transport. We use this formulation for accelerating devia-
tional Monte Carlo simulations of complex, multiscale problems. Benefits include
significant computational savings via direct variance reduction, or by enabling for-
mulations which allow more efficient use of computational resources, such as for-
mulations which provide high resolution in a particular phase-space dimension (e.g.
spectral). We show that the proposed adjoint-based methods are particularly well
suited to problems involving a wide range of lengthscales (e.g. nanometers to hun-
dreds of microns) and lead to computational methods that can calculate quanti-
ties of interest with a cost that is independent of the system characteristic length
scale, thus removing the traditional stiffness of kinetic descriptions. Applications
to problems of current interest, such as simulation of transient thermoreflectance
experiments or spectrally resolved calculation of the effective thermal conductivity
of nanostructured materials are presented and discussed in detail.

1 Introduction

Nanoscale heat transport mediated by phonons has received considerable attention in re-
cent years [1,2], both due to the scientific challenges arising from the failure of Fourier’s
law at small scales, as well as the potential applications to nanoscale engineering [3].
In this context, numerical methods for solving the Boltzmann transport equation are
invaluable because they enable the solution of problems of practical interest but also
provide insight into the physics of phonon transport. Due to the high dimensionality
associated with the Boltzmann equation, important problems of practical interest re-
main computationally expensive, if not intractable, making the development of new and
more efficient methods very desirable, especially for treating multiscale problems.

This paper focuses on the benefits that can be derived by exploiting the observa-
tion that many phonon transport problems of scientific and practical interest involve
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relatively small driving forces (temperature differences) and thus may be treated by the
linearized Boltzmann equation. Recent work [4] has shown that using the linearized
Boltzmann equation in the presence of temperature differences of magnitude smaller
than 10% of the reference temperature (e.g. temperature differences on the order of
±30K for a reference temperature of 300K) results in errors on the order of a few per-
cent. Examples of problems featuring small temperature differences include calculations
of the effective thermal conductivity of nanostructures (where, in fact, small temper-
ature differences are required to prevent a nonlinear response), simulation of transient
thermoreflectance experiments [5], and simulations of the thermal behavior of thin films,
nanowires and superlattices. This observation was already used in a previous paper [5]
in which a kinetic-Monte-Carlo-type scheme for simulating the Boltzmann equation was
developed. In that work, linearity enabled the decoupling of deviational particle tra-
jectories leading to an algorithm that was significantly faster and easier to code while
exhibiting no timestep error [4, 5].

In the present paper, we present formulations which again exploit linearity of the
governing equation to gain computational advantages (speedup, simplicity). The de-
velopments presented here, however, are completely distinct from the work presented
in [5], but at the same time complementary–that is, the computational advantages of
the two can be compounded (multiplicatively in the case of speedup). They are based
on an adjoint formulation which exploits the duality between the linearized Boltzmann
equation and its adjoint.

The adjoint formulation for the phonon Boltzmann equation in the frequency-dependent
relaxation-time approximation is derived and discussed in section 3. We note that ad-
joint formulations have been developed in other domains of linear transport (e.g. radia-
tion, neutron transport) [6,7] and have served as inspirations for this work. Acceleration
techniques based on this new formulation are discussed in section 4 in the context of
problems of practical interest. In sections 5 and 6 we discuss the use of adjoint formu-
lations for developing schemes that are particularly suited to multiscale problems.

2 Background

The non-linear Boltzmann equation for phonon transport in the relaxation time approx-
imation can be written in the form

∂f

∂t
+ Vg · ∇xf =

f loc − f
τ

(1)

where f(x, ω, p,Ω, t) is the occupation number of phonon modes, Vg denotes the phonon
group velocity (obtained from the dispersion relation) and the unit vector Ω denotes
the phonon traveling direction. Here, we use

f eq
T =

1

exp
(

~ω
kbT

)
− 1

(2)
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to denote the Bose-Einstein distribution with temperature parameter T ; under this
notation, f loc = f eq

Tloc
is a Bose-Einstein distribution with T = Tloc. The latter tem-

perature, Tloc, is referred to as the“pseudo-” temperature and is defined such that the
scattering processes remain strictly energy-conservative (see, for example, [8]). In the
isotropic model considered here, the relaxation time τ = τ(ω, p, T ) depends on the
phonon frequency ω, the polarization p, and the temperature T .

It has been shown previously [9] that the deviational, energy-based Boltzmann equa-
tion,

∂ed

∂t
+ Vg · ∇xe

d =
(eloc − eeq

Teq
)− ed

τ(ω, p, T )
(3)

where ed = e − eeq
Teq

, e = ~ωf and eeq
Teq

= ~ωf eq
Teq

, lends itself naturally to Monte
Carlo solution of phonon transport problems, especially for problems involving small
deviations from equilibrium. In such simulations, energy conserving deviational particles
represent the distribution

D(ω, p)

4π
(e− eeq

Teq
) (4)

The “control” temperature Teq is chosen by balancing simplicity (of the resulting algo-
rithm) with computational efficiency (maximizing variance reduction); because of the
small deviation from equilibrium, the “optimal” value of this parameter is close, if not
equal, to the system reference temperature (note that Teq can be spatially variable; this
is discussed at length in [4] and section 5 of this paper).

When temperature deviations are sufficiently small, Eq. (3) can be linearized by
approximating the non-linear scattering operator using the expansion

eeq
Tloc
− eeq

Teq
− ed

τ(ω, p, T )
=

deeqTeq
dT (Tloc − Teq)− ed

τ(ω, p, Teq)
+O

[
(Tloc − Teq)2

]
, (5)

leading to
∂ed

∂t
+ Vg · ∇xe

d =
L(ed)− ed

τ
, (6)

where the operator L is given by

L(ed) =

∫
D

4πτ e
ddωd2Ω∫

D
τ

deeqTeq
dT dω

deeq
Teq

dT
(7)

Here and in what follows, the sum over polarizations is implied by the integral over
frequencies ω. Moreover, in the interest of simplicity, the integration range for variables
ω,Ω,x will be shown explicitly under a different integral sign only when different from
the whole phase space associated with the problem of interest; in the case of time, the
integration range will be shown if different from (−∞,∞).

In addition to the above, we will also be using the following notation:

- The deviational temperature will be denoted by T (instead of T − Teq).
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- The mode-dependent free path Λω,p is defined as the product Vg(ω, p)τ(ω, p, Teq).

- We define the mean free path as

〈Λ〉 =

∫
D
deeqTeq
dT Λω,pdω∫
D
deeqTeq
dT dω

(8)

- The frequency and polarization-dependent Knudsen number Knω,p is defined as
Λω,p/L, where L is the smallest characteristic lengthscale in the problem. The
Knudsen number based on the mean free path is defined as 〈Kn〉 = 〈Λ〉/L.

- The specific heat capacity C is given by

C = 4π

∫
Ξdω (9)

where

Ξ(ω, p) ≡ D(ω, p)

4π

deeq
Teq

(ω)

dT
(10)

2.1 Kinetic Monte Carlo for linearized problems

The linearized BTE (6) lends itself to very efficient simulation methods. Here we sum-
marize the Kinetic Monte Carlo (KMC) algorithm described in [5,10] that is particularly
efficient for the types of problems considered here and will be referred to extensively in
this work.

One of the key features of the KMC method is that computational particles are
treated independently and thus sequentially. Let N denote the total number of par-
ticles; what follows describes the calculation of the trajectory of each particle as a
sequence of linear (straight-line) segments separated by scattering events or collisions
with boundaries:

• Randomly draw the particle initial properties from the source distribution [4]
which includes contributions from the initial condition, boundary conditions, heat
sources etc. Sources in linear phonon transport are discussed in detail in [4]. Each
particle is assigned a (constant) weight called the “effective energy”, Eeff, which
corresponds to the total energy emitted by the source divided by the total number
of particles to be used by the simulation. In steady problems, the “effective energy”
has the unit of an energy rate.

• Calculate the particle trajectory until the time the particle exits the computational
domain (via absorbing boundaries, or when the particle leaves the time domain of
interest in time-dependent cases) by repeating the following steps:
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- Calculate the time between the latest scattering event i and the next scat-
tering event, i + 1, using ∆ti = −τ(ωi, Teq, pi) ln(R), where R is a uniform
random variate in the interval (0, 1). The next scattering time is ti + ∆ti at
location xi + Vg,i∆ti.

- If no boundary is encountered between xi and xi + Vg,i∆ti, then the parti-
cle’s updated position is xi+1 = xi + Vg,i∆ti. If on the other hand one or
several boundaries are encountered along this trajectory, the next position
is the intersection point between the segment [xi,xi + Vg,i∆ti] and the first
boundary. The time of scattering event i + 1, ti+1, is set to the time of
encounter with the boundary.

- If xi+1 corresponds to a scattering event, then the frequency, polarization and
traveling direction of the particle are reset. The new properties are drawn
from the linearized post-scattering distribution

D(ω, p)

4πτ(ω, p, Teq)
L(ed)(ω, p) (11)

- If xi+1 corresponds to an encounter with a boundary, properties will be up-
dated depending on the type of boundary (e.g. diffusely reflective, partially
transmissive, etc). An absorbing boundary simply terminates the current
particle trajectory.

• Accumulate the contribution of the calculated trajectories to the quantities of
interest. For instance, if the quantity of interest is the average temperature in
a given region of space at time tmeasure, then a given particle contributes to the
estimate if it is located within that volume when the time is equal to tmeasure. In
that case, the contribution Eeff/(CN) is added to the estimate.

3 The adjoint Boltzmann equation

3.1 Background

The adjoint formulation is best introduced in a framework where boundary and initial
conditions are incorporated into the governing equation as (special) sources of devia-
tional particles. We remind the reader that in the deviational and linearized formula-
tions, sources can emit positive or negative particles [4, 5, 9].

In what follows, we will use q to denote the generalized source term, namely the
sum of all particle sources in a given problem. From this definition, it follows that
energy-based deviational particles are emitted from (4π)−1D(deeq

Teq
/dT )q. We also recall

that, here, T denotes the deviational temperature. With these definitions in mind, the
deviational Boltzmann equation reads

∂ψ

∂t
+ Vg · ∇ψ =

L(ψ)− ψ
τ

+ q (12)
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where ψ = ed(deeq
Teq
/dT )−1 and the linearized operator L can now be written as

L(ψ) =

∫
Ξ
τ ψdωd

2Ω

4π
∫

Ξ
τ dω

(13)

We also define the scalar product

〈φ, ψ〉 =

∫
φΞψdωd2Ωd3xdt (14)

with respect to which L/τ is self-adjoint; namely,

〈φ,L(ψ)/τ〉 = 〈L(φ)/τ, ψ〉 (15)

In addition to sources, Monte Carlo simulations and experimental setups are also
characterized by detectors, which sample phonons as a means of returning “measure-
ments” of quantities of interest. Mathematically, a detector is defined by its character-
istic function h; the quantity of interest, I, is then written as

I =

∫
h
D

4π
eddωd2Ωd3xdt =

∫
hΞψdωd2Ωd3xdt (16)

The function h prescribes both the type of quantity that is estimated (temperature,
heat flux...) and the location (in phase space, including time) over which the quantity
is averaged. For example, for the average deviational temperature within a volume V
at time t such that t1 < t < t2, h is given by

h =
1

CV (t2 − t1)
1V 1[t1,t2] (17)

where 1V refers to the indicator function of V , i.e. the function that takes the value 1
inside the volume V and 0 otherwise. For the temperature at a given time t0, h would
instead be given by

h =
1

CV
1V δ(t− t0) (18)

where δ(t − t0) refers to the Dirac delta function centered in time on t0. Although
these expressions might not always seem intuitive, they can be verified by considering
an equilibrium system at (deviational) temperature T : in the linearized framework,
ed = Tdeeq

Teq
/dT ; substituting in equation (16) leads to I = T .

3.2 The fundamental relation

We now introduce the adjoint Boltzmann equation

−∂ψ
∗

∂t
−Vg · ∇xψ

∗ =
L(ψ∗)− ψ∗

τ
+ h (19)
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In this equation, particles simulating the adjoint distribution, ψ∗, evolve backwards in
time and are emitted by the adjoint source, h, which is the function characterizing the
detector in the original problem. The specification of the adjoint problem is completed
by using the source q as the adjoint detector, in the sense

I∗ =

∫
qΞψ∗dωd2Ωd3xdt (20)

The importance of the adjoint formulation can be summarized by the relation

I∗ = I (21)

which we will refer to as the fundamental relation. In words, this relation implies
that any quantity of interest (of the form (16)) can be obtained by solving the adjoint
problem which uses the detector (of the original problem), h, as a source and the source
(of the original problem), q, as detector. Based on the observation that the adjoint
equation describes particles that move backwards in time, we will frequently use the
term “backward problem” to describe the adjoint problem defined by equations (19)
and (20); in analogy, we will use the term “forward” to describe the original problem
defined by equations (12) and (16).

To prove the fundamental relation we write

I∗ =

∫ [
∂ψ

∂t
+ Vg · ∇ψ −

L(ψ)− ψ
τ

]
Ξψ∗dωd2Ωd3xdt (22)

=

∫
ψΞ

[
−∂ψ

∗

∂t
−Vg · ∇ψ∗ −

L(ψ∗)− ψ∗

τ

]
dωd2Ωd3xdt (23)

=

∫
ψΞhdωd2Ωd3xdt = I (24)

Obtaining expression (23) from (22) requires integration by parts and, depending on
the problem of interest, some manipulation.

We now discuss this integration for the term involving the time derivative. The use
of sources for imposing initial conditions allows us to extend the integration over time
from −∞ to ∞ by taking ψ(t < 0) = 0 and ψ∗(t > tfinal) = 0 where tfinal denotes the
last detector instance. As a result:∫ ∞

t=−∞

∂ψ

∂t
Ξψ∗dt = [ψΞψ∗]∞−∞ −

∫ ∞
t=−∞

ψΞ
∂ψ∗

∂t
dt (25)

= −
∫ ∞
t=−∞

ψΞ
∂ψ∗

∂t
dt (26)

We now consider the term ∫
x∈X

∫
Vg · ∇ψΞψ∗dωd2Ωd3x (27)
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which can be written in the form

−
∫
∂X

∫
Vg · nψΞψ∗dωd2Ωd2x−

∫
x∈X

∫
ψΞVg · ∇ψ∗dωd2Ωd3x (28)

where n is the inward-pointing normal vector to the boundary ∂X. The above proof
requires the first term in (28) to vanish. This will be established for various boundary
conditions of interest below. In the case where the spatial domain is unbounded, one
may proceed by assuming (as was done in this work) that the integral over the boundary
∂X tends to zero when the latter is made infinitely large. A sufficient condition for this
is that ψψ∗ → 0 sufficiently fast as x→∞; this is expected to be satisfied by problems
that can be simulated by the deviational Monte Carlo method.

In addition to periodic boundary conditions, the most commonly encountered bound-
ary conditions in phonon transport literature are diffusely/specularly reflective and pre-
scribed temperature boundaries. The case of diffusely/specularly reflective boundaries
is treated in section 3.4; prescribed temperature boundaries are treated in Appendix A.
Periodic boundary conditions are discussed in section 4.2.

3.3 Adjoint particle dynamics and simulation

Comparison of the adjoint BTE (19) and the original linearized BTE (12) reveals strong
similarities, suggesting that algorithms for performing forward simulations could also
be used for backward simulations with small modifications. As expected, one difference
between the two lies in the source term. In the forward case the energy-based particles
are emitted from the distribution Ξq. By analogy, the adjoint particles must be emit-
ted from the distribution Ξh. In contrast to the forward case where

∫
Ξqdωd2Ωd3xdt

has the unit of energy,
∫

Ξhdωd2Ωd3xdt will not, in general, have the unit of energy.
Nonetheless, energy will be conserved provided the number of computational particles
is conserved during scattering events, since this guarantees∫

ψ∗Ξ

τ
dωd2Ω =

∫
L(ψ∗)Ξ

τ
dωd2Ω (29)

Note that although the quantity E∗eff =
∫

Ξhdωd2Ωd3xdt/N does not always represent
an energy, we will still refer to it as “adjoint effective energy”.

The second difference can be found in the rules for calculating a particle trajectory.
The minus signs in the left-hand side of (19) means that:

- the time parameter of a particle monotonically decreases

- a particle with parameter Ω, moves in the −Ω direction.

In practice, the isotropy of the collision operator and typical boundary conditions (e.g.
diffuse reflection, prescribed temperature boundary) means that the “backward” algo-
rithm differs very little from the “forward” algorithm.
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3.4 Reflecting boundaries

Let us consider a point xb on a reflective boundary, whose inward (towards the material)
pointing normal is denoted by n. When a particle encounters a diffusely reflective
boundary, it is reflected back, and its traveling direction is randomized, such that the
outgoing distribution is isotropic. As a result, the distribution ψ, for a given frequency
and polarization, obeys the following relation at the boundary (x = xb):

ψ(Ω · n > 0) = − 1

π

∫
Ω·n<0

ψΩ · nd2Ω (30)

Since particles subject to the adjoint Boltzmann equation travel backward in time, the
diffusely reflective boundary conditions for the adjoint distribution ψ∗ reads:

ψ∗(Ω · n < 0) =
1

π

∫
Ω·n>0

ψ∗Ω · nd2Ω (31)

We may now use (30) and (31) to write∫
Ω · nψψ∗d2Ω =

∫
Ω·n<0

Ω · nψψ∗d2Ω +

∫
Ω·n>0

Ω · nψψ∗d2Ω (32)

=ψ∗(Ω · n < 0)

∫
Ω·n<0

Ω · nψd2Ω + ψ(Ω · n > 0)

∫
Ω·n>0

Ω · nψ∗d2Ω

(33)

=− πψ∗(Ω · n < 0)ψ(Ω · n > 0) + πψ(Ω · n > 0)ψ∗(Ω · n < 0) = 0
(34)

which proves that the surface integral over the diffusively reflective boundary is zero.
For specular reflective walls, proving that∫

Ω · nψψ∗d2Ω = 0 (35)

follows by noticing that if both ψ and ψ∗ satisfy the specular reflection condition, then
so does their product.

4 Applications

As briefly discussed in section 1, the adjoint formulation can provide a number of com-
putational benefits, including algorithmic simplicity and considerable computational
speedup for certain classes of problems. The latter can be described as problems in
which the “detector is small”, that is, problems for which the outputs of interest are
defined over small regions of physical space, or more generally, phase space. An exam-
ple of the former is the transient thermoreflectance experiment discussed in the next
section, in which the quantity of interest is the temperature at the specimen surface
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(which, stricly speaking, has zero volume in three dimensions); an example of the lat-
ter is spectrally resolving the contribution of individual phonon modes to the effective
thermal conductivity (the detector extends over a small range of frequencies, or, in the
most challenging case, features a delta function in frequency). In these problems, in the
“forward” Monte Carlo method, the probability for a particle to be found in the detector
at a given time is small. The adjoint formulation uses h as a source thus providing an
opportunity for alleviating this burden. If the source is larger than the detector, the
adjoint formulation ensures that the signal collected by the detector will be enhanced,
leading to improved signal (variance reduction). Clearly, the speedup will depend on
the size-ratio between the detector and the source; in cases where the detector features
a delta function and the source does not, the speedup is theoretically infinite (in prac-
tice the forward calculation would smear the delta function into a computational bin in
order to collect some samples, thus making the speed-up finite, but introducing error in
the process).

Examples of applications of the adjoint formulation are given in the following sec-
tions. Note that although the adjoint formulation is indifferent to the numerical im-
plementation (i.e. timestep based, or KMC-type), here we will proceed to demonstrate
these methods using the KMC-type algorithm developed in [5] and briefly described in
section 2.

4.1 Surface temperature in a transient thermoreflectance experiment

This section illustrates the adjoint formulation using an example of engineering and
scientific interest, namely, the pump-probe thermoreflectance experiment [11,12].

4.1.1 Background

We briefly recall the configuration of the experiment that we consider here; note that
several versions of pump-probe thermoreflectance exist, all with their own advantages
and shortcomings. More details can be found in [5, 9]. A layer of aluminum (approxi-
mately 100nm-thick) lies on a silicon wafer, considered semi-infinite. Figure 1 depicts
the system geometry and the coordinate system used in the calculations. At time t = 0,
the aluminum is heated by a laser pulse. The resulting (deviational) temperature field
in the aluminum at t = 0 is given by

Ti(x) = T̂ exp

(
−βz − 2r2

R2
0

)
(36)

where T̂ is taken as 1 K. Here, the penetration depth β−1 is taken to be 7nm and
the characteristic radius R0 is taken to be 15 microns. More details on the model
parameters, such as the transmission coefficient at the aluminum-silicon interface, can
be found in [9] as well as appendix C. Also, we recall that heat transfer by electron
transport is neglected in this example.
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300K

15μm

100nm

Al

Si

301K

O

Figure 1: Schematic of a transient thermoreflectance experiment. Point O denotes the
center of the heating pulse, also taken to be the origin of the cartesian (x, y, z) set of
axes. The system is assumed infinite in the z > 0 direction and in the x− y plane.
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This problem features only one source term (the initial condition), which can be
written as

q = Ti(x)δ(t) (37)

The quantity of interest is the surface temperature at time tj , j = 1, ...,M . The function
hj for the corresponding detector is 1diskδ(z)δ(t−tj); here, we consider the slightly more
general case of the temperature in a general and arbitrary volume V

hj = 1V
1

V C
δ(t− tj) (38)

because as shown below, the adjoint formulation lends itself to this generalization natu-
rally. Note here that, for simplicity, we will use the same symbol V to denote the region
of interest and its volume.

4.1.2 Adjoint calculation

Let us consider here the case of one sampling time, namely tM ; extension to multiple
sampling times is discussed in section 4.1.3. A particle from the corresponding adjoint
source (forward detector) hM is emitted at time tM and travels backward in time. At
t = 0, the position xend is noted, leading to

I∗M,i = E∗effT̂ exp

(
−βzend −

2r2
end

R2
0

)
(39)

as the contribution of particle i to the estimate of the temperature at time tM . Here,
the weight of each particle, or adjoint effective energy, is given by

E∗eff =
1

N

∫
Ξhjd

2Ωdωd3xdt (40)

=
1

N

1

V C

∫
ω,x

4πΞ1V dωd
3x =

1

N
(41)

and is independent of the (forward) detector shape. The temperature is thus given by

T (t = tM ) =
N∑
i=1

I∗M,i (42)

4.1.3 Multiple sampling times

To treat other sampling times tj 6= tM , in principle we have to simulate new particles
starting at time t = tj and measure their position (and contribution) at time t = 0.
However, by noting that the evolution rules for particles emitted at tj are the same for
all j (only the “internal clock” of the particles differs), we may reuse the information
given by the trajectory of the particle emitted at time tM , by simply recording their
contributions at times tM − tj for all j.
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Ultimately, this process amounts to setting t = 0 when the particle is emitted, then
to counting the time forward while computing the trajectory. Contributions can then be
sampled at times tj , exactly like in the “forward” Monte Carlo method. Algorithmically,
the only difference lies in the exchange of source and detector.

4.1.4 Computational results

Figure 2 shows the temperature variation as a function of time at three locations, as
measured by the distance ρ from the origin, on the sample surface (in this case the
forward detector is a point on the surface z = 0). We note here that the profiles at
ρ = 6µm and ρ = 12µm were obtained using the same particles as for the ρ = 0
calculation by exploiting the translational invariance of the problem. Namely, since
translation of the particle source in the x (or y) direction leaves the particle trajectory
unaltered, translation of the adjoint detectors should also result in equivalent results.
This implies that contributions to the temperature at distance ρ from the origin can
be calculated using data from particles from the original calculation using the “shifted”
detector

I∗M,i =
T̂

N
exp

(
−βzend − 2

(xend − ρ)2 + y2
end

R2
0

)
(43)

Figure 3 shows the standard deviation in the temperature measurement in the case
of the forward method. In this method, the temperature on the surface is measured in
a cylindrical bin of depth (measured from the surface) d. The figure clearly shows that
the statistical uncertainty (and thus the statistical accuracy of the results) deteriorates
as d is made smaller. On the other hand, d needs to be made as small as possible to
minimize deterministic errors resulting from averaging over a finite volume (rather than
strictly on the surface). In the limiting case where the detector is simply a disk at
the surface, calculating the surface temperature using a (forward) Monte Carlo method
becomes impossible (unless time discretization is introduced, in which case it is “just”
very expensive) since the probability that a particle hits the interface at a specified time
is 0. Using the adjoint makes such a calculation possible by switching the source and
the detector.

4.1.5 Discussion

Although the above example clearly highlights the computational gains made available
by the adjoint method in principle, here we note that the magnitude of the computa-
tional gain in this particular experimental setup [13] is hard to quantify: the physical
detector is a laser probe which theoretically measures the surface temperature by relat-
ing it to the surface reflectivity. Since the reflection of photons at a surface involves a
penetration to some (small) depth, a more accurate model of this process would take
into account that the measured quantity uses a finite depth such as d ≈ 2 nm (range
of the optical skin depth for visible light in aluminum). Consequently, the benefit from
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Figure 2: Temperature as a function of time in a transient thermoreflectance experiment.
Results shown for the pulse center, 6µm away from the pulse center, and 12µm away
from the pulse center.

t (s)

T (K)

using the adjoint should be determined by comparing the size of the detector with the
size of the source properly adjusted for the above effects.

From a broader perspective, physical detectors usually can only access the surface
of a given system, whereas phonons are generated via mechanisms which are inherently
volumetric (Joule effect, electron-phonon interaction). For these reasons, accurate and
faithful description of physical experiments is, in general, expected to strongly benefit
from the adjoint formulation.

Finally, we note that drawing random particles from the distributions derived from
the detectors is usually easier than from the forward source terms. For example, a
temperature detector usually weighs all samples within a volume equally and thus calls
for the creation of a uniform distribution when used as an (adjoint) source. In contrast,
the distribution associated with the initial temperature field (36) in the above example
is a product of a decaying exponential and a Gaussian. Although this distribution is
invertible, this would not necessarily be the case with more general initial conditions.

4.2 Highly resolved calculations of mode-specific thermal conductivity
calculations

Another class of methods where the detector is “small” includes problems for which the
quantity of interest needs to be spectrally resolved. Previous work [14] has highlighted
the fact that the contribution of low frequency phonon modes is challenging to resolve
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due to their small densities of states and very large free paths. Unfortunately, due to
their low density of states, the forward Monte Carlo technique tends to “under-resolve”
estimates of their heat flux contributions, while on the other hand it “over-resolves” the
contributions of phonons with the highest densities of states. Increasing the number of
samples in order to reach the desired level of resolution at low frequencies will reduce
the statistical uncertainty for every frequency, hence wasting computational resources.

The adjoint formulation lends itself naturally to this situation. The quantities of
interest here are the heat flux contributions from individual phonon modes (in the
isotropic relaxation time approximation, this corresponds to bins in phonon frequency).

To illustrate the method, we will study a nanostructure that has been considered in
recent work [8] and calculate the contribution of each phonon frequency to the thermal
conductivity. Specifically, we analyze a single period of the porous periodic structure
shown in Figure 4. The system is subjected to a temperature gradient, and periodic
boundary conditions are applied [8]. As explained in [4,5], applying a spatially variable
control with uniform gradient results in strictly periodic boundary conditions for the
deviational quantity ed and particles are emitted from the source term

Q = Ξq outside the pore (44)

where q = −Vg · ∇xTeq. To spectrally resolve the effective thermal conductivity, we
need to calculate the heat flux for a given frequency “bin” [ω0−∆ω/2, ω0 + ∆ω/2] and
a given polarization. We are interested in the response in the direction of the applied
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Figure 4: Sketch of the nanoporous structure studied in section 4.2. The dashed square
represents the boundary of the computational domain, along which periodic boundary
conditions are applied (see Ref. [5, 8]).

temperature gradient. In other words, the characteristic function for this detector is

h = 1[ω0−∆ω/2,ω0+∆ω/2]Vg · ê1 (45)

where ê1 is the unit vector in the direction of the applied temperature gradient–see
Figure 4. The adjoint approach is only valid if∫

∂X

∫
Vg · nψΞψ∗dωd2Ω = 0 (46)

where ∂X refers to the boundary of the square computational domain and the square
pore, and where n is the normal vector pointing inward. The diffuse reflective surface
of the pore was treated in 3.1. To show that (46) is true, we may simply notice that
the periodic boundary condition imposes ed(x1,ω) = ed(x2,ω) where x1 and x2 are
corresponding points of two opposite sides of the periodic boundary condition. As a
result, ed(x1,ω)Vg·n1 = −ed(x2,ω)Vg·n2, leading to the desired result after integration
over the boundary domain.

We introduce the adjoint equation and the adjoint source q∗ = h. Adjoint particles
are then emitted from

Ξq∗ =
D

4π

deeq
Teq

dT
1[ω0−∆ω/2,ω0+∆ω/2]Vg · ê1 (47)
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and assigned the weight

1

N

∫
Ξq∗dωd2Ωd3x =

1

N

D(ω0, p)

4

deeq
Teq

dT

∣∣∣∣∣
ω0

Vg(ω0, p)∆ω. (48)

We note once again that the resulting backward algorithm is nearly identical to the
forward one as explained in [4,5] and section 3.3, with the main difference being that the
initial frequency/polarization (and the resulting velocity) properties can now be chosen
by the practitioner (instead of being randomly drawn from the distribution Ξq).

Figure 5 shows results calculated using the adjoint method for two different pore
sizes (25nm and 50nm). These results were obtained using the method for terminating
particle trajectories described in [5]; trajectories were terminated after 30 scattering
events. These results confirm that low frequency (large free path) phonons may play
a critical role in the design of nanostructures for efficient thermoelectric materials. In
Figure 6, we show the same result with the forward method using the same overall
number of particles. We clearly see how the quality of the results deteriorates in the
very low frequency (large free path) regime. In other words, obtaining the insights
shown by Figure 5 with the forward method is significantly more costly. For example,
we found that the statistical uncertainty associated with the contributions of particles
with free paths of 10 µm, 100 µm and 1 mm were 10 times, 25 times and 70 times
smaller, respectively, when calculated using the adjoint method rather than the forward
method. These uncertainties correspond to speedup factors of approximately 100, 600
and 5000. In reality, the observed speedup will be somewhat smaller due to the following
considerations: first, because trajectories of particles with long free paths–which are
larger than the system periodicity and thus require more operations to calculate–are
more frequently sampled in the backward calculation (for a given number of particles),
this method is approximately 5 times more expensive than the forward method. Second,
the quality of the solution using the backward method is worse than that of the forward
method for high frequencies. The latter can be rectified at small computational cost
by customizing the number of particles used for each particular frequency range. This
is possible in the backward case because the detector is no longer frequency specific,
ensuring that all particles emitted in a particular frequency range will contribute. The
forward method does not allow such a flexibility. The results in figure 5 were calculated
using the same number of particles for each frequency bin.

5 Spatially variable control temperature in the adjoint
framework

So far we have discussed situations where the control, econtrol, is a constant. Previous
work, both in the rarefied gas domain [15, 16] and the phonon domain [4, 5], has used
spatially variable controls as a means of accelerating the computation (variance reduc-
tion) [16] or introducing externally imposed driving forces (e.g. a temperature gradient
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for the calculation of the effective thermal conductivity of a material [5]). As an ex-
ample, consider a variable control of the form econtrol(x) = eeq

Teq
+ T0(x)deeq

Teq
/dT which

results in the following equation governing ed:

∂ed

∂t
+ Vg · ∇xe

d =
L(ed)− ed

τ
−Vg · ∇xT0

deeq
Teq

dT
(49)

Under these dynamics, particles are emitted from the distribution ΞVg · ∇xT0 in the
bulk and from the distribution eb(xb) − econtrol(xb) at the system boundaries. In the
linearized setting, we may write eb(xb) = eeq

Teq
+Tbde

eq
Teq
/dT . Thus, eb(xb)−econtrol(xb) =

(Tb−T0(xb))de
eq
Teq
/dT . To simplify the discussion, we will assume that, by choice, T0(x)

obeys Dirichlet boundary conditions for prescribed temperature boundaries and Von
Neumann boundary conditions for reflective boundaries. This allows us to eliminate
the boundary effects from the present discussion, although extending the conclusions of
this paragraph to more general choices of T0 is straightforward.

Drawing particles from ΞVg · ∇xT0 can be a significant programming burden if the
spatial dependence of T0 is complicated. Let us explore the implications of applying an
adjoint approach to this situation; we consider here the steady state case. Particles are
emitted from the detector function, while the quantity of interest is given by

I∗ =

∫
[−Vg · ∇xT0(x)] Ξψ∗dωd2Ωd3xdt. (50)

The contribution of particle j, with weight Ėeff, to the final estimate can be written as

I∗j = Ė∗eff

∫ tend

t=0
−Vg · ∇xT0(x(t))dt (51)

where the time t is only used formally to parametrize the line integral along the particle
trajectory (see Refs. [5, 10]). In other words, the value of the line integral does not
depend of the direction of the time parametrization, which is consistent with the fact
that the time is absent from the steady state adjoint equation. We may considerably
simplify this expression by introducing the particle coordinates at the scattering points
xi. Since the trajectory is a series of Nseg linear segments delimited by the points xi,
expression (51) becomes

I∗j = Ė∗eff

i=Nseg−1∑
i=0

(T0(xi+1)− T0(xi)) . (52)

The fact that particles travel in the opposite direction of Vg is important for deriving
the above expression, since the line integral over a segment may be written as∫ ti+1

ti

−Vg · ∇xT0 (xi − (t− ti)Vg) dt = [T0 (xi − (t− ti)Vg)]
ti+1

ti
(53)

= T0(xi+1)− T0(xi) (54)
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Equation (52) straightforwardly simplifies into

I∗j = Ė∗eff

(
T0(xNseg)− T0(x0)

)
(55)

This result appears powerful in the sense that the source q can be handled by evaluating
the value of T0 at the emission and termination points (with the latter usually given
by boundary conditions) instead of generating random samples from the distribution
ΞVg · ∇xT0; this represents a considerable simplification in most cases.

However, this result needs to be put into context by comparing with the case of the
adjoint algorithm with fixed control. In the case of fixed control (and no other sources–
i.e. the same problem studied above) the source term only includes the prescribed
temperature boundaries. In other words, the same development as above leads to

I∗j = Ė∗effT0(xNseg) (56)

which only differs from (55) by the term T0(x0). The latter term is usually fixed (when
the estimate is calculated at one point only).

This means that, although the adjoint formulation led to considerable simplifica-
tion (removing the need to sample the source term in equation (49)), the statistical
uncertainty of the adjoint formulation with spatially variable control is not smaller–
in fact, it may be higher–than the statistical uncertainty of the adjoint calculation
with a fixed control. In other words, the adjoint formulation with the source term
esource = eeq

Teq
+ T0(x)deeq

Teq
/dT is not expected to provide improved variance reduc-

tion compared to the adjoint formulation with a fixed control, in contrast to forward,
time-step based algorithms where additional variance reduction is observed when a
(suitably chosen) spatially variable control is used [16]. On the other hand, the control
esource = eeq

Teq
+ T0(x)deeq

Teq
/dT remains useful for imposing a temperature gradient for

effective thermal conductivity calculations [4].
Fortunately, significantly reduced variance is indeed possible with a spatially variable

control within the adjoint formulation. In fact, as we show below, the improved variance
can be achieved while retaining the simplification resulting from avoiding the generation
of samples from complex distributions. Such formulations are discussed in the following
section.

6 Implementing asymptotically-derived controls through
the adjoint approach

Previous work using spatially variable controls for improved variance reduction [15,16]
utilized the local equilibrium–based on real-time (cell-based) estimates of its parameters–
as a control. One drawback of this approach is that the resulting discontinuities in the
control (at cell boundaries) require particle generation at cell boundaries, which becomes
cumbersome in higher dimensions [16]. Here, we introduce a new approach which uses
asymptotic solutions of the Boltzmann equation as controls and show how the adjoint
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formulation can make such approaches more efficient as well as simpler to code. This
section considers steady state problems only, although extension to transient problems
will be considered in future work.

6.1 Asymptotic control for steady multiscale problems

Let T0(x) be the solution of Laplace’s equation with ad hoc boundary conditions. It is
shown in [17–19] that

ed
1(x) =

deeq
Teq

dT
[T0(x) + 〈Kn〉 (TK(x) + TG1(x))− τVg · ∇xT0(x)] (57)

is a first-order asymptotic solution of the steady Boltzmann equation in the expansion
parameter 〈Kn〉 (assumed small) and subject to arbitrary kinetic (Boltzmann) bound-
ary conditions. In this expression, TG1 denotes a solution of the heat equation with
boundary conditions that are determined, self-consistently, by the asymptotic analysis
once the kinetic boundary condition is specified. The same analysis determines TK , a
kinetic boundary layer in the vicinity of the boundaries which blends the equilibrium
distribution at the wall with the bulk distribution (which is clearly non equilibrium).
The interested reader is referred to [17–19] for more details.

Here, we adopt a heuristic approach which amounts to including the most readily
available first order term of (57) in the control, namely choose

econtrol = e0 −Vgτ · ∇xT0

deeq
Teq

dT
(58)

By noting that L(Vgτ · ∇xT0) = 0, the BTE for ed = e− econtrol can now be written in
the form

Vg · ∇xe
d =
L(ed)− ed

τ
+ τVg · ∇ (Vg · ∇xT0(x))

deeq
Teq

dT
(59)

The source term that appears is composed of all the second order derivatives of T0. It
can be explicitly written as the double sum

V 2
g τ
∑
i

∑
j

ΩiΩj
∂2T0

∂xi∂xj
(60)

Drawing particles from such a distribution as is required in forward frameworks is very
challenging. In addition to this volumetric source, other source terms appear at the
boundaries, from the mismatch (anisotropy) between the control and the boundary
condition. For instance, for a prescribed temperature boundary, the modified boundary
condition reads:

ed(ω, p,Ω · n > 0) = Vg · ∇xT0

deeq
Teq

dT
(61)
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On the other hand, in the case of the adjoint formulation, for the source given in
(60), and using the same procedure used for (50) to (55), the contribution of trajectory
(particle) j can be shown to be

I∗j = Ė∗eff

Nseg−1∑
i=0

τiVg,i · (∇xT0(xi)−∇xT0(xi+1)) (62)

where τi and Vg,i respectively refer to the characteristic relaxation time and the velocity
vector of the particle on segment i. A source term of type (61) is treated by adding
Vgτ · ∇xT0(xNseg) to the contribution. This cancels the last term of expression (62) for
i = Nseg − 1 (all trajectories terminate at the boundaries).

Finally, we need to recall that the final result will be obtained by adding the stochas-
tic estimate to the deterministic value represented by the control. The deterministic
value for the temperature is T0. In the case of the heat flux, the deterministic heat flux
associated with the control is kbulk∇xT0.

6.2 Validation and accuracy

In this section we validate the method described in section 6.1, which we will refer to as
asymptotically controlled adjoint (ACA), using the following two-dimensional problem.
We consider an infinitely long slab of material of thickness 2L. We denote the coordinate
in the infinite direction by x1 and the coordinate in the other direction by x2. At x2 = L
the material is held at a prescribed (deviational) temperature Tb = Teqε cos(2πx1/(3L);
at x2 = −L the deviational temperature is given by Tb = −Teqε cos(2πx1/(3L)). Here,
ε denotes a small quantity; in other words we are interested in the linear regime around
a reference temperature Teq = 300K. By linearity, the discussions that follow do not
depend on the dimensionless coefficient ε; all calculations were performed with ε =
1/300.

The system was chosen because the solution of Laplace’s equation can be obtained
analytically:

T0(x1, x2) = εTeq cos

(
2πx1

3L

)
sinh

(
2πx2
3L

)
sinh

(
2π
3L

) (63)

This will allow us to focus our validation on the stochastic error only. This solution is
plotted in Figure 7.

This phonon transport problem can be easily solved using either the forward Monte
Carlo method or the adjoint method. In Fig. 8, we show the temperature calculated
on 51 equispaced points of the line parametrized by x1 = 0 and 0 ≤ x2 ≤ 1, using both
the adjoint method with uniform control, and the ACA method presented above, for
〈Kn〉 = 0.5 and 〈Kn〉 = 0.1. In the interest of simplicity, both calculations used the
single mean free path model (constant relaxation time and Debye model); in other words,
Λω,p = Vgτ = Λ = constant. The agreement between the two methods is excellent.

Figure 9 shows the statistical uncertainty associated with the calculation of the x2

component of the heat flux at point (0, 0). It clearly reveals that, in the ACA method,
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the standard deviation scales linearly with the Knudsen number, while in the adjoint
method with uniform control it is approximately constant. In appendix B we provide
a mathematical explanation for the scaling observed in the ACA case. In particular,
we highlight the major difference that arises, in terms of statistical properties, when a
temperature field other than the 0th order solution, T0, is used as control and show that
using a solution of Laplace’s equation is key to this result.

This result is of great importance for multiscale simulations because it means that,
for a fixed uncertainty, low Knudsen number systems (large lengthscales) can be sim-
ulated using the ACA technique at a fixed computational cost as 〈Kn〉 decreases. This
follows from the fact that the cost of computing a single particle trajectory increases
proportionally to 〈Kn〉−2 as 〈Kn〉 → 0, since characteristic transport timescales follow
a diffusive scaling in this regime. On the other hand, the statistical uncertainty scales
as σ/

√
N , where σ is the standard deviation of particle contributions to the estimate

and N is the number of particles used; therefore for a fixed statistical uncertainty the
scaling σ ∝ 〈Kn〉 requires N ∝ 〈Kn〉2. Since the overall cost per simulation scales with
the product of the number of particles times the cost of a single trajectory, we obtain
a constant cost. In contrast, the cost of methods which have a constant statistical un-
certainty as a function of 〈Kn〉 (such as traditional MC methods, as well as forward
deviational methods) increases as 〈Kn〉−2 in the 〈Kn〉 → 0 limit, a manifestation of
the kinetic description becoming stiff in this limit. In other words, the ACA formula-
tion overcomes this stiffness and results in a computational method that can simulate
large systems as efficiently as small systems, a highly desirable feature of any multiscale
method [20]. In fact, for classes of problems for which the cost of computing a single
trajectory scales as 〈Kn〉−1, such as the case of solving for the heat flux at a location
close to the boundary1 discussed in the next section, the cost of the ACA formulation
is expected to scale as 〈Kn〉 and therefore decrease as lengthscales increase.

We note that the above features pertain to problems for which the adjoint method is
primarily suited for, namely problems in which the solution of interest is the transport
field in a small region of space (see section 7 for further discussion). It should also be
noted that the above scaling estimates for the cost refer to the case where the acceptable
uncertainty level is prescribed in an absolute sense. In some cases, for instance when
calculating the heat flux (which is formally a quantity that also scales with 〈Kn〉 [17–19]),
it may be more appropriate to consider the uncertainty in a relative sense – namely, the
ratio between the uncertainty and the calculated heat flux. A multiscale method that
features a constant cost as a function of 〈Kn〉 at constant relative uncertainty would
have to use a control which includes the higher order terms presented in [17] and is a
direct extension of the present work.

Figure 10 shows the uncertainty associated with the calculation of the x2 component
of the heat flux at points (0, 0) and (0, L) when using a material model with frequency-
dependent free path (for a description of the material model see Appendix C). This

1This scaling may be arrived at by applying the optional stopping theorem to the martingale repre-
senting the transverse coordinate of the particle position (see for example chapter 12 in [21])
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figure reveals that, when the variable free path model is used, the computational ad-
vantage associated with the ACA method is beneficial only for low Knudsen numbers
(〈Kn〉 ≤ 0.02 in 10a and even lower for 10b). The reason for the breakdown of the
efficiency for large Knudsen numbers lies in the fact that the contribution (62) to the
estimate is a sum of terms that scale with 〈Kn〉. While this feature contributes to vari-
ance reduction at low Knudsen numbers, it becomes a hindrance in the ballistic limit.
We also note that even though the small values of the Knudsen number might create the
impression that a diffusive approximation might be sufficient (i.e. the problem can be
solved using Fourier’s Law), due to the large variation in mean free paths this is not the
case (significant discrepancies exist between the Boltzmann and Fourier solutions, and
thus Boltzmann solutions are still necessary); this is further quantified in the following
section, which also lays out an approach for recovering and in fact enhancing some of
the computational benefits lost in the presence of widely variable free paths.
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ACA method

Figure 9: Standard deviation σq′′x2
of the particle contributions to the estimate of the

heat flux at point A of Figure 7 in the x2 direction, in the single mean free path
model. In the ACA method, the standard deviation is proportional to 〈Kn〉. The latter
outperforms the adjoint method with fixed control for 〈Kn〉 ≤ 0.2.

〈Kn〉

σq′′x2

6.3 Using a “hybrid” control for models with widely variable free
paths

In section 4.2, we showed that the adjoint method is well suited to the case where
mean free paths cover a wide range and when we seek to calculate the contribution
of each individual mode to a given quantity of interest (typically, the heat flux or
the thermal conductivity). On the other hand, as was shown in Figure 10, in the
presence of a large variation in free paths, the benefits associated with the ACA method
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become significant only for very low knudsen numbers. In this section we show that
this limitation can be overcome with a slight modification of the ACA formulation; in
fact, the modified formulation, referred to here as hybrid, improves the performance of
the ACA formulation for all 〈Kn〉 at almost no additional cost.

In order to motivate the hybrid version, we first explain why the ACA formulation
fairs poorly as 〈Kn〉 increases. When this method is applied to a phonon model with
highly variable free paths, such as the one described in Appendix C, the terms that
compose the sum (62) span several orders of magnitude. The presence of phonon modes
with large free path (exceeding 100µm) tends to increase the variance of the estimate
because the prefactor Vgτ becomes comparatively large. We can overcome this limitation
by adapting the expression of the control. Since the problem is caused by the prefactor
Vgτ which appears in (62), we propose a control which uses (58) for the small mean free
path modes only, namely

econtrol = e0 − 1Knω,p<cVgτ · ∇xT0

deeq
Teq

dT
. (64)

In words, according to this definition, the “hybrid” control uses e0 for modes with large
free paths (Λω,p ≥ cL), while it introduces (58) for small free paths (Λω,p < cL). There
is some degree of freedom in the choice of the constant c, although some trial-and-error
revealed that, for the model that we used and the problem tested, c ≈ 0.4 is close to
optimal. Repeating the derivation procedure of the previous section, we can show that,
algorithmically, the adjoint routine stays nearly the same, apart from the following two
changes:

- The contribution of a particle j to the estimate is now:

I∗j = Ė∗eff

i=Nseg−1∑
i=0

Fi (65)

where

Fi =

{
T0(xi+1)− T0(xi) if Λω,p ≥ cL
τiVg,i · (∇xT0(xi)−∇xT0(xi+1)) if Λω,p < cL

(66)

Similarly to the ACA approach, the second case of equation (66) must account
for the mismatch between the control and the boundary conditions by adding
Ė∗effτNseg−1Vg,Nseg−1∇xT0(xNseg) if the particle encounters the boundary with a
mode obeying the criterion Λω,p < cL.

- The deterministic quantity associated with the final estimate needs to be calcu-
lated using the hybrid control.

We emphasize that implementing these changes only requires minor modifications
since the core of the algorithm, i.e. the calculation of particle trajectory, remains the
same. Only the values assigned to the estimates change. In fact, in the comparison
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of the three approaches in Figures 9 and 10, all results were obtained using the same
random numbers (all three methods were evaluated using the same particle trajectories).

Our results show that the hybrid method outperforms the two other approaches for
all average Knudsen numbers. The amount of computational savings is however problem
dependent. The results presented in Fig. 10a correspond to a favorable case where the
heat flux is calculated at a surface point (point B in Figure 7). In this case, the length of
a trajectory – and therefore computational time per particle – is proportional to 〈Kn〉−1

enabling us to accurately resolve the asymptotic behavior of the standard deviation of
the solution all the way to 〈Kn〉 = 0.001 (in general, the standard deviation of a given
quantity, as a higher moment of the distribution, is more expensive to resolve than the
actual quantity).

At the crossing point of the constant-control and the ACA method, 〈Kn〉 ≈ 0.02,
the hybrid approach already reduces the standard deviation by a factor of 10, which
corresponds to a speedup of around 100. Such a Knudsen number might appear small in
the sense that kinetic effects might be expected to be negligible at such scales (10µm).
This point of view would be incorrect since the free paths of low-frequency modes,
known to significantly contribute to the heat flux [14], do not behave diffusively. Our
calculations corroborate this claim; we find that, at this scale, the normal heat flux near
a boundary still differs from the heat flux calculated using Fourier’s Law by 30%. At
〈Kn〉 ≈ 0.002, the speedup is close to a factor 2000 (standard deviation improvement
of almost 45) and, although the system is quite close to the diffusive limit, we find a
difference of almost 10% with respect to the Fourier solution. In addition, kinetic effects
near boundaries and interfaces [17–19] can not be captured by the Fourier description
at any 〈Kn〉.

The results presented in Fig. 10b show a less favorable case in which the heat flux
is calculated in the middle of the domain (point A in Figure 7). In this case, the length
of particle trajectories is proportional to 〈Kn〉−2, making accurate resolution of the
standard deviation in the solution more expensive. As a result, we are unable to study
the asymptotic behavior of the standard deviation of the ACA method for 〈Kn〉 . 0.01.
We also observe that the asymptotic behavior of the hybrid method for 〈Kn〉 → 0 has not
reached the expected σ ∝ Kn. We attribute this to the presence of a wide range of free
paths which causes some phonons to behave ballistically even at these small Knudsen
numbers (at this Knudsen number, the discrepancy between the Fourier solution and
the simulation result is 13%) delaying the onset of the asymptotic behavior. A study
showing the progressive delay of the onset of the asymptotic behavior as the range of
mean free path increases can be found in [19]. Moreover, Fig. 10a shows, that the
scaling σ ∝ 〈Kn〉 is still valid for the hybrid case at a surface point (for a discussion of
the effect of the dependence of trajectory length on 〈Kn〉–〈Kn〉−1 vs 〈Kn〉−2–as well as
the validity of the mathematical justification to the variable free path case, see Appendix
B). We finally note that despite the fact that the hybrid approach has not reached the
asymptotic regime at the smallest Knudsen number considered here, 〈Kn〉 ≈ 0.001, the
speedup provided by the hybrid method compared to uniform control is appreciable,
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namely a factor of 25.
The hybrid approach, which takes advantage of the fact that the modes with small

free paths behave diffusively, shares connections with the work in [22], in which these
modes are assumed diffusive and treated by a Fourier-based description. The key dif-
ference is that in our method no Fourier model (approximation) is used; instead the
proximity of these modes to the diffusive regime is used for switching between two
modes of variance reduction (for numerically solving the same equation); diffusive be-
havior or particular modes of interaction between the long- and short-free-path modes
is at no point assumed.

In this section, we only used the most readily available asymptotic solution of the
Boltzmann equation, namely, the order 0 temperature field and its gradient. We expect
that using higher order approximations, as derived in [17–19], would contribute even fur-
ther to reducing the cost. Including such higher-order terms would be very complicated
in a forward particle Monte Carlo. It would be close to straightforward in the adjoint
framework since, as already demonstrated in this section, only the values assigned to the
particle contributions would be modified, while the adjoint particle trajectories would
remain unchanged.
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Figure 10: (a) Standard deviation σq′′x2
of the particle contributions to the estimate of

the heat flux at point B of Figure 7 in the x2 direction, in the variable mean free path
model. (b) Standard deviation σq′′x2

of the particle contributions to the estimate of the
heat flux at point A of Figure 7 in the x2 direction, in the variable mean free path
model.

〈Kn〉 〈Kn〉

σq′′x2
σq′′x2
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7 Discussion

We developed an adjoint formulation for the linearized Boltzman transport equation
for phonons in the relaxation-time approximation. We showed that, similarly to what
is found in the fields of radiation, neutron transport, or computer graphics, the adjoint
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approach is particularly suited to situations where the detector is small and the source
is large. In the case of phonons, this is not only often true in a spatial sense, but
also in a spectral sense. The free paths of phonons in semiconductors are known to
cover a very broad range and, for this reason, the ability to discriminate individual
phonon-mode contributions, as shown in Figure 5, is a very powerful feature of the
adjoint framework. Although the precise speedup will depend on the relative size of
the detector and source, in the examples considered here, speedups ranging from one to
three orders of magnitude were observed. We note that, in consultation with the authors,
Chengyun Hua and Austin Minnich [23] applied the proposed adjoint formulation to the
investigation of boundary scattering in nanocrystalline materials. The method allowed
them to show that low frequency phonons, in spite of the nanocrystalline structure, still
carry a significant proportion of the heat and that, as a consequence, design of efficient
thermoelectric materials should account for such effects.

An additional strength of the adjoint approach is its simplicity: the forward lin-
earized approach relies on a cell-based approach, where quantities need to be sampled
in computational cells of specific geometries. Sampling the contribution of a particle
trajectory requires to study the overlap between the cell geometry and the trajectory
geometry, which may be complicated. Unless the original source term is complicated
itself, the adjoint alleviates this problem. We also note that the adjoint formulation
proposed here is sufficiently general to be applicable to both timestep-based MC and
KMC-type algorithms.

We showed that by using a control inspired by asymptotic solution of the Boltzmann
equation, steady state problems of arbitrarily low Knudsen number can be treated at
constant cost. This last feature results from an absolute statistical uncertainty that is
proportional to 〈Kn〉 (see Appendix B). The associated quadratic savings balance the
quadratically increased cost caused by the calculation of longer trajectories in the low
Knudsen number limit. As a result, simulations of structures or devices with lengthscales
ranging from nanometers to hundreds of microns (see Figure 9) are not only possible,
but also efficient. Extension to unsteady problems directly follows.

One weakness of the adjoint method is that each detector has to be replaced by an
adjoint source. As a result, the more detectors, the more complex and thus less desirable
the adjoint method becomes. Although exceptions sometimes occur (for instance, we
saw in section 4.1.3 that multiple time detectors may be treated the same way as in the
forward problem), in practice, the adjoint method is best suited to problems requiring
high resolution (low statistical uncertainty) in small regions of phase space. One example
is the recent use of adjoint formulation to validate the jump coefficients of the asymptotic
theory developed and presented in [17–19]. These validations required a high level of
accuracy for low Knudsen numbers, which was made possible by the method outlined
here.

To our knowledge, this is the first time that the self-adjoint property of the phonon
relaxation-time scattering operator is discussed and the adjoint formulation is used. In
the field of neutron and gas transport, studies of the adjoint BTE have yielded results
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whose application extended well beyond Monte Carlo simulations [24]. We hope that
the present study will stimulate research efforts in this direction and lead to new insights
for better understanding of phonon transport in general.

Future work will consider extension of the adjoint methodology to more realistic
material models, ranging from models which include anisotropic dispersion relations [25]
to the Boltzmann equation with (linearized) ab initio scattering [26]. The possibility
of developing adjoint formulations for treating coupled electron-phonon transport will
also be investigated.

A Proof of the fundamental relation (21) for the prescribed-
temperature boundary conditions

A boundary with prescribed (deviational) temperature Tb is modeled as a black body.
Any particle incident on the boundary is absorbed. At the same time, the boundary
emits particles from the equilibrium (Bose-Einstein) distribution with temperature pa-
rameter Tb. The classical model consists of simply defining the boundary condition by
specifying the incoming distribution at the wall for incoming particles:

ψb(ω, p,xb,Ω · n > 0) = Tb. (67)

Here, following the general methodology developed in section 3.1, this boundary con-
dition is expressed in terms of a combination of source terms. Emission of particles by
the boundary can be represented by the source term:

qb = δ(x− xb)H(Vg · n)Vg · nTb (68)

where H is the Heaviside function defined by

H(x) =

{
1 for x ≥ 0

0 for x < 0
(69)

In addition to this source term that is independent of ψ and which replaces the thermal-
ized region beyond the boundary, we need to use a source term that absorbs particles
incident on the boundary. Such source term can be written [27] in the form:

δ(x− xb)H(−Vg · n)Vg · nψ (70)

Since ψ appears explicitly in the above expression, we write the linearized BTE (12) in
the form:

∂ψ

∂t
+ Vg · ∇ψ =

L(ψ)− ψ
τ

+ q + δ(x− xb)H(−Vg · n)Vg · nψ (71)

where q includes qb and any other sources that do not depend on ψ. By analogy, the
adjoint BTE is given by:

−∂ψ
∗

∂t
−Vg · ∇ψ∗ =

L(ψ∗)− ψ∗

τ
+ h− δ(x− xb)H(Vg · n)Vg · nψ∗ (72)
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We now repeat the integration by parts procedure of section 3.2 by writing

I∗ =

∫
qΞψ∗d3xd2Ωdωdt (73)

=

∫ [
∂ψ

∂t
+ Vg · ∇ψ −

L(ψ)− ψ
τ

− δ(x− xb)H(−Vg · n)Vg · nψ
]

Ξψ∗d3xd2Ωdωdt

(74)

I∗ =

∫
∂X

∫
Vg · nψΞψ∗d2xd2Ωdωdt+

∫
ψΞ

[
−∂ψ

∗

∂t
−Vg · ∇ψ∗ −

L(ψ∗)− ψ∗

τ

]
d3xd2Ωdωdt

−
∫
δ(x− xb)H(−Vg · n)Vg · nψΞψ∗d3xd2Ωdωdt

(75)
By noting that∫

∂X

∫
Vg · nψΞψ∗d2xd2Ωdωdt =

∫
δ(x− xb)H(−Vg · n)Vg · nψΞψ∗d3xd2Ωdωdt

+

∫
δ(x− xb)H(Vg · n)Vg · nψΞψ∗d3xd2Ωdωdt

we obtain I∗ = I.

B On the convergence rate of the ACA method: mathe-
matical justification and discussion

In section 6.1, we find that using the spatially variable control

econtrol =
deeq
Teq

dT
(T0 − τVg · ∇xT0) (76)

yields estimates whose standard deviations scale with the Knudsen number 〈Kn〉, pro-
vided that the temperature field T0 is a solution to Laplace’s equation. In this section,
we provide a mathematical explanation for this assertion. In the interest of simplicity,
we consider here the case of a constant free path Λω,p = Λ. The case of variable free
path can be treated by simple extension of this approach and is expected to yield similar
results. This is further discussed below.

In the linearized algorithm, each particle, i, is associated with a contribution yi which
is a realization of a random variable Y such that, ultimately, the quantity estimated is
the average I∗N =

∑
yi/N which converges to E(Y ) in the limit N →∞. The standard

deviation of Y and I∗N , respectively σY and σI∗N , are related by σI∗N = σY /
√
N . Showing

that the standard deviation of σI∗N scales with 〈Kn〉 amounts to showing that σY scales
in the same manner (with 〈Kn〉). The random variable Y is a sum of random variables,
Y = Z1 + Z2 + ...+ ZNseg , where each variable Zj corresponds to the contribution of a
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single segment of trajectory, as shown in section 6.1. Let us first recall that Zj is given
by

Zj = N Ė∗effτj−1Vg,j−1 · (∇xT0(xj−1)−∇xT0(xj)) (77)

except for j = Nseg. Note that E∗tot ≡ N Ė∗eff is independent of 〈Kn〉. When 〈Kn〉 is
small, Zj may be written as

Zj =− E∗totΛlj
∂2T0

∂xm∂xn

∣∣∣∣
xj

ΩmΩn − E∗tot

Λl2j
2

∂3T0

∂xm∂xn∂xq

∣∣∣∣
xj

ΩmΩnΩq + h.o.t. (78)

where lj(≈ Λ) is the length of that segment of the trajectory and h.o.t. denotes higher
order terms. This can be rearranged in the form

Zj =− E∗tot〈Kn〉2 lj
Λ

∂2T0

∂x′m∂x
′
n

∣∣∣∣
xj

ΩmΩn − E∗tot〈Kn〉3
l2j

2Λ2

∂3T0

∂x′m∂x
′
n∂x

′
q

∣∣∣∣
xj

ΩmΩnΩq + h.o.t.

(79)

≡Z̃j +O

(
l2j
Λ2
〈Kn〉3

)
(80)

where x′j is the dimensionless coordinate defined by x′j = xj/L. First we note that due
to the isotropy of the post-scattering distribution, E(Ωi) = 0. Moreover, here we are
examining the case ∇2

x′T0 = 0. From these two observations it directly follows that
E(Z̃j) = 0 and therefore

Ỹn =
n∑
i=1

Z̃i (81)

defines a martingale [21] with (optional) stopping time n = Nseg − 1. In what follows,
we denote ỸNseg−1 by Ỹ .

In summary Y = Ỹ + ZNseg + ζ, where ζ represents the contribution of Nseg − 1
order 3 terms and

ZNseg = Ė∗tot〈Kn〉

Ωj
∂T0

∂x′j

∣∣∣∣∣
xNseg−1

 . (82)

The variance of Y is therefore:

Var(Y ) = Var(Ỹ ) + Var(ζ) + Var(ZNseg) + 2Cov(Ỹ , ZNseg) + 2Cov(ζ, ZNseg) + 2Cov(Ỹ , ζ)
(83)

Below, we examine each of the terms of the above expression and show that they all
scale with 〈Kn〉2.

• Variance of Ỹ : By applying the optional stopping theorem to the martingale
Sn = Ỹ 2

n −
∑n

i=1 Var(Z̃i) (see [21]), which implies that E(Sn) = 0, we obtain

Var(Ỹ ) = E

Nseg−1∑
i=1

Var(Z̃i)

 (84)
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We note that, provided the second derivatives of T0 are bounded, we can find a
positive constant M1 such that the variances of Z̃i are all smaller than M1〈Kn〉4.
It follows that:

Var(Ỹ ) ≤ E

Nseg−1∑
i=1

M1〈Kn〉4
 , (85)

and therefore
Var(Ỹ ) ≤M1〈Kn〉4E(Nseg) (86)

Finally, since the average number of jumps is asymptotically proportional to
〈Kn〉−2:

Var(Ỹ ) = O
(
〈Kn〉2

)
(87)

• Variance of ζ:

The variance of ζ is defined as E(ζ2)− E(ζ)2, where:

E(ζ2) =E

Nseg−1∑
i=1

O(
l2i
Λ2
〈Kn〉3)

2 (88)

E(ζ2) =E

Nseg−1∑
i=1

Nseg−1∑
j=1

O

(
l2i l

2
j

Λ4
〈Kn〉6

) . (89)

Wald’s equation [21] applies to the latter expression and yields

E(ζ2) = E

Nseg−1∑
i=1

Nseg−1∑
j=1

E

[
O

(
l2i l

2
j

Λ4
〈Kn〉6

)] (90)

We can find a positive constant M2 such that:

E(ζ2) ≤M2E
(
(Nseg − 1)2

)
〈Kn〉6 (91)

In other words:
E(ζ2) = O

(
〈Kn〉2

)
(92)

Also:

E(ζ) =E

Nseg−1∑
i=1

O

(
l2j
Λ2
〈Kn〉3

) (93)

E(ζ) ≤M3E (Nseg − 1) 〈Kn〉3 (94)

E(ζ) =O (〈Kn〉) (95)

We finally find that Var(ζ) = O(〈Kn〉2).

34



• Variance of ZNseg :

From the definition of ZNseg , we immediately find that Var
(
ZNseg

)
= O(〈Kn〉2).

• Covariance of Ỹ and ZNseg :

Cov
(
Ỹ , ZNseg

)
=E

(
Ỹ ZNseg

)
− E(Ỹ )E(ZNseg) (96)

Cov
(
Ỹ , ZNseg

)
=E

(
Ỹ ZNseg

)
(97)

Cov
(
Ỹ , ZNseg

)
=

∫
ỹ
E
(
Ỹ ZNseg |Ỹ = ỹ

)
P (Ỹ = ỹ)dỹ (98)

Cov
(
Ỹ , ZNseg

)
=

∫
ỹ
ỹE
(
ZNseg |Ỹ = ỹ

)
P (Ỹ = ỹ)dỹ (99)

The martingale central limit theorem for Ỹ states that P (Ỹ = ỹ) tends asymptot-

ically to a Gaussian with standard deviation σ =
√

Var(Ỹ ). Also, due to isotropy

associated with the scattering process E
(
ZNseg |Ỹ = ỹ

)
∼ E

(
ZNseg

)
= O(〈Kn〉).

Hence:

Cov
(
Ỹ , ZNseg

)
=O

(
〈Kn〉

∫
ỹ
|ỹ| 1√

2πσ
exp

(
−ỹ2

2σ2

)
dỹ

)
(100)

Cov
(
Ỹ , ZNseg

)
=O (〈Kn〉σ) (101)

Cov
(
Ỹ , ZNseg

)
=O

(
〈Kn〉2

)
(102)

• Covariance of Ỹ and ζ:

We note that the value of ζ is obtained using the same random numbers as Ỹ .
We may still obtain an upper bound for the covariance using:

Cov
(
Ỹ , ζ

)
=E

(
Ỹ ζ
)
− E(Ỹ )E(ζ) (103)

Cov
(
Ỹ , ζ

)
=E

(
Ỹ ζ
)

(104)

Cov
(
Ỹ , ζ

)
=

∫
ỹ
ỹE
(
ζ|Ỹ = ỹ

)
P (Ỹ = ỹ)dỹ (105)

Cov
(
Ỹ , ζ

)
=O

(
〈Kn〉

∫
ỹ
|ỹ| 1√

2πσ
exp

(
−ỹ2

2σ2

)
dỹ

)
(106)

Cov
(
Ỹ , ζ

)
=O

(
〈Kn〉2

)
(107)

where, since E(ζ) ∼
√
V ar(ζ) ∼ O (〈Kn〉), we estimate E

(
ζ|Ỹ = ỹ

)
as ofO (〈Kn〉).
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• Covariance of ζ and ZNseg :

Cov
(
ZNseg , ζ

)
=E

(
ZNsegζ

)
− E(ZNseg)E(ζ) (108)

Cov
(
ZNseg , ζ

)
=E

O
Nseg−1∑

i=1

l2j lNseg

Λ3
〈Kn〉4

+O(〈Kn〉2) (109)

Cov
(
ZNseg , ζ

)
=O

(
〈Kn〉2

)
(110)

which is again obtained using Wald’s equation.

In summary, this shows that
Var(Y ) = O(〈Kn〉2), (111)

which implies that the standard deviation associated with the estimate I∗N , σI∗N , scales
linearly with 〈Kn〉.

We note here the following:

1 Even in cases where E[Nseg] = O(〈Kn〉−1) (and thus Var(Ỹ ) = O(〈Kn〉3)), such
as in the proximity of a boundary, the leading order term in Var(Y ) is still of
O(〈Kn〉2), yielding the same result.

2 In the above development, ∇2
x′T0 = 0 comes as a necessary condition for the

first-order scaling, (σI∗N ∝ Kn), to be true. To see this, let us imagine that, in a

given region of space, this condition is not satisfied. Then, in such a region, Ỹ
is no longer a martingale because the expected value of Z̃i is no longer 0. As a
consequence, the result (84) can no longer be used. More precisely, it follows from
(79) that Cov(Z̃i, Z̃j) = O(〈Kn〉4(∇2

x′T0)2); as a result if ∇2
x′T0 6= 0, correlations

between Z̃i and Z̃j will cause Var(
∑
Z̃i) = O(N2

seg〈Kn〉4) 6= O(〈Kn〉2) and under
most conditions Var(Y ) = O(〈Kn〉0) (see below for an example).

To illustrate the second point, let us consider the example discussed in section 6.2,
namely, using the adjoint method to find the x2-component of the heat flux at point
(0, 0). Figures 11 and 12 show

∑n
i=1 Zi as a function of the index n, where Z here

corresponds to the heat flux contribution. Figure 11 shows the result obtained using

T0(x1, x2) = εTeq cos

(
2πx1

3L

)
sinh

(
2πx2
3L

)
sinh

(
2π
3L

) (112)

as a control which is a solution of Laplace’s equation with Dirichlet boundary conditions;
Figure 12 shows the result obtained using

T0(x1, x2) = εTeq cos

(
2πx1

3L

)(
1− x2

L

)
. (113)
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as a control, which is not a solution of Laplace’s equation. Figure 11 shows that when T0

satisfies the Laplace equation, very little correlation between each segment of a trajec-
tory exists and, as a result, the standard deviation of the contributions is proportional
to 〈Kn〉, in agreement with (111). In contrast, Figure 12 shows that when T0 does not
satisfy the Laplace equation, correlation between different segments of the trajectory
makes the contribution of each particle independent of the Knudsen number (propor-
tional to 〈Kn〉0 as discussed in item 2 above), leading to a standard deviation that also
scales as 〈Kn〉0.
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Figure 11: Evolution of the contributions of particles to the final estimate, when the
adjoint method is used with the control (76) along with a temperature field which is the
solution of Laplace’s equation for 〈Kn〉 = 0.01 (Left) and 〈Kn〉 = 0.001 (Right). This
calculation was performed using the single-mean-free-path model.

C Material models

Dispersion relations (and the resulting group velocities) and scattering rates for the
simulations in this paper were calculated using the material model described in detail
in [9]; the description is reproduced here for convenience. We note that since the
primary focus of the present paper is the development of a numerical approach, this
material model choice represents a balance between simplicity and fidelity. In other
words, although this material model is sufficiently realistic to capture a number of
important features that have a large influence on the computational method (e.g. wide
range of free paths), it includes a number of simplifying assumptions (e.g. isotropic
dispersion relation [25]) that may need to be re-examined when used to model transport
in nanostructures. Extension to more realistic material models of varying complexity,
including the ab-initio scattering operator, will be considered in future work.

In the present model, dispersion relations are adapted from the experimentally mea-
sured dispersion relation in the [100] direction ( [28] for Al, [29] for Si). Note that
extension to more realistic dispersion relations such as the one presented in [30] is
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Figure 12: Evolution of the contributions of particles to the final estimate, when the
adjoint method is used with the control (76) along with a temperature field which is
not a solution of Laplace’s equation, for 〈Kn〉 = 0.01 (Left) and 〈Kn〉 = 0.001 (Right).
This calculation was performed using the single-mean-free-path model.

straightforward, as long as the post-scattering traveling directions are assumed isotropic,
as assumed in [30]. From the dispersion relation, the density of states may be derived
using

D(ω,LA) =
1

2

ω2

π2c(ω,LA)2Vg(ω,LA)
(114)

D(ω,TA) =
ω2

π2c(ω,TA)2Vg(ω,TA)
(115)

where c(ω, p) refers to the phase velocity (given by ω/k, k being the wavenumber). Note
the absence of the factor 1/2 for the TA modes due to the presence of two such modes
which, in this model, share the same properties.

For aluminum in the TTR calculation, a constant relaxation time is used; it is chosen
to fit the desired lattice thermal conductivity (as in [29]) and is given by:

τAl = 10−11s (116)

For silicon, the expressions are taken from [31], with constants from [29]. For acoustic
modes, these are

phonon-phonon scattering, LA τ−1
L = ALω

2T 1.49 exp
(
− θ
T

)
phonon-phonon scattering, TA τ−1

T = ATω
2T 1.65 exp

(
− θ
T

)
impurity scattering τ−1

I = AIω
4

boundary scattering τ−1
B = wb

where the constants take the following values
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Parameter AL AT θ AI wb
Value (in SI units) 2.09× 10−19/(2π)2 1.23× 10−19/(2π)2 80 3× 10−45 1.2× 106

For a given polarization we obtain the total relaxation time by applying the Matthiessen
rule

τ−1 =
∑
i

τ−1
i (117)

For simplicity, we use Einstein’s model to treat optical phonons and consider them
as immobile. Their behavior is therefore purely capacitive. Einstein’s model states
that the contribution of optical phonons to the vibrational energy per unit volume in a
crystal is given by [3]

U =
NpN

′~ωE
V [exp(~ωE/kbT )− 1]

(118)

where Np = 3 is the number of polarizations, N ′ = 1 is the number of optical states
per lattice point, ωE is the Einstein radial frequency (ωE = 9.1× 1013s−1 [29]), V is the
volume of a lattice point (with a lattice constant a = 5.43Å, V = a3/4 = 4× 10−29m3).

For the relaxation time of optical phonons at 300K, we use the value [32]

τO = 3× 10−12s (119)
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