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An exponential interaction is constructed so that one-dimensional atoms and chains of atoms
mimic the general behavior of their three-dimensional counterparts. Relative to the more com-
monly used soft-Coulomb interaction, the exponential greatly diminishes the computational time
needed for calculating highly accurate quantities with the density matrix renormalization group.
This is due to the use of a small matrix product operator and to exponentially vanishing tails. Fur-
thermore, its more rapid decay closely mimics the screened Coulomb interaction in three dimensions.
Choosing parameters to best match earlier calculations, we report results for the one dimensional
hydrogen atom, uniform gas, and small atoms and molecules both exactly and in the local density
approximation.

PACS numbers: 71.15.Mb 31.15.E-, 05.10.Cc

I. INTRODUCTION

The notion that a strong electromagnetic field can be
modeled well by a one dimensional (1d) problem dates
back to at least 1939 when a calculation by Schiff and
Snyder1 assigned a potential in the x direction and “in-
tegrated out” the transverse degrees of freedom in the
y and z directions by averaging over radial wave func-
tions. The resulting interaction has been studied by sev-
eral others2–7 including one work by Elliott and Loudon2

that approximated the 1d potential, so it can be solved
more easily.

Today, the most common approximation for the 1d po-
tentials in a strong electromagnetic field was introduced
by Eberly, Su, and Javaninen8 who rewrote the Coulomb

interaction 1/
√

x2 + y2 + z2 as 1/
√
x2 + a2; the x com-

ponent is allowed to vary independently and the remain-
ing radial term in cylindrical coordinates, a, is set to
a constant which is determined on a system-by-system
basis for the particular application of study to match
the ionization energy. This soft-Coulomb interaction has
been used in a wide variety of applications requiring a 1d
potential8–16. It has many attractive features including
the avoidance of the singularity at zero separation while
retaining a Rydberg series of excitations17–19. Even when
not considering a strong electromagnetic field, the soft-
Coulomb interaction has become the choice potential for
1d model systems.

A general use of 1d systems is as a computational labo-
ratory for studying the limitations of electronic structure
methods, such as density functional theory (DFT)4,20–34.
A key requirement is that the accuracy of such methods
be at least qualitatively similar to their three dimensional
(3d) counterparts. Helbig, et. al.

29 had already calcu-
lated the energy of the uniform electron gas with a soft-
Coulomb repulsion, making the construction of the local
density approximation (LDA) simple. Recently, some of

us31 used Ref. 29 to construct benchmark systems with
the soft-Coulomb interaction which we used to study
DFT approximations35–38. It was also shown that the
model 1d systems closely mimic 3d systems, particularly
those with high symmetry. The 1d nature of these sys-
tems allows us to use the density matrix renormalization
group (DMRG)39 to obtain ground states to numerical
precision. DMRG has no sign problem and works well
even for strongly correlated 1d systems40. We also apply
various DFT approximations to these systems in order to
understand how such approximations could be improved,
especially when correlations are strong. We have found
that our 1d “pseudomolecules” closely mimic the behav-
ior of real 3d molecules in terms of the relative size and
type of correlations and also the errors made by DFT
approximations31. Conclusions can be drawn from the
1d systems that are relevant to realistic 3d systems, a
key advantage over lattice based models. Crucially, in
1d, we can extrapolate to the thermodynamic limit with
far less computational cost compared to a similar calcu-
lation in 3d41.

However, the soft-Coulomb interaction has some draw-
backs as a mimic for 3d electronic structure calculations.
First, the long 1/|x| tail has a bigger effect in 1d than
in 3d, making the interaction excessively long ranged.
Second, in 3d, the electron-electron interaction induces
weak cusps as r → 0; the soft-Coulomb induces no cusps
at all. While this can be a significant computational ad-
vantage with some methods, this precludes using it to
study cusp behavior. Third, although the extra cost for
treating power-law decaying interactions within DMRG
can be made to scale sub-linearly with system size (via a
clever fitting approximation42,43), this cost is still much
higher than for a system with strictly local interactions,
for example, the Hubbard model44.

As an alternative and complement to the soft-Coulomb
interaction, we suggest an exponential interaction that
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addresses each of these weaknesses but whose param-
eters are chosen to give very similar results. Its tails
are weaker, simulating the shorter ranged nature of the
Coulomb interaction in 3d if screening is taken into ac-
count. The presence of a cusp in the potential more ac-
curately reflects 3d calculations, since a discontinuity in
the wavefunction or its derivatives may make convergence
more difficult. Finally, the cost for using exponential in-
teractions within DMRG is no more than for using local
interactions; in practice this makes DMRG calculations
with exponential interactions more than an order of mag-
nitude faster than with soft-Coulomb. Extrapolations to
the thermodynamic and continuum limits with exponen-
tial interactions also require less computational time.
The primary purpose of this paper is therefore to show

in what ways an exponential interaction is preferable to
the soft-Coulomb interaction in 1d electronic structure
calculations and to provide reference results for such sys-
tems. Showing that the soft-Coulomb interaction is well
approximated by the exponential would allow for the ef-
ficient and fast use of DMRG over QMC methods for 1d
systems, so we construct our exponential to also mimic
1d soft-Coulomb calculations and allow for comparison
with previous results27,45–59.
We derive some general analytic forms for the expo-

nential hydrogenic atom in Sec. II and discuss mimicking
the soft-Coulomb interaction with a = 1 in Sec. II B.
Section III summarizes the numerical tools used to find
accurate results of the exponential systems. We find the
uniform gas energies with DMRG and derive high and
low density asymptotic limits in Sec. IV. Finite system
calculations and benchmarks for the soft-Coulomb-like
exponential interaction are given in Sec. V. The Sup-
plemental Material contains all necessary raw data to
reproduce results60.

II. HYDROGENIC ATOMS

A. General Analytic Expressions

We wish to solve the 1d exponential Hydrogenic atom,
with the potential:

ven(x) = −Zvexp(x), vexp(x) = A exp(−κ|x|). (1)

where A and κ characterize the interaction and Z is the
‘charge’ felt by an electron (e) from a nucleus (n). Since
the potential is even in x, the eigenstates will be even and
odd, and we label them i = 0, 1, 2... (alternating even to
odd). Writing

z(x) = (2
√
2AZ/κ) exp(−κx/2), x ≥ 0, (2)

the Schrödinger equation becomes the Bessel equation.
The wavefunction solution is a linear combination of
J±ν(z), where ν2 = −8E/κ2, and J is a Bessel func-
tion of the first kind. The negative index (−ν) functions

diverge as x → ∞, so the wavefunction is proportional
to Jν(z) and the density is

n(x) = C2J2
ν (z(|x|)) (3)

where C is chosen so that
∫

dxn(x) = 1.
The eigenvalues, E, are determined by spatial symme-

try, so that:

d

dx
Jν(z)

∣

∣

∣

∣

z0

= 0 (even), Jν(z0) = 0 (odd), (4)

with z0 = z(0). This condition implies that the
eigenfunctions are Bessel functions of non-integer index.
Defining j′i(ν) and ji(ν) to be zeroes of these functions,
indexed in order (see e.g., Ref.61, Sec 9.5), the energy
eigenvalues are

Ei = −κ2 ν2i (z0)/8, i = 0, 1, 2, .. (5)

where νi(z0) satisfies

j′i+1(ν2i) = z0, ji(ν2i−1) = z0. (6)

We found no source where these are generally listed or
approximated but they are available in, e.g., Mathemat-
ica. One can deduce the critical values of z0 at which
the number of bound states changes (when E = 0),
since j′1(0) = 0, j′2(0) = 3.83171, j′3(0) = 7.01559,
and j1(0) = 2.40483 and j2(0) = 5.52008 (Table 9.5 of
Ref.61).
Unlike a soft-Coulomb potential, cusps appear for

the exponential in analogy with 3d Coulomb systems.
Rewriting the Schrödinger equation as ψ′′/(2ψ) =
ven(x) + E, where ψ is the ground state wavefunction
and primes denote derivatives, shows this ratio contains
the cusp of the potential at the origin.

B. Mimicking Soft-Coulomb Interactions

Now we choose the parameters of our exponential to
match closely those of the soft-Coulomb we have previ-
ously used in these studies, which has softness parameter
a = 1. In that case, the ground-state energy of the 1d H
atom is -0.669778 to µHa accuracy8,31,62, and the width
of the ground state density,

∫

dxn(x)x2, is 1.191612. We
find A and κ of vexp(x) to match these values, yielding:

A = 1.071295 and κ−1 = 2.385345. (7)

Figure 1 shows the close agreement between the soft-
Coulomb and the exponential in both the potential and
the density for the 1d H atom. Hereafter, we take these
values as defining our choice of exponential interaction.
These values for our hydrogen atom yield z0 =

6.983117, so that it binds exactly four states. Since z0
is proportional to

√
Z, where Z is the nuclear charge

for a hydrogenic atom, a fifth state is just barely bound
when Z = 1.00931. This is a marked difference from
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FIG. 1. (color online) An exponential interaction with A =
1.071295 and κ−1 = 2.385345 mimics the soft-Coulomb (a =
1) hydrogen ground-state density very closely.

the non-interacting soft-Coulomb63 and non-interacting
3d hydrogen64 atoms which each bind an infinite number
of states.
We then choose the repulsion between electrons to be

the same but with opposite sign:

vee(x− x′) = vexp(x − x′). (8)

Solutions for more than one electron are remarkably sim-
ilar to the soft-Coulomb under these conditions. For ex-
ample, both the soft-Coulomb and the exponential bind
neutral atoms only up to Z = 4. We further note that H−

is bound, but H−− is not, for all three cases (exponential,
soft-Coulomb, and reality).

III. CALCULATIONAL DETAILS AND

NOTATION

DMRG is an exceedingly efficient method for calculat-
ing low-energy properties of 1d systems and gives varia-
tional energies. For the types of systems considered here,
DMRG is able to determine essentially the exact ground
state wavefunction40,43. DMRG works by iteratively de-
termining the minimal basis of many-body states needed
to represent the ground state wavefunction to a given
accuracy. For 1d systems, one can reach excellent accu-
racy by retaining only a few hundred states in the basis.
The basis states are gradually improved by projecting
the Hamiltonian into the current basis on all but a few
lattice sites, then computing the ground state of this par-
tially projected Hamiltonian. The new trial ground state
is typically closer to the exact one, making it possible to
compute an improved basis.
Our calculations are done in real space on a grid65. The

grid Hamiltonian is chosen to be the extended Hubbard-
like model also used in Ref. 31 (see Eq. (3) of that work).
The electron-electron interaction and external potentials

are changed to the exponentials used here. Note that
the convention we use to evaluate integrals is to multiply
the value of the integrand at each grid point by the grid
spacing to match Ref. 31. So, for here,

∫

dx f(x) ≈ ∆
∑

i

f(xi) (9)

for some function f(x) and grid spacing ∆. Grid points
are indexed by i and span the interval of integration.
Using an exponential interaction within DMRG is very

natural since it can be exactly represented by a matrix
product operator, the form of the Hamiltonian used in
newer DMRG codes42. In fact, the soft-Coulomb inter-
action used in Ref. 31 was actually represented by fitting
it to approximately 25 exponentials66.
The majority of our focus is on finite systems and we

use a finite grid with end points chosen to make the wave-
function negligible. For chains, we place the ends of the
grid at the first missing nucleus, although in the case
of a single atom or isolated molecule, we will place the
boundary sufficiently far from the nuclei to avoid notice-
able effects. This can be much nearer to the nuclei than
in the soft-Coulomb systems. We always use the conven-
tion of placing a grid point on a cusp when possible, to
avoid missing any kinetic energy.
In Kohn-Sham (KS) DFT36, we use density function-

als which are defined on the KS system, a non-interacting
system that has the same density and energy as the full
interacting system. Although, this non-interacting sys-
tem has a different potential, vs(x), the KS potential.
The ground state energy, E, of an interacting electron
system is the sum of the kinetic energy, T , the electron-
electron repulsion, Vee, and the one-body potential en-
ergy, V . The ground state energy, E, is the minimization
in n of the density functional

E[n] = TS[n] + U [n] + V [n] + EXC[n], (10)

where

TS[n] =
1

2

∑

σ

Nσ
∑

i=1

∫

dx

∣

∣

∣

∣

d

dx
φi,σ(x)

∣

∣

∣

∣

2

(11)

is the non-interacting kinetic energy evaluated on the oc-
cupied non-interacting KS orbitals, φi,σ, for Nσ particles
of spin σ. The difference, TC = T − TS, gives the differ-
ence between the interacting and non-interacting kinetic
energy. The Hartree integral is defined as

U [n] =
1

2

∫∫

dx dx′ vee(x− x′)n(x)n(x′). (12)

The one-body potential functional is

V [n] =

∫

dx v(x)n(x), (13)

where v(x) is the attraction to the nuclei. Equation 10
defines the exchange-correlation (XC) functional, EXC[n],
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which is the sum of the exchange (X) and correlation (C)
energies. The exchange energy can be evaluated over the
occupied KS orbitals as

EX[n] = −1

2

∑

σ

Nσ
∑

i,j=1

∫

dx

∫

dx′ vee(x− x′)

× φ∗i,σ(x)φ
∗
j,σ(x)φi,σ(x

′)φj,σ(x
′),

(14)

but in practice it is often approximated by an explicit
density functional to reduce the computational cost.

IV. UNIFORM GAS

In order to construct and employ the LDA for our ex-
ponential repulsion, we must first calculate the exchange-
correlation energy of the exponentially repelling uniform
gas, expellium.

A. Kinetic, Hartree, and Exchange Energies

These energy components are straightforward and well
known, as the single particle states are simply plane
waves. The unpolarized, non-interacting kinetic energy
per length of a uniform gas is given by67–69

tunpol
S

(n) = π2n3/24. (15)

The Hartree energy per length of a uniform system with
exponential interaction is finite:

eunif
H

(n) = An2/κ. (16)

The exchange energy of the uniform gas was derived in
Ref. 70, with the energy per length as

eunpol
X

(n) = Aκ
(

ln(1 + y2)− 2y arctany
)

/(2π2) (17)

where y = π/(2κrs) where rs is the Wigner-Seitz radius71

in 1d defined as rs = 1/(2n)72. The limits for this ex-
pression are

eunpol
X

(n) → −An/2, n→ ∞ (18)

eunpol
X

(n) →−An2/(2κ), n→ 0. (19)

Both the exchange and kinetic energies depend separately
on the orbitals of each spin, so they satisfy simple spin
scaling relation73:

EX[n, ζ] =
1

2

{

Eunpol
X

[(1 + ζ)n] + Eunpol
X

[(1− ζ)n]
}

(20)
where ζ(x) = (n↑(x) − n↓(x))/n(x) is the local spin po-
larization for spin up (down) densities n↑ (n↓). Applying
the relation for TS yields:

tunif
S

(n, ζ) = tunpols (n)(1 + 3ζ2)/2 (21)

FIG. 2. (color online) Exchange energy densities of the
uniform gas for the exponential (solid lines), both unpolar-
ized (blue) and fully polarized (red). Solid lines show soft-
Coulomb results.

and the exchange energy per length:

eunif
X

(n, ζ) =
∑

σ=±1

eunpol
X

(

(1 + σζ)n
)

/2. (22)

In Fig. 2, we plot the exchange energies per unit
length for both the unpolarized and fully polarized cases,
comparing with the soft-Coulomb. For rS . 2, i.e.

n & 1/4, they are very similar, but the exponential van-
ishes more rapidly in the low density limit. Applying
Eq. (19) to Eq. (22) shows eunif

X
is independent of ζ in

the high-density limit. Application of Eq. (18) shows

eunif
X

(n, ζ) → eunpolX (n)(1 + ζ2) as n→ 0.

B. Correlation Energy

While we can determine the exchange energy of the
uniform gas analytically, for correlation we cannot. We
first determine the high and low density limits and con-
nect them with a Padé approximation.

C. High Density Limit

In the high-density uniform gas, the RPA solution
becomes exact74–83. Casula, et. al.

7 have derived a
criteria for the RPA limit which for 1d systems gives
eC = −ΥrS/π

4 where Υ =
∫∞

0
dq qṽ2ee(q) for the Fourier

transform, ṽee(q) = 2Aκ/(κ2 + q2)5–7,29. Thus,

eRPA
C

(n) =

{

−2A2rs/π
4 unpolarized,

−A2rs/(4π
4) polarized.

(23)

Note that these expressions for the exponential eRPA
C

are
identical to the eRPA

C
of the soft-Coulomb interaction if

A = 1 and so differ by less than 15% here29.
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FIG. 3. (color online) Correlation energy densities of the
uniform gas from DMRG calculations. Solid lines are
parametrization of Eq. (24), red dots are calculated, and
dashed lines are for the soft-Coulomb29.

D. Low Density Limit

To determine the low density limit of the correlation,
we may work in the limit of a Wigner crystal84. This
phase occurs because the kinetic energy becomes less
than the interaction energy for low densities. The strictly
correlated electron limit25,85,86 is the exact limit of the
low density electron gas72,87. For strictly correlated elec-
trons, each electron sits some multiple of 2rS away from
any other. For short-ranged interactions, such as the
exponential, the potential energy must decay exponen-
tially with rS, so that EXC = −U , regardless of spin
polarization73. The actual form of the correlation energy
eC, however, will depend on the polarization, because the
exchange energy eX does. For a spin-unpolarized system,
using Eq. (19), we find eX(n) = eC(n) = −An2/(2κ) in
the low-density gas limit. After spin-scaling exchange, we

obtain the low-density limit epolX (n) = −An2/κ, and this
quantity already cancels the Hartree energy! Therefore
the correlation energy for spin-polarized electrons must
decay more rapidly than n2 as n→ 0.

E. Correlation Energy Calculations

The uniform gas correlation energy was found from
a sequence of DMRG calculations in boxes of increas-
ing length, L, in which the average density is kept fixed.
Grid errors become more pronounced in these systems
compared with soft-Coulomb interactions because there
is no way to ensure a grid point will always lie on the wave
function’s cusp. Hence, a very fine grid spacing was nec-
essary to converge the points. As the density increases,
finer and finer grids were necessary, down to a practical
limit of ∆ = 0.008. Energies for different box sizes were
fit to a parabola in 1/L and the limit of L→ ∞ extracted.

The various energy components of Sec. IVA were then
subtracted to find eC to make the dots in Fig. 3. For
partially polarized gases, we used the same procedure as
for the unpolarized case except that each box contained
various values of ζ for each L used in the limit. Evalu-
ating several partially polarized systems, we found that
the correlation energy was very nearly parabolic in ζ at
several different densities.

F. Padé Approximation

Considering the asymptotic limits of the correlation en-
ergy, the full approximation that allows us to accurately
fit the data is

eunif
C

=
−Aκy2/π2

α+ β
√
y + γy + δy3/2 + ηy2 + σy5/2 + ν πκ2

A y3
.

(24)
where y was defined above and the fitting parameters
are defined for this specific choice of A and κ only. The
parameters optimized by fitting DMRG uniform gas data
are given in Table I, and the resulting fits are shown in
Fig. 3. Although we know at full polarization eC should
decay more rapidly than n2 in the low density limit, we
do not know how much more rapidly, so we use the same
form as the unpolarized case. This fit is accurate and the
coefficient of n2 is about 1% that of the unpolarized one.
Finally, we approximate the ζ dependence as

ec(n, ζ) = eunpolc (n) + ζ2
(

epolc (n)− eunpolc (n)
)

, (25)

as justified in the previous section.

α β γ δ η σ

eunpol
c

2 1.00077 6.26099 -11.9041 9.62614 -1.48334
epol
c

180.891 -541.124 651.615 -356.504 88.0733 4.32708

TABLE I. Fitting parameters for the correlation energy in
Eq. (24). The parameter ν = 1 (unpolarized) or 8 (polarized).

In Fig. 4, we show the combined XC energies (solid) for
the unpolarized (blue) and polarized gases (red). Dashed
lines are for exchange alone. Correlation is a much
smaller effect in the fully spin-polarized gas.

V. FINITE SYSTEMS

A. Atomic Energies

We now refer to several tables that contain the in-
formation from several different systems as determined
by the methods of the previous sections. To construct
the LDA, ELDA

XC
is constructed from Eqs. (17) and (25).

In practice, we always use spin-DFT, and the local spin
density approximation (LSDA). The plot of eunif

XC
(rS, ζ) is
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Ne Symb. EHF E E
QC
C T V Vee Ts U EXC EX EC TC ELDA ELDA

X ELDA
C

1 H -0.670 -0.670 0 0.111 -0.781 0 0.111 0.345 -0.345 -0.345 0 0 -0.643 -0.305 -0.009
He+ -1.482 -1.482 0 0.190 -1.672 0 0.190 0.379 -0.379 -0.379 0 0 -1.449 -0.337 -0.007
Li++ -2.334 -2.334 0 0.259 -2.593 0 0.259 0.397 -0.397 -0.397 0 0 -2.298 -0.355 -0.006
Be3+ -3.208 -3.208 0 0.321 -3.529 0 0.321 0.408 -0.408 -0.408 0 0 -3.171 -0.366 -0.005

2 H− -0.694 -0.737 -0.044 0.114 -1.311 0.460 0.081 1.070 -0.586 -0.535 -0.051 0.050 -0.711 -0.520 -0.073
He -2.223 -2.237 -0.014 0.286 -3.212 0.690 0.273 1.432 -0.730 -0.716 -0.014 0.013 -2.196 -0.633 -0.050
Li+ -3.884 -3.892 -0.008 0.433 -5.080 0.755 0.426 1.541 -0.779 -0.770 -0.009 0.007 -3.842 -0.686 -0.039
Be++ -5.606 -5.611 -0.005 0.564 -6.967 0.792 0.559 1.602 -0.806 -0.801 -0.005 0.005 -5.556 -0.715 -0.034

3 Li -4.199 -4.215 -0.016 0.628 -6.490 1.647 0.614 2.751 -1.089 -1.072 -0.017 0.014 -4.181 -0.999 -0.045
Be+ -6.447 -6.457 -0.010 0.910 -9.225 1.858 0.900 3.029 -1.161 -1.150 -0.011 0.010 -6.411 -1.074 -0.035

4 Be -6.756 -6.809 -0.053 1.118 -11.115 3.188 1.077 4.710 -1.481 -1.421 -0.060 0.041 -6.784 -1.371 -0.080

TABLE II. Energy components for several systems as calculated by DMRG to 1 mHa accuracy. Chemical symbols H,
He, Li, and Be imply single atomic potentials of Z = 1, 2, 3, and 4, respectively. All LDA calculations are self-consistent,
except H−, which is unbound, so we evaluate ELDA

XC on the exact density88. These values are very similar to those of the
soft-Coulomb31.

FIG. 4. (color online) XC energy per length, eXC (dashed),
for the unpolarized (blue) and fully polarized (red). Dashed
lines are eX only.

very similar to those of the soft-Coulomb (see Fig. 2 of
Ref. 31).

Table II contains many energy components for all 1d
atoms and ions up to Z = 4. The total energies are
accurate to within 1 mHa. The first approximation in
quantum chemistry is the Hartree-Fock (HF), and its er-

ror is the (quantum chemical) correlation energy, EQC
C .

As required, this is always negative and is typically a
very small fraction of |E|. Unlike real atoms and ions,
for fixed particle number N , EC → 0 as Z → ∞, not a
constant89.

The next three columns show the breakdown of E into
its various components. The magnitude of |V | is much
greater than the other two. Unlike 3d Coulomb sys-
tems, there is no virial theorem relating E and −T , for
example90. Here the kinetic energies are much smaller
than |E|, just as for the soft-Coulomb31. In the following
three columns we give the KS components of the energy.
These were extracted by finding the exact vS(x) from
n(x)34, and constructing the exact KS quantities36. Un-
like 3d Coulomb reality, TS is smaller in magnitude than

|EXC|. But just like in 3d Coulomb reality, both TS and
EXC always grow with Z if N is fixed, with N if Z is
fixed, or with Z for Z = N91.
The next set of columns breakEXC into its components:

EX, EC, and TC. The correlation energy is negative ev-

erywhere and is slightly larger in magnitude than |EQC
C |

as required92. We also see TC is very close to −EC ev-
erywhere, a sign of weak correlation93, which is the same
as in 3d Coulomb atoms and ions. We also report self-
consistent LDA energies and the XC components. All
LDA energies are insufficiently negative. For N = 1,
self-interaction error occurs and ELDA

XC
is not quite −U .

Just as for reality, LDA exchange consistently underesti-
mates the magnitude of EX, while E

LDA
C

overestimates,
producing the well-known cancellation of errors in ELDA

XC
.

Ne Symb. LDA HF Exact
−ǫH I −ǫH I I= −ǫH

1 H 0.412 0.643 0.670 0.670 0.670
2 H− – 0.062 0.058 0.024 0.068

He 0.478 0.714 0.750 0.741 0.755
Li+ 1.238 1.508 1.556 1.550 1.558
Be++ 2.061 2.348 2.402 2.403 2.403

3 Li 0.182 0.339 0.327 0.315 0.323
Be+ 0.643 0.855 0.850 0.836 0.846

4 Be 0.183 0.373 0.327 0.309 0.331

TABLE III. Highest occupied eigenvalues (ǫH) and total en-
ergy differences (I) for several atoms and ion, both exactly
and approximately.

We close the section on atoms with details of eigenval-
ues. It is long known that94, for the exact KS potential,
the highest occupied eigenvalue is at −I, the ionization
energy, but that this condition is violated by approxima-
tion. In Table III, we list −ǫH and I for several atoms and
ions exactly, in HF and in LDA. Koopman first argued95

that −ǫH should be a good approximation to I in HF, and
we see that, just as in reality, it is a better approxima-
tion to I than IHF, from total energy differences. On the
other hand, our 1d LDA exhibits the same well-known
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FIG. 5. (color online) Molecular dissociation for H+
2 for LSDA

and HF. Dashed lines indicate the energy of a single H atom.
Results are in close agreement with the soft-Coulomb inter-
action (see Fig. 1 of Ref. 29 and Fig. 8 of Ref. 31). LSDA
has the well known failure of not dissociating to the correct
limit91.

FIG. 6. (color online) Molecular dissociation for H2 with dots
denoting the Coulson-Fischer points. Curves are shown for
the exact case; also shown are restricted (solid) and unre-
stricted (dashed) LSDA and HF.

failure of real LDA: its KS potential is far too shallow,
so that ǫLDA

H
is above ǫH by a significant amount (up to

10 eV).

B. Molecular Dissociation

Next we consider 1d molecules with an exponential in-
teraction. The behavior is almost identical to that of
the soft-Coulomb documented in Ref. 31. For H+

2 , in
Fig. 5, HF is exact, and ELSDA

0 (R → ∞) does not tend
to ELSDA

0 (H) because of a large self-interaction error96.
For H2, in Fig. 6, the exact curve is calculated with

DMRG, which has no problems whatsoever with stretch-
ing the bond (and can even break triple bonds97). But

HF, restricted to a singlet, tends to the wrong limit as
R → ∞, while unrestricted HF goes to a lower energy
beyond the Coulson-Fischer98 point (R = 2.1) and disso-
ciates to the correct energy (2E(H)) but the wrong spin
symmetry99. The same qualitative behavior occurs for
LSDA at R = 3.6. These results are almost identical
to those with soft-Coulomb interactions (except R = 3.4
for the soft-Coulomb LSDA Coulson-Fischer point), and
qualitatively the same as 3D.

For reference purposes, we also report equilibrium
properties of H2 and H+

2 in Table IV. HF is exact for
H+

2 , but underbinds H2, shortens its bond, and yields
too large a vibrational frequency, just as in 3d. Overall,
LSDA results are substantially more accurate. LSDA
overbinds, yields slightly (to less than 1%) too large a
bond, and only slightly overestimates vibrational fre-
quencies, just as in reality. Vibrational frequencies, ω,
are chosen to fit the function E0 + ω2(r −R0)

2/2.

H+
2 H2

quantity LSDA exact HF LSDA exact
De (eV) 3.94 3.72 2.04 3.25 2.74
R0 (bohr) 2.70 2.50 1.45 1.60 1.56

ω (×103 cm−1) 2.03 2.32 3.91 3.52 3.40

TABLE IV. Electronic well depth De (calculated relative to
well-separated unrestricted atoms), equilibrium bond radius
R0, and vibrational frequency ω for the H+

2 and H2 molecules.

C. Relative Advantages

FIG. 7. (color online) Binding energy curves for two H2

molecules a distance R apart (measured between the inner-
most atoms), demonstrating the much slower decay of the
soft-Coulomb. We subtracted off the asymptote of the bind-
ing curve so that the curves tend to zero. The inset shows the
soft-Coulomb potentials from the two H2 atoms have a sub-
stantial overlap even at R = 18 while the exponential does
not.
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To illustrate the effective shorter range of the expo-
nential relative to a soft-Coulomb, Fig. 7 shows the exact
binding energy of two H2 molecules (with bond lengths
set to their equilibrium values for each type of interac-
tion) as a function of the separation between closest nu-
clei. These closed shell molecules do not bind with either
interaction, but the soft-Coulomb energy decays far more
slowly to its value at ∞.

FIG. 8. (color online) The density of an H10 chain with R =
2.8 with exponential and soft-Coulomb interactions.

Finally, we give an example of the much lower compu-
tational cost of the exponential in DMRG over that of
the soft-Coulomb due to the reasons discussed in Sec. I.
In Fig. 8, we plot the densities and potentials for a 10-
atom H chain with separations R = 2.8. The densities
are sufficiently similar for all practical purposes (but not
the potentials) while the computational time per DMRG
sweep was about 4 times longer for the soft-Coulomb.
With increasing interatomic distance, Fig. 9 shows a de-
creased wall time of more than a factor of 20 for calcu-
lating larger separations.

VI. CONCLUSION

We have introduced an exponential interaction that
allows us to mimic many features of real electronic struc-
ture with 1d systems. Using the exponential in place
of the more standard soft-Coulomb interaction not only
improves the computational time of DMRG , but it also
allows faster convergence for other calculations due to
its fast decay and local nature. To facilitate comparison
with existing calculations, we choose the parameters in
the exponential to best match a soft-Coulomb potential.
A parameterization for the LDA is given by calculating
and fitting to uniform gas data.

FIG. 9. (color online) The exponential performs sweeps in
DMRG much faster, leading to a greatly reduced computa-
tional time. Here we show the cost of the H10 of Fig. 8 as a
function of interatomic separation. The number of many body
states is fixed at 30 for 10 sweeps and each system has 1161
grid points. The maximum truncation error in each sweep is
∼ 10−8.
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