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The surface Fermi arc states in Z2 Weyl semimetals A3Bi (A = Na, K, Rb) are studied by
employing a continuum low-energy effective model. It is shown that the surface Fermi arc states
can be classified with respect to the ud-parity symmetry. Because of the symmetry, the arcs come
in mirror symmetric pairs. The effects of symmetry breaking terms on the structure of the Fermi
arcs are also studied. Among other results, we find at least two qualitatively different types of the
surface Fermi arcs. The arcs of the first type link disconnected sheets of the bulk Fermi surface,
while arcs of the second type link different points of the same bulk Fermi surface sheet.

PACS numbers: 73.20.At, 71.10.-w, 03.65.Vf

I. INTRODUCTION

3D Dirac semimetals are 3D analogs of graphene1. Their conduction and valence bands touch only at discrete
(Dirac) points in the Brillouin zone with the electron states described by the 3D massless Dirac equation. Each Dirac
point in momentum space is composed of two superimposed Weyl nodes of opposite chirality. Such points are usually
obtained by fine tuning of certain physical parameters (e.g., the spin-orbit coupling strength or chemical composition)
and are difficult to control. Additionally, they are often unstable with respect to mixing of Weyl modes and opening
a gap.
An important idea was proposed in Refs.2,3, where it was shown that an appropriate crystal symmetry can protect

and stabilize the gapless 3D Dirac points. Indeed, if a pair of crossing bands belong to different irreducible repre-
sentations of the discrete (rotational) crystal symmetry and if this symmetry is not broken dynamically, then the
mass term for the corresponding Dirac fermions will be prohibited. The ab initio calculations in Ref.2 showed that
β-cristobalite BiO2 exhibits three Dirac points at the Fermi level. Unfortunately, this material is metastable. By
using the first-principle calculations and effective model analysis, the compounds A3Bi (A=Na, K, Rb) and Cd3As2
were identified in Refs.4,5 as possible 3D Dirac semimetals protected by crystal symmetry. Giant diamagnetism,
linear quantum magnetoresistance, and the quantum spin Hall effect are expected in these materials. Furthermore,
various topologically distinct phases can be realized in these compounds by breaking the time-reversal and inversion
symmetries. By using angle-resolved photoemission spectroscopy, the Dirac semimetal band structure was indeed
observed6–8 in Cd3As2 and Na3Bi opening the path toward experimental investigations of the properties of 3D Dirac
semimetals.
Weyl semimetals is another group of materials that is closely related to 3D Dirac semimetals and have already

attracted a lot of theoretical interest (for reviews, see Refs.9–11). They are characterized by topologically non-trivial
Weyl nodes in reciprocal space. Weyl nodes are monopoles of the Berry flux and, therefore, can appear or annihilate
only in pairs. Weyl semimetals were proposed to be realized in pyrochlore iridates12, topological heterostructures13,
magnetically doped topological insulators14, and nonmagnetic materials such as TaAs15,16. Recently, first experimental
studies of Weyl semimetal candidate TaAs were reported in Refs.17–20. The authors observed unusual transport
properties and surface states that are characteristic of the Weyl semimetal phase.
Since magnetic field breaks the time-reversal symmetry, a Dirac (semi-)metal in a magnetic field may transform

into a Weyl one with Weyl nodes separated in momentum space by a nonzero chiral shift21. Experimentally, the
transition from a Dirac metal to a Weyl one in a magnetic field might have been observed in Bi1−xSbx for x ≈ 0.0322.
In moderately strong magnetic fields, a negative magnetoresistivity is observed and interpreted as a fingerprint23–25

of a Weyl/Dirac metal phase.
The surface Fermi arcs12,26–28, which connect Weyl nodes of opposite chirality, are related to the non-trivial topology

of Weyl semimetals. In equilibrium, the presence of such surface states ensures that the chemical potentials at different
Weyl points are identical26. Although Fermi arcs always connect Weyl nodes of opposite chirality, their shapes depend
on the boundary conditions and, as shown in Ref.29, Fermi arcs of an arbitrary form can be engineered. The Fermi
arcs on the opposite surfaces of a semimetal sample together with the Fermi surfaces of bulk states form a closed
Fermi surface. In an external magnetic field, the nontrivial structure of the corresponding Fermi surface gives rise to
closed magnetic orbits involving the surface Fermi arcs30. These orbits produce periodic quantum oscillations of the
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density of states in a magnetic field leading to unconventional Fermiology of surface states. It was argued in Ref.31

that the interaction effects can change the separation between Weyl nodes in momentum space and the length of the
Fermi arcs in the reciprocal space and, thus, affect these magnetic orbits. As a result, we found that the period of
oscillations of the density of states related to closed magnetic orbits involving Fermi arcs has a non-trivial dependence
on the orientation of the magnetic field projection in the plane of the semimetal surface31. If experimentally observed,
such a dependence would provide an important clue to the effects of interactions in Weyl semimetals.
Normally, one would not expect any surface Fermi arcs in 3D Dirac semimetals because the Dirac point has no

topological charge and the associated Berry flux vanishes. In Refs.4,5, however, it was shown that the 3D Dirac
semimetals A3Bi (A=Na, K, Rb) and Cd3As2 possess non-trivial surface Fermi arcs. This finding suggests a topolog-
ically nontrivial nature of the corresponding Dirac materials. Recently we showed32 that this is indeed the case for
Dirac semimetals A3Bi (A = Na,K,Rb). The physical reason for their nontrivial topological properties is connected
with a discrete symmetry of the low-energy effective Hamiltonian. The symmetry classification allows one to split
all electron states into two separate sectors, each describing a Weyl semimetal with a pair of Weyl nodes and broken
time-reversal symmetry. The time-reversal symmetry is preserved in the complete theory because its transformation
interchanges states from the two different sectors. The nontrivial topological structure of each sector was supported
by explicit calculations of the Berry curvature, which revealed a pair of monopoles of the Berry flux at the positions
of Weyl nodes in each of the two sectors of these semimetals32. In essence, these results demonstrated that Dirac
semimetals A3Bi (A = Na,K,Rb) are, in fact, Z2 Weyl semimetals.
In Refs.4,5, the surface Fermi arcs in 3D Dirac semimetals were obtained in a tight-binding model by using an

iterative method that produces the surface Green’s function of the semi-infinite system33. The imaginary part of the
surface Green’s function makes possible to determine the local density of states at the surface. While such a technique
is very powerful, it is essentially a “black box”. In contrast, in the present paper, we study analytically the surface
Fermi arc states by employing the continuum low-energy effective model with appropriate boundary conditions at
the surface. We hope that such a consideration will provide a deeper understanding of the physical properties and
characteristics of the surface Fermi arcs, as well as shed more light on the nontrivial topological properties of the
A3Bi compounds.
The paper is organized as follows. In Sec. II, we introduce the low-energy effective model and discuss its symmetries.

The recently revealed Z2 Weyl semimetal structure of A3Bi (A = Na, K, Rb) is emphasized. In order to clarify the
origin and the structure of the surface Fermi arcs, we study in Sec. III the corresponding states in a simplified model
that contains a single Weyl semimetal sector. In Sec. IV, we present the rigorous analysis of the surface Fermi
arc states in a realistic low-energy model of semimetals A3Bi (A = Na, K, Rb). The effects of several possible
symmetry breaking terms on the structure of the surface Fermi arc states are investigated in Sec. V. The discussion
and the summary of the main results are given in Sec. VI. Technical details regarding the symmetry properties and
classification of the Fermi arc states are presented in Appendices A and B.
For convenience, throughout the paper, we set ~ = 1 and c = 1.

II. MODEL

A. Low-energy effective Hamiltonian

The low-energy Hamiltonian derived in Ref.4 for A3Bi (A = Na,K,Rb) has the form

H(k) = ǫ0(k) +H4×4, (1)

where ǫ0(k) = C0 + C1k
2
z + C2(k

2
x + k2y) and

H4×4 =







M(k) Ak+ 0 B∗(k)
Ak− −M(k) B∗(k) 0
0 B(k) M(k) −Ak−

B(k) 0 −Ak+ −M(k)






. (2)

While the diagonal elements of H4×4 are given in terms of a single function, M(k) =M0 −M1k
2
z −M2(k

2
x + k2y), the

off-diagonal elements are determined by functions Ak± and B(k) = αkzk
2
+, where k± = kx ± iky.

By fitting the energy spectrum of the effective Hamiltonian with the ab initio calculations, the numerical values of
parameters in the effective model were determined in Ref.4. They are

C0 = −0.06382 eV, C1 = 8.7536 eV Å
2
, C2 = −8.4008 eV Å

2
,

M0 = −0.08686 eV, M1 = −10.6424 eV Å
2
, M2 = −10.3610 eV Å

2
,

A = 2.4598 eV Å, a = 5.448 Å, c = 9.655 Å,

(3)
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where we also included the lattice constants a and c. Since no specific value for α was quoted in Ref.4, we will treat
it as a free parameter below.
The energy eigenvalues of the low-energy Hamiltonian (1) are given by the following explicit expression:

E(k) = ǫ0(k) ±
√

M2(k) +A2k+k− + |B(k)|2. (4)

It is easy to check that the term with the square root vanishes at the two Dirac points, k±
0 = (0, 0,±√

m), where√
m ≡

√

M0/M1. With the choice of the low-energy parameters in Eq. (3), we find that
√
m ≈ 0.09034 Å

−1
. The

function B(k) plays the role of a momentum dependent mass (gap) function that vanishes at the Dirac points.
It is instructive to show that linearizing M(k) in the vicinity of the Dirac points k

±
0 , Hamiltonian (2) takes the

form of a 3D massive Dirac Hamiltonian. In the vicinity of k−
0 , expanding M(k) to the linear order in δk = k− k

−
0 ,

we obtain

H lin
4×4 =

(

A(k̃xσx − k̃yσy − k̃zσz) B∗(k)σx
B(k)σx −A k̃ · σ

)

, (5)

where σ are Pauli matrices and k̃ = (kx, ky, 2δkz
√
M0M1/A). Furthermore, by performing the unitary transformation,

H̃ lin
4×4 ≡ U+

x H
lin
4×4Ux, where Ux = diag(σx, I2) and I2 is the 2× 2 unit matrix, we find that the Hamiltonian takes the

standard form of the Dirac Hamiltonian in the chiral representation,

H̃ lin
4×4 =

(

A k̃ · σ B∗(k)

B(k) −A k̃ · σ

)

. (6)

Taking into account that the mass term B(k) vanishes at the Dirac point, we conclude that the upper and lower
2 × 2 blocks describe quasiparticle states of opposite chiralities. Also, since the leading order nonzero corrections to
the mass function are quadratic in momentum, the chirality remains a good quantum number in a sufficiently small
vicinity of the Dirac point. Hamiltonian (6), describing two subsets of the opposite chirality states near a single Dirac
point, does not appear to have any interesting topological properties. Also, by itself, it is unlikely to give rise to any
Fermi arcs states. It is easy to check, however, that Hamiltonian (2) linearized near k+

0 has a similar structure and
describes two additional subsets of the opposite chirality states. As we argue below, the superposition of the two
sectors of the theory is nontrivial and gives rise to an interesting topological structure32.

B. Symmetries

Let us briefly review the symmetry properties of the low-energy Hamiltonian following Ref.32. We start by pointing
out that, as expected, the Hamiltonian (1) is invariant under the time-reversal and inversion symmetries, i.e.,

ΘH−kΘ
−1 = Hk, (time-reversal symmetry) (7)

PH−kP
−1 = Hk, (inversion symmetry) (8)

where Θ = TK (K is complex conjugation) and

T =







0 0 1 0
0 0 0 1
−1 0 0 0
0 −1 0 0






, P =







1 0 0 0
0 −1 0 0
0 0 1 0
0 0 0 −1






. (9)

Having both, the time-reversal and inversion symmetries, suggests that the corresponding compounds are not Weyl
semimetals. This is not the whole story, however.
As shown in Ref.32, the low-energy Hamiltonian in Eq. (1) possesses a new discrete symmetry, the so-called up-

down parity (ud-parity), that protects its topological nature. In order to understand the corresponding symmetry, it
is instructive to start from the approximate Hamiltonian without the mass function B(k) (or, alternatively, α = 0).
In this case, the Hamiltonian takes a block diagonal form: H4×4(α = 0) ≡ H+

2×2 ⊕ H−
2×2. The explicit form of the

upper block is given by

H+
2×2 =

(

M0 −M1k
2
z −M2(k

2
x + k2y) A(kx + iky)

A(kx − iky) −
[

M0 −M1k
2
z −M2(k

2
x + k2y)

]

)

. (10)
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This block Hamiltonian defines a Weyl semimetal with two Weyl nodes located at k±
0 . (The lower block H−

2×2 has a

similar form, except that kx is replaced by −kx.) It is well known28,30 that such a Weyl semimetal has the surface
Fermi arc in the form of a straight line connecting the Weyl nodes of opposite chirality at k

+
0 and k

−
0 . Because of

the sign difference, kx → −kx, the chiralities of the states near the Weyl nodes at k
±
0 are opposite for the upper

and lower block Hamiltonians. Thus, the complete 4 × 4 block diagonal Hamiltonian H4×4(α = 0) describes two
superimposed copies of Weyl semimetal with two pairs of overlapping nodes. Since the opposite chirality Weyl nodes
coincide exactly in momentum space, they effectively give rise to a pair of Dirac points at k

±
0 . At the same time,

because the opposite chirality nodes come from two different Weyl copies, they cannot annihilate and cannot form
topologically trivial Dirac points. In fact, the corresponding approximate model describes a Z2 Weyl semimetal32.
The nontrivial topological properties, associated with the underlying Z2 Weyl semimetal structure, ensure that the
resulting Dirac semimetal possesses surface Fermi arcs.
It is easy to show that the existence of the Z2 Weyl semimetal structure in the absence of B(k) is connected with

the continuous symmetry U+(1) × U−(1) of the approximate Hamiltonian H4×4(α = 0). This symmetry describes
independent phase transformations of the spinors that correspond to the up- and down-block Hamiltonians, H+

2×2 and

H−
2×2, respectively.
For B(k) 6= 0, the continuous symmetry U+(1) × U−(1) is broken down to its diagonal subgroup Uem(1) that

describes the usual charge conservation. However, the low-energy Hamiltonian (1) with the momentum dependent
mass function B(k) = αkzk

2
+ possesses a ud-parity, defined by the following transformation32:

UH−kz
U−1 = Hkz

, (ud-parity), (11)

where matrix U has the following block diagonal form: U ≡ diag(I2,−I2) and I2 is the 2 × 2 unit matrix. For the
Hamiltonian to be symmetric under the ud-parity, it is crucial that the mass function B(k) changes its sign when
kz → −kz [while the functions ǫ0(k) and M(k) in the diagonal elements do not change their signs]. In the special
case of a momentum independent mass function, such a discrete symmetry does not exist.
As was argued in Ref.32, the existence of the noncommuting time-reversal and ud-parity symmetries implies that

the A3Bi semimetal is, in fact, a Z2 Weyl semimetal. In such a semimetal, all quasiparticle states can be split into
two separate groups, labeled by the eigenvalues χ = ±1 of Uχ = UΠkz

, where Πkz
is the operator that changes the

sign of the z component of momentum, kz → −kz. Effectively, each group of states defines a Weyl semimetal with a
broken time-reversal symmetry. The corresponding symmetry is preserved in the complete theory, in which the two
copies of Weyl semimetals are superimposed.
The Z2 Weyl semimetal structure of A3Bi (A = Na,K,Rb) is also supported by the explicit calculation of the Berry

connection and the Berry curvature in each Weyl sector described32. In particular, the corresponding results for the
curvature in the momentum space reveal a clear dipole structure. It is natural, that each Weyl sector, described by
quasiparticle states with a fixed eigenvalue of Uχ, should give rise to Fermi arcs connecting the pairs Weyl nodes at
k
±
0 . Moreover, such arcs should be topologically protected and could not be removed by small perturbations of model

parameters.
In our discussion of Fermi arcs below, it will be also useful to take into account that there exists yet another discrete

symmetry defined by the following transformation:

ŨH−kx
Ũ−1 = Hkx

, (12)

where

Ũ =







0 0 1 0
0 0 0 1
1 0 0 0
0 1 0 0






. (13)

It is interesting to note that the product of the Uχ and ŨΠkx
transformations UχŨΠkx

= TΠkx
Πkz

is also a symmetry
of the low-energy Hamiltonian (1). The symmetry TΠkx

Πkz
is related to the time-reversal symmetry. This follows

from the fact that KΠky
is also the symmetry of the low-energy Hamiltonian (1). Together the operators Uχ, ŨΠkx

,
and TΠkx

Πkz
form a non-commutative discrete group.

Hamiltonian (1) is rather complicated, therefore, the corresponding analytic calculations of its surface Fermi states
are quite involved and not much revealing. Therefore, our general strategy in analyzing these states will be to start
from a simplified model and then move forward to the realistic model by adding step-by-step the necessary missing
pieces.
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III. SURFACE FERMI ARCS IN SIMPLIFIED 2× 2 MODEL

In order to get an insight into the structure of the surface Fermi arcs in the low-energy model described by
Hamiltonian (1), it is instructive to first study the surface Fermi arcs in a simplified 2× 2 model, given by one of the
diagonal blocks, e.g., H+

2×2 in Eq. (10). (The solutions for the other block Hamiltonian, H−
2×2, can be obtained simply

by changing kx → −kx.) For completeness, we will also include the term ǫ0(k) proportional to the unit matrix, which
is present in the low-energy Hamiltonian. Thus, our model 2× 2 Hamiltonian reads

H2×2 = ǫ0(k) +H+
2×2 = ǫ0(k) +

(

M0 −M1k
2
z −M2(k

2
x + k2y) A(kx + iky)

A(kx − iky) −
[

M0 −M1k
2
z −M2(k

2
x + k2y)

]

)

. (14)

Before proceeding to the analysis, it is convenient to perform a unitary transformation, H̃2×2 ≡ U−1
y H2×2Uy, where

Uy = 1√
2
(I2 + iσy). The transformed Hamiltonian has the following explicit form:

H̃2×2 = ǫ0(k) +
[

γ
(

k2z −m
)

−M2(k
2
x + k2y)

]

σx − vkxσz − vkyσy , (15)

where we introduced the notations similar to those in Ref.28: v = A and γ = −M1.
To study the surface Fermi arcs, we will assume that the surface of a semimetal is at y = 0. The semimetal itself

is in the upper y > 0 (lower y < 0) half-space when we describe the surface arc states on the bottom (top) surface.
(Of course, in the absence of any effects that break the inversion symmetry ky → −ky explicitly, the two cases will
be related by a simple symmetry transformation.) Without loss of generality, we will concentrate primarily on the
bottom surface states. The boundary condition on the semimetal surface will be imposed by replacing the parameter
m with the −m̃ on the vacuum side of the boundary and taking the limit m̃→ ∞28. From a physics viewpoint, such
a replacement is the simplest way to prevent quasiparticle from escaping into the vacuum.
Taking into account that the Fermi arc states should be localized at the y = 0 boundary, let us rewrite Hamiltonian

(15) in the following form:

H̃2×2 =

(

C0 + C1k
2
z + C2(k

2
x − ∂2y)− vkx γ

(

k2z −m
)

−M2(k
2
x − ∂2y) + v∂y

γ
(

k2z −m
)

−M2(k
2
x − ∂2y)− v∂y C0 + C1k

2
z + C2(k

2
x − ∂2y) + vkx

)

, (16)

where, for the convenience of further derivations, we replaced ky ≡ −i∂y.

A. Simplified model with C2 = M2 = 0

We will see in what follows that the presence of the terms with the second derivative with respect to y in Hamiltonian
(16) leads to many technical complications and makes the analysis rather involved. Therefore, to set up the stage, in
this subsection we start our analysis in an even more simplified model, described by Hamiltonian (16) with C2 and

M2 set to zero. Then, by introducing the two-component spinor Ψ = (ψ1, ψ2)
T
, we see that the eigenvalue problem

(H̃2×2 − E)Ψ = 0 is equivalent to the following system of equations:
(

−vkx + C1k
2
z + C0

)

ψ1 +
[

v∂y + γk2z − γm(y)
]

ψ2 = Eψ1, (17)
(

vkx + C1k
2
z + C0

)

ψ2 +
[

−v∂y + γk2z − γm(y)
]

ψ1 = Eψ2. (18)

Here m(y) = mθ(y)− m̃θ(−y), where θ(y) is the step function. Recall that, by assumption, the boundary condition
at y = 0 is enforced by taking the limit m̃ → ∞ on the vacuum side (y < 0). Formally, Eqs. (17) and (18) have the
following surface state solutions:

Ψ1(y) =

(

N1e
γ

v

∫
y dy′[k2

z−m(y′)]

0

)

, Ψ2(y) =

(

0

N2e
−γ

v

∫
y
dy′[k2

z−m(y′)]

)

, (19)

In the region occupied by the semimetal (y > 0), the solution Ψ1(y) is normalizable only for k2z −m < 0, while the
solution Ψ2(y) is normalizable only for k2z −m > 0. However, on the vacuum side (y < 0), only Ψ1(y) is normalizable.
The dispersion relation for this normalizable surface state solution follows from Eq. (17). It is given by

E = −vkx + C1k
2
z + C0. (20)

By making use of this relation, we derive the equation for the bottom surface Fermi arc in the transverse kxkz plane,

kx = −E − C1k
2
z − C0

v
. (21)
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It is instructive to compare this surface Fermi arc with that in the model of Ref.28, where C1 = 0. While the surface
Fermi arcs run between kz = −√

m and kz =
√
m in both models, the arcs in the model of Ref.28 do not depend on

the momentum kz . This is in contrast to the surface Fermi arc in Eq. (21), for which kx is a quadratic function of kz.
Thus, we see that the presence of the quadratic in kz term in the diagonal component of Hamiltonian (16) produces
a nonzero curvature of the surface Fermi arcs in momentum space. For illustration, several surface Fermi arcs for
different values of the Fermi energy are shown in Fig. 1. The arcs have parabolic shapes. The corresponding arcs in
the model of Ref.28 would be given by straight lines.

FIG. 1: (Color online) The bottom surface Fermi arcs for several different values of the Fermi energy in a simplified two-
component model, described by Hamiltonian (16) with C2 = M2 = 0. The analytical form of the arcs is given in Eq. (21).

Before concluding this section, let us note that the solution ψ2(y) in Eq. (19) describes Fermi arcs on the top
surface. We find from Eq. (18) that the corresponding dispersion relation is given by E = vkx + C1k

2
z + C0. Let us

also note in passing that there exists another set of the (top and bottom) Fermi arcs for the lower block Hamiltonian,
H−

2×2. The corresponding arcs are obtained from the solutions for the upper block Hamiltonian, H+
2×2, by making the

replacement kx → −kx.

B. The case with C2 6= 0 and M2 6= 0

Let us now consider the general case with C2 6= 0 andM2 6= 0. By noting that the Hamiltonian in Eq. (16) contains

second derivatives with respect to y, the eigenvalue problem (H̃2×2 − E)Ψ = 0 becomes more complicated. In the
semimetal (y > 0), it is equivalent to the system of coupled equations:

[

C2(k
2
x − ∂2y)− vkx + C1k

2
z + C0

]

ψ1 +
[

−M2(k
2
x − ∂2y) + v∂y + γk2z − γm

]

ψ2 = Eψ1, (22)
[

C2(k
2
x − ∂2y) + vkx + C1k

2
z + C0

]

ψ2 +
[

−M2(k
2
x − ∂2y)− v∂y + γk2z − γm

]

ψ1 = Eψ2. (23)

On the vacuum side (y < 0), the corresponding set of equations has the same form, but with m replaced by −m̃.
At the vacuum-semimetal interface (y = 0), the wave functions and their derivatives should satisfy the conditions of
continuity, see Eqs. (A1) through (A4) in Appendix A1.
The key details of the derivation of the surface Fermi arc solutions are presented in Appendix A1. On the semimetal

side, the spinor structure of the solution takes the following form:

Ψy>0(y) =

2
∑

i=1

(

ai
bi

)

e−piy, (24)
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FIG. 2: (Color online) The bottom surface Fermi arcs (25) for several values of the Fermi energy in a two-component model,
described by Hamiltonian (16) with C2 6= 0 and M2 6= 0.

where the explicit expressions for the exponents are given in Eq. (A9). Note that the exponents take real values in
the case of surface Fermi arc states. The condition of existence of nontrivial surface Fermi arc solutions is given by

−C2(p
2
1 − k2x) + C1k

2
z + C0 − E − vkx

−M2(p21 − k2x)− γ(k2z −m) + vp1
=

−C2(p
2
2 − k2x) + C1k

2
z + C0 − E − vkx

−M2(p22 − k2x)− γ(k2z −m) + vp2
. (25)

This equation defines the functional dependence kz(kx) for the possible surface Fermi arc states. A numerical study
shows that nontrivial solutions exist only in a finite range of energies, i.e., −0.168 eV . E . 0.373 eV. Several
solutions for different values of the energy are shown in Fig. 2. The results of the numerical analysis show that the
following condition is satisfied: b1/a1 = b2/a2 = 0.5115 for all solutions. It is worth noting that the E = 0 surface
Fermi arc in Fig. 2 appears to be almost identical to the corresponding arc, obtained by a very different method in
Ref.4, see Fig. 3c in that paper.
So far, we considered the arc states only for one of the two-component block Hamiltonians, defined in Eq. (14).

Similar solutions also exist for the lower two-component block Hamiltonian, ǫ0(k) + H−
2×2. It is straightforward to

show that the solutions to the eigenvalue problem for the lower block are the same as for the upper one, after one
makes the replacement kx → −kx. Graphically these solutions are mirror images of the arcs in Fig. 2.
Before concluding this subsection, let us also note that the description of the Fermi arc states on the top surface is

similar to the bottom ones. By assuming that Weyl semimetal is at y < 0 and the vacuum is at y > 0, the appropriate
boundary conditions are implemented by using the y-dependent parameter m(y) = mθ(−y) − m̃θ(y) and taking the
limit m̃ → ∞ at the end. Up to a reflection kx → −kx, the corresponding final results for the Fermi arcs on the top
surface look similar to those on the bottom surface, shown in Fig. 2.

C. Effective Hamiltonian for surface Fermi arc states

The block Hamiltonians in the simplified model at hand can be naturally separated into two parts, i.e., H̃±
2×2 =

H0 +H±
1 , where the zeroth order part H0 corresponds to the original Hamiltonian at kx = kz = 0, i.e.,

H0 =

(

C0 − C2∂
2
y −γm+M2∂

2
y + v∂y

−γm+M2∂
2
y − v∂y C0 − C2∂

2
y

)

. (26)
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while H1 contains all the terms with nontrivial dependence on kx and kz, i.e.,

H±
1 =

(

C1k
2
z + C2k

2
x ∓ vkx γk2z −M2k

2
x

γk2z −M2k
2
x C1k

2
z + C2k

2
x ± vkx

)

. (27)

As in the previous analysis, we used ky ≡ −i∂y. To start with, we have to solve the eigenvalue problem with the
zeroth order Hamiltonian, H0ψ0 = λψ0. By following the same approach as in Appendix A 1, but with kx = kz = 0,
we find straightforwardly the explicit solutions for the surface Fermi arcs ψ0. The corresponding energy parameter is
found to be λ = −0.13425 eV. Then, the effective Hamiltonian for the surface states is obtained by integrating over
the perpendicular direction y, i.e.,

H±
surf = λ+

∫ ∞

0

dyψ†
0H1ψ0 = λ+ C1k

2
z + C2k

2
x ∓ vkx

1−Q2

1 +Q2
+ 2(γk2z −M2k

2
x)

Q

1 +Q2

≈ λ∓ vsurfkx + γsurfk
2
z . (28)

where Q ≈ 0.5115, vsurf ≈ 1.440 eV Å and γsurf ≈ 17.38 eV Å
2
. Note that the quadratic term in kx vanishes after the

model parameters are used.
As is easy to check, the effective Hamiltonian in Eq. (28) reproduces almost perfectly the shape of the Fermi arcs

in the kx-kz plane. However, it does not contain the information about the finite length of the arcs. We could explain
this fact in part by pointing out that the corresponding information is encoded in the terms quadratic in momenta
kx and kz . When such terms are omitted from the zeroth order Hamiltonian H0, the existence of the surface states
formally appears to be unconstrained. Therefore, the effective Hamiltonian in Eq. (28) will be truly useful only when
supplemented by its range of validity in the kx-kz plane. This, however, seems to diminish its practical value because
the corresponding range depends on the energy.

IV. FERMI ARCS IN REALISTIC MODEL

In this section we will consider complete low-energy theory described by Hamiltonian (1) with α 6= 0. By performing
a unitary transformation in Eq. (1), defined by Uy = 1√

2
I2 ⊗ (I2 + iσy), we arrive at the following equivalent form of

the Hamiltonian:

H̃ =
[

C2(k
2
x − ∂2y) + C1k

2
z + C0

]

I2 ⊗ I2 −M2(k
2
x − ∂2y)I2 ⊗ σx

+







−vkx v∂y + γ(k2z −m) −αkz(kx − ∂y)
2 0

−v∂y + γ(k2z −m) vkx 0 αkz(kx − ∂y)
2

−αkz(kx + ∂y)
2 0 vkx v∂y + γ(k2z −m)

0 αkz(kx + ∂y)
2 −v∂y + γ(k2z −m) −vkx






, (29)

By introducing the spinor wave function Ψ = (ψ1, ψ2, ψ3, ψ4)
T
, we reduce the eigenvalue problem (H̃ − E)Ψ = 0 in

the semimetal (y > 0) to the following system of equations:
[

C2(k
2
x − ∂2y)− vkx + C1k

2
z + C0 − E

]

ψ1 +
[

−M2(k
2
x − ∂2y) + v∂y + γk2z − γm

]

ψ2 − αkz(kx − ∂y)
2ψ3 = 0, (30)

[

−M2(k
2
x − ∂2y)− v∂y + γk2z − γm

]

ψ1 +
[

C2(k
2
x − ∂2y) + vkx + C1k

2
z + C0 − E

]

ψ2 + αkz(kx − ∂y)
2ψ4 = 0, (31)

−αkz(kx + ∂y)
2ψ1 +

[

C2(k
2
x − ∂2y) + vkx + C1k

2
z + C0 − E

]

ψ3 +
[

−M2(k
2
x − ∂2y) + v∂y + γk2z − γm

]

ψ4 = 0, (32)

αkz(kx + ∂y)
2ψ2 +

[

−M2(k
2
x − ∂2y)− v∂y + γk2z − γm

]

ψ3 +
[

C2(k
2
x − ∂2y)− vkx + C1k

2
z + C0 − E

]

ψ4 = 0. (33)

On the vacuum side (y < 0), the corresponding set of equations has the same form, but with m replaced by −m̃. The
corresponding full set of equations should be also supplemented by the conditions of continuity of the wave functions
and their derivatives across the vacuum-semimetal interface at y = 0, see Eqs. (A16) through (A20) in Appendix A 2.
As shown in Appendix A2, the spinor structure of the solution on the semimetal side takes the form:

Ψy>0(y) =

2
∑

i=1







ai
bi
ci
di






e−piy, (34)

where the explicit expressions for the exponents are given in Eq. (A23). In the case of surface Fermi arc solutions,
the exponents take real values. A nontrivial solution exists when the following condition is satisfied:

(

Q+
1 −Q+

2

) (

Q−
1 −Q−

2

)

−
(

T+
1 − T+

2

) (

T−
1 − T−

2

)

= 0. (35)
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where, by definition, Q±
i ≡ Q(pi,±kx) and T±

i ≡ T (pi,±kx), and the functions Q(p, kx) and T (p, kx) are defined in
Eqs. (A12) and (A26), respectively.
By taking into account that T (p, kx) vanishes at α = 0, one finds that the above condition reduces to its analogue

in Eq. (25) in the two-component model. Indeed, a nontrivial solution exists in the model with the two-component
upper (lower) block Hamiltonian when Q+

1 = Q+
2 (Q−

1 = Q−
2 ) is satisfied. We would like to emphasize that the

classification of the arc states remains essentially the same also in a general case with α 6= 0. However, because of the
mixing between the upper and lower block Hamiltonians, the arcs are labeled by the eigenvalues of the Uχ operator,
see Appendix B. The eigenstates with χ = +1 (χ = −1) are the generalizations of the arcs from the upper (lower)
block Hamiltonian.
The numerical results for the surface Fermi arc states are shown in Fig. 3 for α = 1 eV Å

3
(left panel) and

α = 50 eV Å
3
(right panel). At fixed energy, there are two surface Fermi arcs related to two different sectors of

the A3Bi (A=Na, K, Rb) compounds with definite eigenvalue of Uχ. One can check that the wave functions which

describe these surface Fermi arcs are related to each other by means of the ŨΠkx
transformation, see Appendix B.

By comparing these results with those in the two-component model, see Fig. 2, we find that the quantitative effect
of a nonzero α on the Fermi arcs is small even when α is moderately large. The only qualitative effect due to α is a
reconnection of the pair of arcs (from predominantly up and predominantly down sectors) at negative values of the
Fermi energy. The underlying physics of such an effect is likely to be connected with the loss of the chirality as a
good quantum number for quasiparticles away from the Dirac/Weyl nodes. Because of the discrete ud-parity, which
is preserved even at large values of α, there are still two sectors of the theory and there are still small nontrivial arcs
present, as we see from the right panel of Fig. 3. It will be interesting to explore whether the reconnection of the pairs
of arcs would also appear in the microscopic theory. It may well be an artifact of the low-energy theory used here.

FIG. 3: (Color online) The Fermi arcs solutions in the plane of transverse momenta for α = 1 eV Å
3

(left panel) and α = 50 eV Å
3

(right panel).

V. FERMI ARCS AND WEAK BREAKING OF TIME-REVERSAL SYMMETRY

As we discussed in detail in Sec. II B, the low-energy effective Hamiltonian (1) is invariant under the time-reversal
and inversion symmetries. Moreover, these symmetries play an important role in defining the physical properties of
A3Bi semimetals. Thus, it is natural to ask about possible effects on the structure (and perhaps even the existence) of
surface Fermi arcs due to breaking of these symmetries. From the physics viewpoint, for example, the corresponding
discrete symmetries could be broken explicitly by magnetic doping or an external magnetic field.
In order to study the symmetry breaking effects, we will add to the low-energy Hamiltonian (1) two additional
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terms controlled by parameters m1 and µ̃1:

Hsb = H(k)−
(

µ̃1I2 + σzγm1 0
0 −µ̃1I2 − σzγm1

)

. (36)

By analysing the Schwinger–Dyson equation for the quasiparticle propagator in A3Bi semimetals in a magnetic field,
we found that these terms are indeed perturbatively generated. Alternatively, these terms can be induced by magnetic
doping. The value of µ̃1 could be interpreted as a mismatch between the chemical potentials of quasiparticle states
in the Weyl sectors of the theory. The value of m1 is a mismatch of the parameter m that determines the chiral shift
in the two sectors. This means that whenever these symmetry breaking parameters appear, the Z2 Weyl semimetal
will get automatically transformed into a true Weyl semimetal with four non-degenerate Weyl nodes.
By performing a unitary transformation in Eq. (36), defined by matrix Uy = 1√

2
I2 ⊗ (I2 + iσy), we arrive at the

following equivalent Hamiltonian:

H̃sb =
[

C2(k
2
x − ∂2y) + C1k

2
z + C0

]

I2 ⊗ I2 −M2(k
2
x − ∂2y)I2 ⊗ σx

+









−vkx − µ̃1 v∂y + γ
(

k2z −m−m1

)

−αkz(kx − ∂y)
2 0

−v∂y + γ
(

k2z −m−m1

)

vkx − µ̃1 0 αkz(kx − ∂y)
2

−αkz(kx + ∂y)
2 0 vkx + µ̃1 v∂y + γ

(

k2z −m+m1

)

0 αkz(kx + ∂y)
2 −v∂y + γ

(

k2z −m+m1

)

−vkx + µ̃1









.

(37)

It is straightforward, although tedious to repeat the same analysis as in Sec. IV.
The general surface state solution is of the same type, i.e., Ψy>0(y) = Ψ0e

−py , where Ψ0 ≡ (a, b, c, d)T is a constant
spinor. However, the characteristic equation is considerably more complicated,

{

[

−C2(p
2 − k2x) + C1k

2
z + C0 − µ̃1 − E

]2 −
[

M2(p
2 − k2x) + γ(k2z −m−m1)

]2
+ v2(p2 − k2x)− α2k2z(p

2 − k2x)
2
}

×
{

[

−C2(p
2 − k2x) + C1k

2
z + C0 + µ̃1 − E

]2 −
[

M2(p
2 − k2x) + γ(k2z −m+m1)

]2
+ v2(p2 − k2x)− α2k2z(p

2 − k2x)
2
}

+4α2k2z(p
2 − k2x)

2
(

µ̃2
1 − γ2m2

1

)

= 0. (38)

The important effect of the symmetry breaking terms with nonzero m1 and µ̃1 is that the new characteristic equation
has four (instead of two degenerate) pairs of distinct solutions: p = ±pi, with i = 1, 2, 3, 4. The general spinor solution
in the semimetal takes the following form:

Ψy>0(y) =

4
∑

i=1







ai
bi
ci
di






e−piy. (39)

By making use of the equation of motion, the components bi and di can be expressed in terms of ai and ci,

bi =
−C2(p

2
i − k2x) + C1k

2
z + C0 − µ̃1 − E − vkx

−M2(p2i − k2x)− γ (k2z −m−m1) + vpi
ai −

αkz(pi + kx)
2

−M2(p2i − k2x)− γ (k2z −m−m1) + vpi
ci, (40)

di = − αkz(pi − kx)
2

−M2(p2i − k2x)− γ (k2z −m+m1) + vpi
ai +

−C2(p
2
i − k2x) + C1k

2
z + C0 + µ̃1 − E − vkx

−M2(p2i − k2x)− γ (k2z −m+m1) + vpi
ci. (41)

In order to avoid a possible confusion, let us emphasize that the remaining two components ai and ci are not
independent, but fixed unambiguously for each pi. The final solutions for the Fermi arcs are determined after all
four independent parameters (e.g., ai with i = 1, 2, 3, 4) are fixed by satisfying the continuity conditions for the wave
function at the surface of the semimetal. The corresponding solutions can be obtained by numerical methods.
To slightly simplify the analysis, let us consider a special case of vanishing α in more detail. In this case, the states

from the two-component upper and lower block Hamiltonians decouple. Also, the characteristic equation factorizes,
effectively giving two separate equations, i.e.,

[

−C2(p
2 − k2x) + C1k

2
z + C0 − µ̃1 − E

]2 −
[

M2(p
2 − k2x) + γ(k2z −m−m1)

]2
+ v2(p2 − k2x) = 0 (up), (42)

[

−C2(p
2 − k2x) + C1k

2
z + C0 + µ̃1 − E

]2 −
[

M2(p
2 − k2x) + γ(k2z −m+m1)

]2
+ v2(p2 − k2x) = 0 (down), (43)

cf. Eq. (A8). Then, the analysis of the surface Fermi arcs follows very closely the analysis in Sec. III B.
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(f) m1 = −0.005, µ̃1 = −0.05
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(g) m1 = 0.005, µ̃1 = −0.05
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FIG. 4: The Fermi arcs solutions (thick black lines) in the model with the symmetry breaking parameters m1 and µ̃1 at E = 0.
The shaded regions represent the projections of the bulk Fermi surfaces onto the kxkz plane. The values of m1 and µ̃1 are

given in units of Å
−2

and eV, respectively.

A number of representative numerical solutions for the Fermi surface arcs in the model with the symmetry breaking
parameters m1 and µ̃1 are shown in Fig. 4. The results are obtained for the Fermi energy E = 0. In order to shed
light on the origin of the individual arcs, in the same figure we also show the projections (shaded regions) of the bulk
Fermi surfaces onto the kxkz plane. Such a representation reveals that some of the Fermi arcs link disconnected sheets
of the bulk Fermi surface26, while others link different points of the same bulk Fermi surface sheet.
As suggested by the physical meaning of the symmetry breaking parameters, m1 and µ̃1, the Fermi surface arcs for

the up and down Weyl sectors of the theory are not transformed into each other by a mirror symmetry. In addition
to the expected effects of (i) changing the length of the arcs (primarily due to nonzero m1) and (ii) shifting the arcs’
position in the kx direction (primarily due to nonzero µ̃1), we also see some qualitative changes in the shape and
branching of the arcs. By comparing Eqs. (42) and (43) for the two sectors of the theory, we find that the whole
asymmetric sets of the Fermi arcs turn into their mirror reflections when both parameters m1 and µ̃1 change their
signs. Examples of two pairs of such mirror configurations are shown in panels (e)–(f) and (g)–(h) in Fig. 4. [Strictly
speaking, the other two pairs of configurations, see (a)–(b) and (c)–(d), are not exact mirror reflections of each other
because one of the symmetry breaking parameters does not change the sign. Because of a smallness of the parameter,
there is an appearance of approximate mirror configurations.]
It is interesting to point out that different topologies of the global (bulk-plus-arcs) Fermi hypersurfaces, including

the bulk sheets and the surface Fermi arcs, are possible. For example, for a range of symmetry breaking parameters,
represented by panels (c), (d), (e) and (f) in Fig. 4, we find that the global Fermi hypersurfaces consist of pairs of clearly
disconnected parts. This is in contrast to the configurations in panels (a) and (b), where different parts touch at four
points, and in contrast to the configurations in panels (g) and (h), where all parts of the global Fermi hypersurfaces
are linked by the Fermi arcs. If samples with completely disconnected parts of the global Fermi hypersurfaces are
indeed possible, they will be very interesting to study in experiments.
As we see from panels (g) and (h) in Fig. 4, there are also qualitatively new types of the Fermi arcs possible for a

range of symmetry breaking parameters. In particular, we find a pair of “short” branches of the Fermi arcs that split
off from the usual “long” arcs. To the best of our knowledge, the corresponding short arcs have not been predicted
before. So far, we could not establish a general criterion for the existence of the short arcs. In the configurations in
panels (g) and (h), they play a profound role by linking two disconnected sheets of the bulk Fermi surface.



12

VI. CONCLUSION

In this paper, we studied the surface Fermi arc states by employing a continuum low-energy effective model. The
use of analytical methods and a realistic low-energy model provide a deeper insight into the physical properties and
characteristics of the surface Fermi arcs. In particular, we were able to classify the Fermi arcs with respect to the
ud-parity and reconfirm the Z2 Weyl structure of A3Bi semimetals32. In this context, it should be noted that the
experimental observation of the corresponding Fermi arc states have been recently reported for Na3Bi

34. While in
agreement with the claimed topological semimetal structure, such an observation does not confirm it unambiguously.
That is because the Fermi arc states are also possible in Dirac materials where the Z2 Weyl structure is absent5,30.
The unambiguous confirmation of the Z2 Weyl structure could, however, be established via the quantum oscillations,
whose period should dependent on the thickness of the semimetal in the same way as in true Weyl semimetals30,31.
By introducing the effects of several possible symmetry breaking terms, we show that the Z2 Weyl structure of

A3Bi is destroyed in a very special way: the compounds become true Weyl semimetals. We suggest that this finding
can be tested in experiment. For example, by taking into account that the mirror-symmetric pairs of surface Fermi
arcs in clean A3Bi get distorted upon the introduction of explicit symmetry breaking (e.g., by magnetic doping),
a number of specific features (size, shape and number of branches) should be seen in the surface Fermi arcs. The
corresponding properties could be studied, for example, by analyzing the quantum oscillations sensitive to the surface
states of this type30. In the absence of symmetry breaking, there will be a unique period of oscillations dependent in
a specific way on the thickness of the semimetal slab31. On the other hand, the breaking of symmetry will produce
pairs of inequivalent arcs of different lengths and the observation of two incommensurate periods of oscillations will
be expected. In principle, by making use of the analytical results in this study, the details of the oscillations could be
used to estimate the magnitude of the symmetry breaking terms.

Acknowledgments

The work of E.V.G. was supported partially by the Ukrainian State Foundation for Fundamental Research. The
work of V.A.M. was supported by the Natural Sciences and Engineering Research Council of Canada. The work of
I.A.S. was supported by the U.S. National Science Foundation under Grant No. PHY-1404232.

Appendix A: Derivations of surface Fermi arcs solutions

In this Appendix we present the key technical details of deriving the surface Fermi arcs solutions in the 2×2 model,
introduced in Sec. III B, and in the 4× 4 model, introduced in Sec. IV.

1. Surface Fermi arcs in 2× 2 model

Let us start with the analysis of the surface Fermi arc states in the 2 × 2 model, introduced in Sec. III B. The
problem reduces to solving the eigenvalues problem given by Eqs. (22) and (23) at y > 0 (semimetal), as well as a
similar set of equations at y < 0 (vacuum), but m replaced by −m̃. The corresponding set of equations should be
also supplemented by the boundary conditions at the vacuum-semimetal interface, i.e.,

ψ̃1(−0) = ψ1(+0), (A1)

ψ̃2(−0) = ψ2(+0), (A2)

−C2∂yψ̃1(−0) +M2∂yψ̃2(−0) = −C2∂yψ1(+0) +M2∂yψ2(+0), (A3)

−M2∂yψ̃1(−0) + C2∂yψ̃2(−0) = −M2∂yψ1(+0) + C2∂yψ2(+0), (A4)

where ψ̃1,2(y) correspond to the vacuum region at y < 0.
Inside the semimetal (y > 0), the surface state solutions should have the following form:

Ψy>0(y) =

(

a
b

)

e−py. (A5)
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By substituting this ansatz in Eqs. (22) and (23), we arrive at the following set of linear equations for the spinor
components a and b:

[

C2(k
2
x − p2)− vkx + C1k

2
z + C0 − E

]

a+
[

−M2(k
2
x − p2)− vp+ γk2z − γm

]

b = 0, (A6)
[

−M2(k
2
x − p2) + vp+ γk2z − γm

]

a+
[

C2(k
2
x − p2) + vkx + C1k

2
z + C0 − E

]

b = 0. (A7)

A nontrivial solution exists when the following characteristic equation is satisfied:

[

−C2(p
2 − k2x) + C1k

2
z + C0 − E

]2 −
[

M2(p
2 − k2x) + γk2z − γm

]2
+ v2(p2 − k2x) = 0. (A8)

The solutions to this equation are p = ±p1 and p = ±p2, where

p1 =

√

k2x − X +
√
X2 + Y

2(M2
2 − C2

2 )
, p2 =

√

k2x − X −
√
X2 + Y

2(M2
2 − C2

2 )
. (A9)

Here we introduced the following shorthand notations:

X ≡ 2C2(C1k
2
z + C0 − E) + 2γM2(k

2
z −m)− v2, (A10)

Y ≡ 4(M2
2 − C2

2 )
[

(C1k
2
z + C0 − E)2 − γ2(k2z −m)2

]

. (A11)

The spinor components a and b of the corresponding nontrivial solution satisfy the constraint

b

a
= Q(p, kx) ≡

−C2(p
2 − k2x) + C1k

2
z + C0 − E − vkx

−M2(p2 − k2x)− γ(k2z −m) + vp
. (A12)

Inside the semimetal (y > 0), the wave function should fall off with increasing y. Thus, we use only the negative
exponents in the general solution, i.e.,

Ψy>0(y) ≃ a1

(

1
Q1

)

e−p1y + a2

(

1
Q2

)

e−p2y, (A13)

where Qi ≡ Q(pi, kx) with i = 1, 2.
In order to find the vacuum solution (y < 0), we replace m → −m̃ and take the limit m̃ → ∞. This leads to the

following general solution on the vacuum side:

Ψy<0(y) ≃
ã1√
γm̃

(

1
−1

)

ep̃1y +
ã2√
γm̃

(

1
1

)

ep̃2y, (A14)

where, for convenience, we took the overall constants to be inversely proportional to
√
γm̃. The exponents in the

vacuum solution are determined by

p̃1 ≃
√

γm̃

−M2 − C2
, p̃2 ≃

√

γm̃

−M2 + C2
. (A15)

It is interesting to note that the conditions of the wave function continuity, see Eqs. (A1) and (A2), are the only
important conditions to be satisfied. Indeed, the nontrivial solution of Eq. (A1) in the limit m̃ → ∞ implies that
a1 = −a2 6= 0. This is consistent with Eq. (A2) only when Q1 = Q2. Concerning the remaining boundary conditions
in Eqs. (A3) and (A4), enforcing the continuity of the wave function derivative, they do not add any additional
constraints. In fact, they are needed only for determining the vacuum spinor components ã1 and ã2 in terms of the
nontrivial components a1 and a2 in the semimetal. Such (finite) solutions always exist. However, as is clear from
Eq. (A14), the vacuum solution have no much physical content because it vanishes in the limit m̃→ ∞.
In conclusion, the boundary conditions at y = 0 are satisfied and, therefore, a nontrivial solution exists when

Q1 = Q2. The explicit form of the corresponding condition is given in Eq. (25) in the main text.

2. Surface Fermi arcs in 4× 4 model

The analysis of the realistic 4 × 4 model introduced in Sec. IV is slightly more involved, but qualitatively similar.
The eigenvalues problem in this case is given by Eqs. (30) through (33) at y > 0 (semimetal), as well as a similar set
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of equations at y < 0 (vacuum), but with m replaced by −m̃. The conditions of continuity of the wave functions and
their derivatives across the vacuum-semimetal surface at y = 0 are given by

ψ̃i(−0) = ψi(+0), for i = 1, 2, 3, 4, (A16)

−C2∂yψ̃1(−0) +M2∂yψ̃2(−0)− αkz∂yψ̃3(−0) = −C2∂yψ1(+0) +M2∂yψ2(+0)− αkz∂yψ3(+0), (A17)

M2∂yψ̃1(−0)− C2∂yψ̃2(−0) + αkz∂yψ̃4(−0) = M2∂yψ1(+0)− C2∂yψ2(+0) + αkz∂yψ4(+0), (A18)

−αkz∂yψ̃1(−0)− C2∂yψ̃3(−0) +M2∂yψ̃4(−0) = −αkz∂yψ1(+0)− C2∂yψ3(+0) +M2∂yψ4(+0), (A19)

αkz∂yψ̃2(−0) +M2∂yψ̃3(−0)− C2∂yψ̃4(−0) = αkz∂yψ2(+0) +M2∂yψ3(+0)− C2∂yψ4(+0). (A20)

In the semimetal (y > 0), we look for a general surface state solution in the form:

Ψy>0(y) =







a
b
c
d






e−py. (A21)

A nontrivial solution of this type exists when p is a solution to the following characteristic equation:

[

−C2(p
2 − k2x) + C1k

2
z + C0 − E

]2 −
[

M2(p
2 − k2x) + γk2z − γm

]2
+ v2(p2 − k2x)− α2k2z(p

2 − k2x)
2 = 0. (A22)

(Strictly speaking, the characteristic equation has the square on the left hand side, implying that the degeneracy of
its solutions should be doubled.) This equation has two pairs of distinct solutions: p = ±p1 and p = ±p2, where

p1,2 =

√

k2x − X ±
√
X2 + Y

2(M2
2 − C2

2 + α2k2z)
, (A23)

cf. Eq. (A9). Here, the expression for X is the same as in the 2 × 2 model (α = 0) in Eq. (A10), but the expression
for Y is slightly different, i.e.,

Y ≡ 4(M2
2 − C2

2 + α2k2z)
[

(C1k
2
z + C0 − E)2 − γ2(k2z −m)2

]

. (A24)

Therefore, in the half-space occupied by the semimetal (y > 0), the wave function should have the following general
form:

Ψy>0(y) ≃









a1
Q+

1 a1 − T+
1 c1

c1
−T−

1 a1 +Q−
1 c1









e−p1y +









a2
Q+

2 a2 − T+
2 c2

c2
−T−

2 a2 +Q−
2 c2









e−p2y, (A25)

where we also introduced the shorthand notation: Q±
i ≡ Q(pi,±kx) and T±

i ≡ T (pi,±kx). Here the function Q(p, kx)
is the same as in Eq. (A12) and

T (p, kx) =
αkz(p+ kx)

2

−M2(p2 − k2x)− γ(k2z −m) + vp
. (A26)

In the vacuum solution (y < 0), we replace m → −m̃ and take the limit m̃ → ∞. In this case, a simple analysis
leads to the following solution:

Ψy<0(y) ≃
1√
γm̃











ã1
ã1C2+αkz c̃1√

C2
2
−α2k2

z

c̃1
αkz ã1+C2c̃1√

C2
2
−α2k2

z











ep̃1y +
1√
γm̃











ã2
− ã2C2+αkz c̃2√

C2
2
−α2k2

z

c̃2
−αkz ã2+C2c̃2√

C2
2
−α2k2

z











ep̃2y, (A27)

where, for convenience, we introduced an overall constant inversely proportional to
√
γm̃. The explicit form of the

exponents in this solution is determined by

p̃1 ≃
√

γm̃

−M2 +
√

C2
2 − α2k2z

, p̃2 ≃
√

γm̃

−M2 −
√

C2
2 − α2k2z

. (A28)
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Note that the signs in the exponents of the vacuum solution (A27) are chosen so that the wave function vanishes at
y → −∞.
The conditions of the continuity of the wave function in Eq. (A16) lead to the following constraints:

0 = Q+
1 a1 − T+

1 c1 +Q+
2 a2 − T+

2 c2, (A29)

0 = T−
1 a1 −Q−

1 c1 + T−
2 a2 −Q−

2 c2, (A30)

together with a2 = −a1 and c2 = −c1. Here, we took into account that the left hand side of Eq. (A16) vanishes in
the limit m̃→ ∞.
As in the case of a two-component model, discussed in Appendix A1, there is no need to satisfy the continuity

conditions for the wave function derivatives, given by Eqs. (A17) through (A20). The reason is that these conditions
add no additional constraints on the spinor solutions in the semimetal. They are needed only for determining the
components of the vacuum solution at y < 0. Since the latter has no physical content in the limit m̃ → ∞, we can
safely ignore the conditions in Eqs. (A17) through (A20).
In order to have a nontrivial solution to Eqs. (A29) and (A30), the condition in Eq. (35) in the main text should

be satisfied.

Appendix B: Symmetries and surface Fermi arcs bispinors

In this Appendix, we discuss the properties of the Fermi arc surface states with respect to the discrete symmetries
Uχ ≡ UΠkz

and ŨΠkx
, introduced in Sec. II B. To start with, let us note that the general Fermi arc spinor in Eq. (A25)

contains all possible solutions. It is possible to classify these solutions with respect to the discrete symmetry Uχ by
choosing them as eigenstates of the operator Uχ.
In order to construct the first group of solutions, we use the relations in Eqs. (A29) and (A30) and rewrite the

Fermi arc spinor in Eq. (A25) in the following form:

Ψ+ = a1















1

Q+
1 − T+

1
T

−

1
−T

−

2

Q
−

1
−Q

−

2

T
−

1
−T

−

2

Q
−

1
−Q

−

2

−T−
1 +Q−

1
T

−

1
−T

−

2

Q
−

1
−Q

−

2















e−p1y − a1















1

Q+
2 − T+

2
T

−

1
−T

−

2

Q
−

1
−Q

−

2

T
−

1
−T

−

2

Q
−

1
−Q

−

2

−T−
2 +Q−

2
T

−

1
−T

−

2

Q
−

1
−Q

−

2















e−p2y. (B1)

By noting that pi’s (with i = 1, 2), defined in Eq. (A23), contain only quadratic terms in momenta kx and kz , we
conclude that both of them are invariant under the Πkz

and Πkx
transformations. The other quantities, used in

Eq. (B1), transform as follows:

Πkz
Q±

i = Q±
i , Πkz

T±
i = −T±

i , (B2)

Πkx
Q±

i = Q∓
i , Πkx

T±
i = T∓

i . (B3)

It is straightforward to check that the spinor in Eq. (B1) is an eigenstate of the operator Uχ with the eigenvalue
χ = +1. Indeed, by making use of the definition of the matrix U , we find that

UΨ+ = a1















1

Q+
1 − T+

1
T

−

1
−T

−

2

Q
−

1
−Q

−

2

−
[

T
−

1
−T

−

2

Q−

1
−Q−

2

]

−
[

−T−
1 +Q−

1
T

−

1
−T

−

2

Q
−

1
−Q

−

2

]















e−p1y − a1















1

Q+
2 − T+

2
T

−

1
−T

−

2

Q
−

1
−Q

−

2

−
[

T
−

1
−T

−

2

Q−

1
−Q−

2

]

−
[

−T−
2 +Q−

2
T

−

1
−T

−

2

Q
−

1
−Q

−

2

]















e−p2y. (B4)

Then, by taking into account that Uχ ≡ UΠkz
, we see that UχΨ+ = Ψ+, as claimed.

By using the relations in Eqs. (A29) and (A30), the Fermi arc spinor in Eq. (A25) can be also rewritten in the
following alternative form:

Ψ− = c1















T
+

1
−T

+

2

Q
+

1
−Q

+

2

Q+
1

T
+

1
−T

+

2

Q
+

1
−Q

+

2

− T+
1

1

−T−
1

T
+

1
−T

+

2

Q
+

1
−Q

+

2

+Q−
1















e−p1y − c1















T
+

1
−T

+

2

Q
+

1
−Q

+

2

Q+
2

T
+

1
−T

+

2

Q
+

1
−Q

+

2

− T+
2

1

−T−
2

T
+

1
−T

+

2

Q
+

1
−Q

+

2

+Q−
2















e−p2y. (B5)
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In this case, as is easy to check, the spinor is an eigenstate of the operator Uχ with eigenvalue χ = −1. Indeed, by
making use of the definition of the matrix U , we find that

UΨ− = c1















T
+

1
−T

+

2

Q
+

1
−Q

+

2

Q+
1

T
+

1
−T

+

2

Q
+

1
−Q

+

2

− T+
1

−1

−
[

−T−
1

T+

1
−T+

2

Q
+

1
−Q

+

2

+Q−
1

]















e−p1y − c1















T
+

1
−T

+

2

Q
+

1
−Q

+

2

Q+
2

T
+

1
−T

+

2

Q
+

1
−Q

+

2

− T+
2

−1

−
[

−T−
2

T+

1
−T+

2

Q
+

1
−Q

+

2

+Q−
2

]















e−p2y, (B6)

which implies that UχΨ− = −Ψ−. In other words, the eigenstate Ψ− corresponds to χ = −1, as claimed.

Now, let us explore the implications of the ŨΠkx
symmetry in the model at hand. By applying the corresponding

operator to the eigenstates Ψ±, we arrive at the following results:

ŨΠkx
Ψ+ = a1















Q
−

1
−Q

−

2

T
−

1
−T

−

2

−T+
1 +Q+

1
Q

−

1
−Q

−

2

T
−

1
−T

−

2

1

Q−
1 − T−

1
Q

−

1
−Q

−

2

T
−

1
−T

−

2















e−p1y − a1















Q
−

1
−Q

−

2

T
−

1
−T

−

2

−T+
2 +Q+

2
Q

−

1
−Q

−

2

T
−

1
−T

−

2

1

Q−
2 − T−

2
Q

−

1
−Q

−

2

T
−

1
−T

−

2















e−p2y, (B7)

ŨΠkx
Ψ− = c1















1

−T+
1

T
−

1
−T

−

2

Q
−

1
−Q

−

2

+Q+
1

T
−

1
−T

−

2

Q
−

1
−Q

−

2

Q−
1

T
−

1
−T

−

2

Q
−

1
−Q

−

2

− T−
1















e−p1y − c1















1

−T+
2

T
−

1
−T

−

2

Q
−

1
−Q

−

2

+Q+
2

T
−

1
−T

−

2

Q
−

1
−Q

−

2

Q−
2

T
−

1
−T

−

2

Q
−

1
−Q

−

2

− T−
2















e−p2y. (B8)

These results show that Ψ± are not eigenstates of the operator ŨΠkx
. However, by taking into account the constraint

in Eq. (35), one can check that the operator ŨΠkx
interchanges the two types of the states, i.e., Ψ+ ↔ Ψ−.

In conclusion, the results of this Appendix confirm the claim in the main text of the paper concerning the symmetry
properties of the low-energy theory for A3Bi (A=Na, K, Rb) semimetals, as well as the classification of their Fermi arc
states. These are in complete agreement with the claim that the corresponding compounds are Z2 Weyl semimetals.
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