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Floquet topological insulators are noninteracting quantum systems that, when driven by a time-
periodic field, are described by effective Hamiltonians whose bands carry nontrivial topological
invariants. A longstanding question concerns the possibility of selectively populating one of these
effective bands, thereby maximizing the system’s resemblance to a static topological insulator. We
study such Floquet systems coupled to a zero-temperature thermal reservoir that provides dissipa-
tion. We find that the resulting electronic steady states are generically characterized by a finite
density of excitations above the effective ground state, even when the driving has a small amplitude
and/or large frequency. We discuss the role of reservoir engineering in mitigating this problem.

I. INTRODUCTION

In recent years, the possibility of engineering topo-
logical states of matter in otherwise trivial materials
has motivated significant interest in electronic systems
driven periodically in timé'™. The prescription for a
particular target topological state is obtained using Flo-
quet theoryl™ M which describes a periodically-driven
quantum system with Hamiltonian H(t) = H(t + 7)
in terms of a time-independent Hamiltonian Hg. In
particular, Floquet’s theorem states that there exists
a complete basis of solutions of the time-dependent
Schrodinger equation H(t) |1;(t)) = 10 |¢;(t)) of the
form

[5(8)) = e~ Juy (1)), (1.1)
where the state |u;(t)) = |u;(t + 7)) is periodic in time
with the same period as H(t). The quasi-energies ¢;
can be thought of as the energy spectrum of an effective
“Floquet Hamiltonian” Hp defined by evaluating the
evolution operator U(tq,t1) at an integer multiple of the
period 7, i.e. U(n7,0) =: exp(—i Hp n7). Floquet’s the-
orem guarantees the existence of a time-periodic unitary
operator P(t) that maps the time-dependent Hamilto-
nian onto Hyt2H4:

Hg = PT(t)H(t)P(t) — i PT(t)0, P(t). (1.2)
If the single-particle Hamiltonian Hp and its associ-
ated eigenstates |u;(n7)) define a model with nontrivial
Berry curvature, then it is possible for the quasienergy
“bands” to possess nonzero Chern numbers or Zs invari-
ants™2 defined by analogy with static Hamiltonians!.

Despite the formal similarity to undriven systems,
there are several fundamental differences between a Flo-
quet effective Hamiltonian Hr and a static Hamilto-
nian. First, there is an ambiguity in the definition of
Hp above: the quasienergies ¢; are only defined modulo
multiples of the driving frequency w = 27/7. In other
words, the definition of Hy is invariant under the gauge
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FIG. 1: Ambiguity in the ordering of quasienergy bands. For
two quasienergy bands falling within a given strip of size w,
as in a), a gauge transformation of the form can be
used to shift the window and invert the ordering, as in b).

transformation

€ — e +njw and |ui(t)) — ™% |ui(t)), (1.3)
for any set of integers {n;}. This makes an a priori def-
inition of a “lowest” quasienergy impossible, since one
can always fold and/or reorder (c.f. Fig.[1)) the spectrum
by means of such a gauge transformationt.

This obstruction to defining a unique Floquet ground
state highlights a second important contrast with static
systems, namely the fact that there is no universal
principle determining the occupations of quasienergy
states at zero temperature. Indeed, this signature of
the inherently out-of-equilibrium nature of periodically-
driven systems poses a challenge to theoretical propos-
als of Floquet topological states — even if a Floquet
system has topological quasienergy bands, there is no
guarantee that the long-time state of the system is a
pure Floquet state with the desired features?® 8, For
open systems in contact with a thermal reservoir, as is
the case in solid-state realizations, the detailed proper-
ties of the reservoir and its coupling to the system play
crucial roles in determining the nonequilibrium steady
state of the system at long timeg 619123

In this work, we investigate the occupations of topo-
logical Floquet bands in a noninteracting fermionic sys-
tem coupled to a thermal reservoir at zero temperature.



We ask whether, and under what conditions, it is pos-
sible for the nonequilibrium steady state of the system
to feature a single fully populated Floquet band when
the original undriven system is half-filled. Using a Flo-
quet master equation approach, we examine as a func-
tion of the driving amplitude and frequency the rate
to escape a given Floquet state. We find that generic
systems undergo heating that spoils the complete oc-
cupation of a single band, even in the favorable limit
of weak, off-resonant driving. In the best-case scenario,
the excitation density falls off as a power law in 1/w,
with the non-universal decay exponent set by the low-
energy behavior of the bath density of states. We close
by suggesting bath engineering schemes that could fur-
ther suppress excitations. While our motivation derives
from the pursuit of topological phases in driven systems,
we point out that our results hold equally well in “triv-
ial” Floquet band insulators.

The structure of the paper is as follows. In Sec. [}
we provide an overview of the Floquet master equation
approach used in this work. Rather than focusing on ex-
position, this section provides a fresh perspective on the
subject by emphasizing the requirement of invariance of
all physical quantities under gauge transformations of
the form . This physical principle resolves many of
the conceptual ambiguities regarding the definitions of
Floquet states and the associated quasienergies. Within
this formalism, we outline conditions under which open
Floquet systems can reach steady states that resemble
their equilibrium counterparts, i.e. where the occupa-
tions of the Floquet states at finite temperature are dis-
tributed in a Boltzmann-like fashion. In the remaining
sections, which can be read independently of Sec. [}
we specialize to the study of noninteracting, two-band
Floquet systems coupled to zero-temperature bosonic
reservoirs, and present the main results of this work,
which were outlined above.

II. FLOQUET MASTER EQUATIONS
A. Definitions and comments on gauge invariance

In this paper, we will study Floquet systems that are
described by Hamiltonians of the form

H(t) = Hs(t) + Hsg + Hg, (2.1)

where Hg(t) = Hg(t + 7) describes the periodically
driven system, Hg describes the reservoir (or “bath”),
and Hgp describes the coupling between them. Follow-
ing Refs. [16l and [23], we assume a system-bath coupling

of the factorized form
HSB Z’YSB, (2.2)

where 7 is a real coupling constant [assumed to be
smaller than any energy scale in Hg(t)], and where S

and B are Hermitian operators acting solely on the de-
grees of freedom of the system and the bath, respec-
tively?, System-bath couplings of this form are ubig-
uitous in the study of open quantum systems, e.g. in
spin-boson-type models??. The reservoir described by
Hpg, whose eigenstates and energies Hg |v) = E, |v) are
known, is assumed to be in thermal equilibrium (either
at zero temperature or at a finite temperature 1/, al-
though in Sec. [[TI] we will specialize to the case of zero
temperature).

The unitary time evolution of the full closed system
is completely characterized by the density matrix o(t),
whose equation of motion is given by

10; o(t) = [H(t), o(t)]. (2.3)
Our interest, however, is primarily in the influence of
the reservoir on the system described by Hg(t). The
important quantity to consider is then the reduced den-
sity matrix
p(t) == Trg [o(t)], (2.4)
where Trg[ - ]| represents the operation of taking the
trace over the bath degrees of freedom. The evolu-
tion of the open system described by p(t) is obtained
by “tracing out” the bath in Eq. , which results in
a master equation for the reduced density matrix. Ow-
ing to the explicit time-dependence of Hg, this master
equation has time-periodic coefficients, so that the Flo-
quet states defined by Eq. (ll_lD form a natural basis
in which to resolve p(t)**¥723  The derivation of the
master equation for the reduced density matrix in the
Floquet basis proceeds via the Born-Markov approxima-
tion, which amounts to an assumption of weak coupling
between the system and bath, as well as the assumption
that the correlation time of the bath is sufficiently short
that memory effects can be neglected.

A particularly clear derivation of this Floquet master
equation, as well as a careful discussion of the hierarchy
of time-scales necessary in order for the Born-Markov
approximation to hold, is presented by Hone et al. in
Ref. 23l We refer the reader to that work (and references
therein) for details, and begin our discussion with the
master equation written in their notation:

(O +i€5) pij(t) = —% Z {1 () Riksun (t) + pir(t) R (1)
k.l

—pkl(t) [le;ki (t) + R;:i;lj (t)] } ’

(2.5a)

where
pis (1) = (wi(0)] p(t) Iy (1)) (2.5b)
€ij = € — €5, (2.5(3)



and the coefficients R;j(t) := > 5 5% R (K),
where

Rija(K) =219 Sij(m + K) Siy(m) glew — mw)

Sij(m) == 1 /OT dt eimet (u; ()] S u;(t)y . (2.5d)

-
The influence of the bath is contained in the function

g(E), essentially a weighted density of states, which is
defined by

1
_ —BE,
g(E) = 7 g e

v

Z = Ze*ﬂE”,
1%

where (3 is the inverse temperature.

Equation is advantageous in that it is com-
pletely invariant under the gauge transformations (|1.3])
that reshuffle the quasienergy spectrum. Indeed, defin-
ing

(u|BIv)[? 8(E + B, — Ey),

(2.56)

[ (1)) = ™" Juy (t)

/o . .
€ = € + njw,

(2.6a)
(2.6b)

one finds that the density matrix transforms as

pij(t) = €™t pl(t) = €T (i (t)] p(t) |u (1))
(2.7)

while the time-dependent rates transform as

Rijipa(t) = k=m0 REL o (1), (2.8)
Consequently, the left- and right-hand sides of Eq.
transform with an oscillating phase factor that cancels,
and the equation is therefore invariant under the gauge
transformation.

Despite the appeal of a gauge-invariant equation of
motion for the reduced density matrix, it is also difficult
to make analytical progress while the rates R;jxi(t) are
time-dependent. If one is only interested, as we are,
in the long-time limit, where the density operator does
not vary substiantially over a single period, then a valid
means of bypassing this difficulty is to consider the time-

average of both sides of Eq. (2.5alf%%,
. 1 *
ieij pij = =5 Z [p1j Riksik + pit R
"l (2.9a)
—pit (Rujiwi + RZi;lj)] )
where p;; = pij(t — 0o) is the time-average of p;;(t),
and where

Riji = Riji (K = 0) (2.9b)

are the time-averaged rates. Equation can be
further simplified by considering the structure of the
averaged density matrix p;;. Indeed, so long as €; =
€ —€; # 0 for i # j, the system-bath coupling v can
be chosen to be much smaller than the smallest €;;. In
this case, the off-diagonal elements of the steady-state
reduced density matrix vanish to order 42 (c.f4%), and
the occupations p; := p;; of the Floquet states are solu-
tions to the rate equation

0=> (Rjipj — Risjpi)
J#i

(2.10)

where the transition rates
Rij = Rijij = Rij;

21y* > " [Si;(m)[* gleji — mw). (2.11)

Our treatment of nonthermal steady states in Sec. [[TI]
will be based on a careful analysis of the rate equation
in the special case of a two-state system.

The time-averaging process outlined above spoils the
gauge-invariance of Eq. (2.5a)); after time-averaging, one
therefore implicitly commits to a choice of ordering for
the quasienergies. Indeed, observe that

Rijii(K) = Rij (K +ni — nji).

In particular, R;ju(K = 0) # R, (K = 0) if
ng; — nj; 7 0. This indicates that the primed ver-
sion of Eq. need not hold given the unprimed
version. However, observe that the diagonal rates
R;j.;j = R;—;, along with the diagonal density matrix
elements p;;(t), are invariant under the gauge transfor-

mation (2.6) [c.f. Eq. (2.7)]. Therefore, the rate equa-

(2.12)

tion (2.10) that governs the steady-state populations is
gauge invariant.

One important consequence of the gauge invariance
of Eq. is that, in addition to exact degenera-
cies where €;; = 0, one must also treat carefully quasi-
degeneracies, where €;; = mw for some m € Z. Such sit-
uations were of primary concern in Ref. 23] which points
out that such degeneracies can have profound effects
on the steady-state density matrix. In the language of
gauge-invariance adopted here, such quasi-degeneracies
are simply indicative of the fact that there exists a gauge
in which quasienergies ¢; and €; are degenerate.

Consequently, in such situations, Eq. is no
longer valid in the basis of Floquet states. However, the
density matrix nevertheless has a block-diagonal struc-
ture, p;; being nonzero only when €;; = 0 in some gauge.
(Let us, for simplicity, adopt this gauge here and for the
remainder of the present discussion.) To close this sec-
tion, we show that a rate equation of the form is
recovered upon transforming to the basis in which p;;
is diagonal. The unitary transformation M that diago-
nalizes the density matrix acts on the Floquet states as



s (8) Z - as(t) (2.13a)
pij = Z MG M5 prj (2.13b)
i
Sy =3 M:M; 5, (2.13¢)
ij
Rij = M Mys My Mj; Rz (2.13d)
L

We now plug these transformed quantities into
Eq. , keeping in mind that its left-hand side can
be set to zero given that p;; is zero whenever €;; # mw.
We obtain, for each ¢ and 7,

0= Z (M; Mj;) > [ﬁij Rigqi + i R;k ik

i,J ke,
—Pii (Rij;fc% +R7~;z;zg)] :

One can show that Eq. (2.14) holds if and only if

(2.14)

0=>" [ﬁij R + it B — Pii (Rz?;z%i + Riz;ijﬂ ;
k0
(2.15)
for all i and j. Next, consider the above equation when
i = j, while at the same time keeping in mind that p is
diagonal. We obtain

O_an ( Zklk—’_Rzkzk) ZP ( ]“ ;” RZE,E‘Z) s
(2.16)

or equivalently
0= (5 B =7 Bii) » (217)

k

where p; is the probability of being in the state labeled
by i, and

R ; = 27772Z|S g(ej; —mw). (2.18)

This discussion has therefore demonstrated that a rate
equation of the form always determines the
steady-state reduced density matrix p;; in some basis,
namely the basis in which p;; is diagonal. Whether or
not this basis is the basis of Floquet states, or some
other time-periodic basis, depends on the degeneracy
structure of the quasienergy spectrum. Nevertheless,
the subsequent analyses presented here hold equally well
in this choice of basis.

B. Conditions for thermal Floquet steady states

In this section, we will determine, within the master
equation formalism discussed above, conditions under
which the driven system relaxes to a thermal distribu-
tion with respect to the quasienergies. In particular,
we will show that such a situation occurs provided that
PT(t)Hsp P(t), where P(t) is defined via Eq. with
H(t) = Hg(t), is either time-independent or depends on
time in a particularly simple way. While statements to
this effect have been made in various works2®3L we pro-
vide here a simple and complementary derivation of the
statement from the master equation formalism outlined
in Ref23 and provide connections to the principle of
gauge invariance discussed previously. Before beginning
with the derivation, we observe that, at finite tempera-
ture, the function g(FE), which contains the influence of
the bath on the driven system, satisfies

9(E) = g(~E)e PP, (2.19)
which induces the following generalized detailed balance
relation for the rates appearing in Eq. (2.10)**

7Riﬁj — ePlei—¢)) —Z mRZH]ﬁmw , (2.20a)
Rj—” Z Rz%]e

where
R, = 212 |Sij(m)|2 g(eji —mw). (2.20b)

Note that substituting Eq. into the rate equation
- yields a thermal dlstrlbutlon for the occupations
of the Floquet states, i.e. p; < e —Beiif m =0.

We can now show that such a thermal distribution
emerges if PT(t)HspP(t) is time-independent, simply
by showing that it implies that only the m = 0 terms
contribute to Eq. . To do this, we make use of an
explicit representation of the operator P(t), which can
be derived as follows. Noting first that the evolution
operator U (ta,t1) can be written in terms of the Floquet
states |u;(t)) as

tQ,tl Z |'(/}j t2 wj tl)'
(2.21)
_ Z e—lej(tz—h) |uj(t2)> <uj(t1)| ,
we compute
i0,U (t,0) = Hs(t)U(t,0)
_ Ze—iejt [Gj |Uj (t)> <’U,j (0)| (222)

J

+ 10 [ (1)) (u; (0)] .



Acting from the right with UT(¢,0) on both lines above
and using the fact that (u;(t)|u;(t)) = d;; at any time
t, we deduce that

Hs(t) = 37 [ej Jus (8) (g (O] + 00 g () Gus (1) ].

J

(2.23)
At this point, making the ansatz
P(t) =y Ju;(1)) (u;(0)] (2.24)
J
we find that indeed
Hp = PT(t)Hg(t)P(t) — i PT(t)9,P(t), (2.25a)
where
Hp =y ¢ ]u;(0)) (u;(0)] (2.25b)
J
as desired.

Using the explicit form of P(t) provided in Eq. (2.24)),
the desired result follows directly from the definition of
R™, . given in Eq. (2.20b)). In particular, observe that

i—]

Sym) =+ [ "t e ™ (g (1)) S Juy (1)

-
1
.

0
[t o)1 PSP s 0).
(2.26)

If PT(t)SP(t) [and therefore PT(t)HspP(t)] is indepen-
dent of time, then S;;(m) = R, ; = 0 for all m # 0. We
have therefore shown that, if the operator P (t) Hsg P(t)
is time-independent, then the steady-state occupations
of the Floquet states are given by p; o e 7%, as they
would be for a system with Hamiltonian Hy at equi-
librium with a finite-temperature reservoir. The zero-
temperature limit of the associated grand-canonical dis-
tribution determines an unambiguous ordering of the
quasienergies.

If PT(¢)SP(t) is not time-independent, it is still possi-
ble to reach an effective thermal distribution if detailed
balance, namely the relation

Rini _ b, (2.27)
Ri; pi
holds for all ¢ and j. For example, let us expand the
time-periodic operator PT(t)SP(t) =: Y S, ¢! and
consider the case where (u;(0)| S, |u;(0)), for fixed ¢
and j, is nonzero for a single mode n = m;;. In this
case,

Risj =217 Sy (mig)1? gleji — maj w). (2.28)

FIG. 2: (Color online) Closed loop in a graphical represen-
tation of the state space defined by the Floquet states and
the rates R;—,; connecting them. Blue circles represent Flo-
quet states, and a directed arrow pointing from state ¢ to
state j represents the rate R;— ;. If the condition is
satisfied around all closed loops in the graph, then the extra
factors of m;;w on the links can be removed by a gauge trans-
formation of the form , yielding a thermal quasienergy
distribution.

Since S is a Hermitian operator, we have m;; = —my;,
and S;j(mi;) = Sj;(myi). It follows that Eq. (2.20)
becomes

R

= efleimeitmijew) (2.29)
J—1

In this case, one recovers a thermal quasienergy distri-
bution only if it is possible to consistently absorb the
extra factor of m;;w into a redefinition of the quasiener-
gies €;. In principle, this can be achieved by means
of gauge transformations of the form , which shift
the quasienergies by integer multiples of the driving fre-
quency w. In practice, however, it might arise that
such a gauge transformation cannot be performed con-
sistently over all Floquet states. Fortunately, there is
a condition, demonstrated below, on the integers m,;
that guarantees that such a transformation can be car-
ried out.

The set of nonvanishing transition rates R;_,; defines
the directed edges of a graph whose vertices are the Flo-
quet states (see Fig. . In order to consistently gauge
away the extra factor of m,;w, it is sufficient to require
that for any closed loop i; — i — i3 — -+ = {1 —
i, — 41 in this graph, one has

Rilﬁiz Rig*}ig Rik_lﬁik Rik%il

=1.  (2.30)

Ry Rig—iy,  Ripsin_y iy

[Observe that this condition holds automatically if de-

tailed balance, Eq. (2.27)), holds.] Using Eq. (2.29)), one

finds that this condition holds if and only if

Mgy T Migiy + 00+ My 4y + Mgy = 0, (231)



which is the desired condition on the m;;. The above
condition is satisfied if m;; = m; — m; for all ¢ and j.
[Note, however, that this condition is sufficient but not
necessary to satisfy Eq. ] In this case, one can
redefine the quasienergies via the gauge transformation

€ — € =6 +mw (2.32a)
such that Eq. (2.29)) becomes

Rivg _ opte-e)

Ui Bl 2.32b

e (2.32b)

which yields t,he desired thermal quasienergy distribu-

tion p; oc e~ P<.

IIT. ZERO-TEMPERATURE
NONEQUILIBRIUM STEADY STATES

In this section, we carry out the program outlined in
the introduction, and characterize the zero-temperature
occupations of Floquet bands in a generic class of
periodically-driven noninteracting systems. We take the
combined Hamiltonian for the system and the reservoir

to be given by Eq. (2.1)), i.e.

H(t) ZHs(t)+HsB+HB. (31&)
The Hamiltonian Hg(t) describes the periodically-
driven system, which we take for simplicity to be a
two-band model of noninteracting fermions. (Gen-
eralizing our results to models with more than two
bands is straightforward.) We will focus on the case
of monochromatic driving, so that
Hs(t) = Hy+ /\HD(t) (31b)
where A is the driving amplitude and Hp(t) depends
on time via linear combinations of sin(wt) and cos(wt).
The quasienergy bands of the driven system, denoted
by €;(k) (j = 1,2), are assumed to be gapped (i.e. non-
degenerate for all k) and to host nontrivial topological
invariants. The system-bath coupling is again taken to
be in the factorized form of Eq. , namely
HSB :’}/SB, (31C)
We also take the operator S to conserve both momen-
tum and particle number, so that each k mode is ef-
fectively coupled to its own bath, and so hereafter we
suppress the momentum index k. Finally, Hg describes
a bosonic bath, with energy eigenstates |v) and eigen-
values E,, which we take to be in equilibrium at zero
temperature for all time.
If the Floquet spectrum is nondegenerate, as we as-
sume, then p;;(t) is diagonal at long times, and the

steady-state occupation probabilities p; 1= p;;(t = 00),
where p; + py = 1, satisfy the rate equation (2.10)), i.e.

0=Ro,1p2— Risap1. (3.2)

We recall that the transition rates are defined as

Rij = 2wy’ Z 1Si;(m)|? g(ej — & —mw),

m=—0o0

(3.3a)

Sis(m) = L /0 "t e ()] S fus(0) . (3.35)

T

At zero temperature, the weighted bath density of states
g(FE) defined in Eq. (2.5€) is given by

9(E) = 3" [(0[BI)[? 5(E + B,). (3.3¢)

We have set the bath ground-state energy Ey = 0, so
that E,~¢ is strictly positive. For this reason, g(E >
0) vanishes identically at zero temperature, a fact that
will be of crucial importance below. In our analysis, it
will be instructive to model g(FE) as a power law at low
energies compared to a very large cutoff scale*’:

9(E) = go |E|" 6(—E). (34)
The real exponent 0 < 1 < oo classifies the type of bath;
if n = 1, the bath is referred to as ohmic, while n > 1
and 7 < 1 are referred to as super-ohmic and sub-ohmic,
respectively.

It is interesting to note, as pointed out in Sec. [[TA]
that the rates entering equation are invariant un-
der gauge transformations of the form . While
these gauge transformations change the ordering of the
quasienergies, they nevertheless do not change the oc-
cupations of the Floquet states themselves. However, as
we will see later on, an appropriately engineered reser-
voir is capable of determining an unambiguous ordering
of the quasienergies and a choice of an effective “Floquet
ground state.”

We now turn to an analysis of the transition rates
that will allow us to determine the extent to which
a single Floquet state can be populated at zero temper-
ature, given that the system is coupled to a bath. For
this analysis, it will be convenient to choose a gauge in
which the ordering of the quasienergies is determined by
the ordering of the energies of the undriven Hamiltonian
Hy, in such a way that the separation A := €3 — €7 is
positive. This gauge can be understood by building up
the Floquet states perturbatively in A from the eigen-
basis of Ho™. To do this, we make use of the Fourier
decomposition of the time-periodic Floquet states,

o0

u () = Y €™ fug),

m=—0o0

(3.5)



and observe that, to zeroth order in this gauge, |u9>
is nothing but an eigenstate of Hy. (Notice also that
luj(nT)) = >, [u') are the eigenstates of Hr underly-
ing the Floquet topological insulator.) The nonzero-m
Fourier components of |u;(t)) arise due to hybridization
of the spectrum via Hp, and therefore scale with the
driving amplitude A as

(e ug) ~ (A/w)'™, (3.6)
which follows within perturbation theory to |m/|-th order
in X?2. Henceforth, we will take \/w to be small either
on account of a small A or a large w. In the Appendix, we
examine the case where A/w is not small, which is much
less favorable for Floquet topological states. Factoring
out the A\/w scaling from the states |u]"), we find that
one can rewrite the matrix elements in Eq. in the
following form:

i (Afw) FIHREL (| )

k=—o0

= (Mw)™ s (A w),

Sij(m) =
(3.7)

where s{%(\/w) are regular functions containing the

terms in the series that depend weakly on \/w or lead

to a decay of S;;(m) faster than (\/w)I™l as \/w — 0.
With all this in mind, we now analyze the quantity

_ D S12(=m) P g(A + mw)

P2 _ Ry
p1 Ro

which is proportional to the density of excitations above
the “lowest” quasienergy state in this gauge (e1). If
only m = 0 above contributes, the excitation density
vanishes and the lower band is completely filled at long
times, as it would be at equilibrium, owing to the fact
that the argument of g(E) in the numerator is positive.
While model systems that reach such an effective equi-
librium steady state have been studied?22H8183l it jg
well-known that these steady states do not occur for
generic choices of Hgp and g(F). We ask, instead,
whether there are any more general mechanisms or lim-
its that suppress pa/p1. The analysis is simplified if we
assume that A/w is sufficiently small that we can keep
only the lowest nontrivial value of |m| in the sums above.
We will focus on the case w > A, since the opposite case
would likely not yield a topological band structure.

For w > A, then only the terms with m < 0 (m < 0)
contribute to the numerator (denominator) of Eq. (3.8).
In this case, we find that suppression of py/p; is possible
in the limit w > A, which yields [c.f. Eq. (3.7)]

s [lsm V) %OV w)? fwy? (A"
I%N |s12(M/w)[? +|Sﬁ()\/w)|2 ( ) (w) ]

A

In addition to the exponent 7, the behavior of ps/p;
as w — oo depends on the scaling of the quasienergy
separation A with A and w. We assume the scaling
A ~ AN(A/w)e, for a > 0; for example, the case o =
1 corresponds to the size of the direct gap predicted
in graphene coupled to a circularly polarized electric
field*¥. We additionally allow the driving amplitude to
scale with the frequency, A ~ w?, as it may in some
physical driven systems'#34. Using these scaling forms,
we find that as w — oo the excitation density

P2 | p==Al=n(etn)] g (3.10a)
P
so long as the product
(1-08)[2=n(a+1)] >0. (3.10b)

Noting that the simultaneous requirement of small \/w
and large w restricts 8 < 1, this criterion reduces to

2
a+1’

n < (3.10¢)
If this condition is not satisfied, then ps/p; approaches
a nonuniversal constant in the high-frequency limit, and
no single Floquet state is fully populated in the steady
state. It is important to note that «, and therefore the
excitation density, is k-dependent, since the scaling of
A with A/w varies in momentum space. In particular,
for k far away from the value at which the minimal
quasienergy separation occurs, A becomes independent
of A and w. The w-scaling for this case is obtained by
setting a = 0 in Eqgs. .

For a given « and § (fixed by the physical realization
of the system), the above result suggests that the low-
energy behavior of the function g(F) essentially deter-
mines whether or not a single Floquet band is occupied
in the limit w > A. For example, in the case of graphene
in a circularly-polarized electric field (« = 1, 8 = 0),
there is a critical value n. = 1 (i.e., ohmic dissipation)
that separates the power-law decay of py/p; from the
aforementioned nonuniversal behavior. Therefore, an
ohmic bath already violates Eq. for graphene in
a circularly-polarized electric field, and the population
of the bands near the K-point is not controllable by
increasing w if the bath is ohmic.

In cases where the excitation density decays as a
power law at large frequencies, one must still take care
to determine whether the resulting steady state has the
desired characteristics of the topological Floquet bands.
As w increases, the Floquet effective Hamiltonian Hg
may approach Hy as 1/w or faster. If the power-law
decay of po/p1 is faster than this approach, then the
suppression of excitations can still occur in a regime
where the Floquet bands are topological. The situation
can be improved by allowing a scaling of the amplitude
A~ w? for B # 0, but the value of the exponent



FIG. 3: (Color online) Suppressing unwanted transitions be-
tween Floquet states by design of the function g(E). De-
pleting the density of states in the neighborhood of such a
transition ensures that there is no corresponding transition
in the bath to compensate, essentially forbidding it.

B must be balanced against an appropriate value of n
[c.f. Eq. ] in order for the desired suppression
to take place. Furthermore, it is important to keep in
mind that, depending on the exponents «, 3, and 7, the
power law decay of ps/p; can be very slow, so that a
finite density of excitations remains even at high fre-
quencies compared to all system energy scales. In order
for excitations to be completely suppressed, one must
have

Teﬁ < A7 (311&)
where the frequency- and momentum-dependent effec-
tive temperature Tog is defined as

A
Teff =

B In(p1/p2) (8.115)

Note that this effective temperature arises even though
the bath itself is at zero temperature, and can therefore
be understood as a signature of heating effects due to
the driving.

IV. THE ROLE OF BATH ENGINEERING

The sensitive dependence on the exponent 1 of the
large-frequency scaling of the excitation density already
demonstrates the crucial role that the bath plays in sta-
bilizing Floquet topological states in open systems. We
close by commenting on two additional ways in which
the bath and its coupling to the system can be engi-
neered in order to further favor the suppression of py /p; .

One way to suppress excitations is to engineer the
spectrum of the bath itself so that the function g(FE)
appearing in Eq. (3.3a) does not have a simple power-
law form as in Eq. (3.4)), but instead drops to zero in
a neighborhood of F = Ay — w, where Ay := A(ko)
is some reference value of the quasienergy separation,

as in Fig. (Such a scenario could be envisioned if,
for example, the bath consists of quantized electromag-
netic radiation in a cavity, whose size could be tuned
to achieve the desired effect.) If the width of the dip
in g(E) is on the order of the width of the upper band,
then excitations can be suppressed even if w is not much
larger than Ag. Indeed, if w > Ag and A/w is sufficiently
small that only the first few terms in the sums over m
in Eq. are kept, then the suppression of g(FE) near
this value eliminates the terms with m # 0 up to or-
der (\/w)%. However, it is important to point out that
the excitation density in this case still exhibits at best
power-law decay at large frequencies, with appropriate
modifications to Egs. arising from keeping terms
other than |m| = 0,1 in Eq. (3.8). To completely eradi-
cate excitations to all orders in A/w, one must engineer
dips at energies £ = Ag — mw for all m > 0.

Of course, by placing the dip at £ = —Ay — w, one
can also use this mechanism to populate what we have
referred to as the upper band in this choice of gauge.
While this scenario looks like a population inversion,
one can of course perform an appropriate transforma-
tion of the form to reorder the Floquet bands in
such a way that the populated band is the lowest. This
example indicates that, in certain cases, the reservoir
can “choose” a preferred gauge in which the system ap-
pears to be (nearly) at equilibrium.

The system-bath coupling is another quantity that
could potentially be manipulated in order to suppress
excitations. Indeed, certain system-bath couplings are
known to yield relaxation to steady states that feature
filled Floquet bands. For example, if Hsg is chosen
in such a way that PT(t)HspP(t), where P(t) satis-
fies Eq. with H(t) = Hg(t), is time-independent,
then the system described by the total Hamiltonian
H(t) defined in Eq. reaches an effective thermal
equilibrium with respect to the eigenvalues of Hp (see
Sec. and Refs?831) " Given sufficient control over
the system-bath coupling, one could attempt to engi-
neer such a situation, at least to some order in \/w, by
designing an Hgp that, say, commutes with the lowest
nontrivial Fourier harmonic of P(t), or even by engineer-
ing an appropriate time dependence in Hgp to cancel the
time-dependence in P(t) to some order.

V. SUMMARY AND CONCLUSION

We have argued in this work that the possibility of
stabilizing a Floquet topological state with a low den-
sity of excitations is heavily constrained by the coupling
to a thermal reservoir. Using scaling arguments, we
demonstrated that, even in the limit of weak driving
and/or high frequenscy, the bath density of states has
tremendous influence on whether or not excitations are
suppressed as w — co. We also suggested ways of de-



signing the bath and its coupling to the system in order
to suppress excitations.

Our results suggest that it is at best difficult, and
at worst impossible, to engineer a periodically-driven
quantum system whose steady state resembles the zero-
temperature ground state of some target topological
phase. However, even out of equilibrium, there is reason
to believe that nontrivial features, such as topological
indices®?, edge states”, and (approximately) quantized
transport®®, survive in both isolated and open systems.
Indeed, there is already experimental evidence to this ef-
fect in cold atomic gases®*3%. We emphasize, however,
that it is precisely in the deviations from the resem-
blance to equilibrium systems where the newest physics
lies. For example, interacting versions of these mod-
els® could be used as platforms to probe fractionalized
excitations out of equilibrium.
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Appendix: Limit of strong driving

In the case of strong driving (A/w > 1), there
are many values of m for which S;;(m) can be non-

negligible. Indeed, as A/w — oo, the Floquet states can
become chaotic, so that the S;;(m) may be regarded
as essentially random variables, whose magnitudes need
not decay quickly as |m| becomes large. For this reason,
the sums in the numerator and denominator of Eq.
generically diverge in the limit A/w — oo, and the ratio
of transition rates is indeterminate. One can, however,
identify constraints on the amplitudes |Si2(m)|? such
that the ratio converges to a definite finite value. In
particular, if

1

ISIQ(:I:|m|)|2 < (COHSt.) X W

(A1)

as |m| — oo for any positive real number §, then both
series are bounded from above by a convergent series,
and therefore the ratio has a definite value. This is true
even for infinitesimally small 6 — 0.

Even if the sums in the numerator and denomina-
tor are divergent, the ratio can approach a finite
value for system-bath coupling operators S such that
ISi;(m)|> = |Sij(—m)|?, due to a symmetry. To see
this, let us drop the m = 0 term in the denominator
and rewrite Eq. for w > A as

P2 LmeolSia(ml)[2 (Il — A)"

P Soo SialmP (i Ay A2

For large |m/|, the summands in the numerator and de-
nominator become identical. Therefore, if |S12(|m])|?
is finite for sufficiently large |m/|, the ratio of the two
sums approaches 1 from below as |m| grows. When this
occurs, the system approaches an infinite effective tem-
perature — all Floquet states are occupied with equal
probabilities, despite the fact that the bath is held at
zero temperature. If there exists some |myax| such that
|S12(|Mmax|)|? = 0, then the ratio takes on a finite value
that is bounded from above by unity.
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