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Correlation effects in double-Weyl semimetals
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National High Magnetic Field Laboratory, Florida State University, Florida 32310, USA

We study the long-range Coulomb interaction effects on the double-Weyl fermion system which is possibly

realized in the three dimensional semimetal HgCr2Se4 in the ferromagnetic phase. Within the one-loop renor-

malization group analysis, we find that there exists a stable fixed point at which the Coulomb interaction is

screened anisotropically. At the stable fixed point, the renormalized Coulomb interaction induces nontrivial log-

arithmic corrections to the physical quantities such as specific heat, compressibility, the electrical conductivity,

and the diamagnetic susceptibility that are obtained utilizing the renormalization group equations..

I. INTRODUCTION

There has been recently much interest in semimetals, which

support gapless quasiparticle excitations only in the vicinity

of isolated band touching points in the Brillouin zone (BZ).

When the Fermi energy is pinned to the band touching points,

these semimetals can possess universal power-law behaviors

for thermodynamic and transport quantities as a function of

temperature or external frequency. There are many well

known experimental examples of the semimetals which pos-

sess linearly dispersing massless Dirac quasiparticles in both

two dimensions (2D) and three dimensions (3D), e.g. Mono-

layer graphene1–3 in 2D and Bi1−xSbx
4–6, Pb1−xSnxTe7,8,

and Cd3As2
9, Na3Bi10 in 3D. It is also possible to realize

parabolic semimetals which possess parabolic dispersions at

band touching, e.g. Berner-Stacked bilayer graphene11 in 2D,

and HgTe7, gray tin12, and the normal state at high tempera-

ture for some 227 irradiates such as Pr2Ir2O7
13–18 in 3D.

In the presence of strong spin-orbit interactions in three di-

mensions, the unusual semimetallic phase called the topolog-

ical Weyl semimetals may exist and have been confirmed in

TaAs recently19–22. The Weyl semimetals are also predicted to

exist in pyrochlore iridates23–25, cold atom systems26,27, and

multilayer topological insulator systems28,29. In close prox-

imity of the gapless points, the effective Hamiltonian is de-

scribed by a two-component wave-function termed the Weyl

fermion and the gap closing point is the Weyl node. The Weyl

nodes are protected from opening a gap against infinitesimal

translations of the Hamiltonian; these points act as monopoles

(vortices) of 3D Berry curvature, as any closed 2D surface sur-

rounding one of them exhibits a finite Chern flux, and a Weyl

node can only be gapped by annihilation with an anti-Weyl

node of opposite monopole charge.

In addition to the usual Weyl semimetals, recently Ref. 30

proposed the possible presence of new 3D topological

semimetals in materials with point group symmetries termed

as double-Weyl semimetals. The new double-Weyl semimet-

als possess Weyl nodes with quadratic dispersions in two

directions, e.g. x̂ − ŷ plane. The double-Weyl nodes are

protected by C4 or C6 rotation symmetry and are suggested

to be realized in the 3D semimetal HgCr2Se4 in the ferro-

magnetic phase, which possess a pair of double-Weyl nodes

along ΓZ direction30,31. The first-principle calculations in the

material HgCr2Se4
31 also suggested the existence of double-

Weyl nodes, which is qualitatively in agreement with the re-

cent transport experiments in HgCr2Se4
32 that confirm the

half-metallic property of the HgCr2Se4. The (anti-)double-

Weyl node possesses a monopole charge of (-2)+2 and the

double-Weyl semimetal shows double Fermi-arcs on the sur-

face BZ30,31. This new semimetallic phase with an in-plane

quadratic dispersion can serve as a new platform for studying

the (long-range) Coulomb interaction effects on the double-

Weyl fermion. The low-energy physics of the double-Weyl

fermion can possibly serve as a new source term contributing

to the physical properties in HgCr2Se4 for chemical potential

sitting near the Weyl nodes, such as a T 2 term to the specific

heat C that was not considered previously33.

In this work, we consider a single double-Weyl fermion

coupled to the long-range Coulomb interaction and study the

effects within the one-loop renormalization group (RG) anal-

ysis in the Wilsonian momentum shell scheme34. Due to the

anisotropic dispersions of the double-Weyl node, the den-

sity of states (DOS) is linearly proportional to the energy,

D(ǫ) ∝ ǫ, sharply different to that in the usual Weyl fermion

with D(ǫ) ∝ ǫ2. Due to the anisotropic dispersions, the scal-

ings for the three spatial coordinates can be different. In the

noninteracting limit, for scaling transformation invariance of

the action we find the dynamical scaling exponent z = 2, the

scaling exponents of the spatial coordinates ~x and ~y are 1, i.e.

the scaling dimension [~x] = [~y] = −1, while that of ~z is two,

[~z] = −2. The result of such nontrivial scaling transforma-

tions in spatial dimensions result in the Coulomb interaction

e2 with engineering scaling dimension [e2] = z − 1 = 1 and

anisotropy parameter η, which dictates the anisotropy of the

system, with enginnering scaling dimension [η] = −2.

After coarse-graining within RG analysis, we find that in

the low-energy limit, the system becomes highly anisotropic

and η becomes infinitesimal. The Coulomb potential receives

strong renormalization along the linear dispersion axis and

the Coulomb interaction strength e2 also becomes infinitesi-

mal due to the strongly irrelevant anisotropy variable η. The

composite variable similarly equal to the ratio of Coulomb

interaction strength and the square root of the anisotropy pa-

rameter, ∼ e2/
√
η, approaches a fixed value in the low-energy

limit, which defines the stable fixed point in RG. At the stable

fixed point, the Coulomb potential is renormalized anisotrop-

ically, which is consistent with the random phase approxi-

mation (RPA) calculation detailed in the supplemetal mate-

rial. Furthermore, we find that the square of the Coulomb

interaction,∼ e4, under coarse-graining process decreases in

a logarithmic manner, which leads to logarithmic suppres-

sions to several physical quantities such as specific heat C
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FIG. 1. Feynman diagrams for the self-energy corrections due to

the long-range Coulomb interaction. The red curvy lines are boson

propagators introduced for performing Hubbard-Stratonovich trans-

formation of the four-fermion Coulomb interaction. The blue lines

are fermion propagators. The boson-fermion vertex is −ie12.

compressibility κ and the so called finite frequency (dynamic)

conductivity σµµ=x,y,z(ω), and the dc conductivity σdcµµ(T ).
Furthermore, we find unexpectedly that the diamagnetic sus-

ceptibility χD gets enhanced in a logarithmic manner due to

the long-range Coulomb interaction.

The paper is organized as follows. In Sec. II we introduce

the model Hamiltonian followed by weak-coupling RG analy-

sis. In Sec. III we utilize the RG equations near the fixed point

to obtain logarithmic corrections to various physical quatities.

In Sec. IV we conclude with some discussions.

II. DOUBLE WEYL SEMIMETAL IN THE LONG-RANGE

COULOMB INTERACTION

We consider a minimal model of a single double-Weyl

fermion coupled to the long-range Coulomb interaction. The

action in the Euclidean path integral formalism is

SL =

∫

dτd3~x

{

ψ†
[

∂τ − ieφ+ ~d(−i∇) · ~σ
]

ψ +

+
1

2
√
η

[

(∂xφ)
2 + (∂yφ)

2
]

+

√
η

2
(∂zφ)

2

}

, (1)

with ~d ≡
{

−m−1
(

∂2x − ∂2y
)

, −m−1(2∂x∂y), − ivz∂z
}

,

whereψ and φ represent the electron annihilation field and the

boson annihilation field. The integration of φ gives the usual

instantaneous long-range Coulomb interaction. The variable

m along the ~x− ~y plane represents the effective mass and the

variable vz along ~z direction is the velocity. The anisotropy

variable η is introduced due to the anisotropic dispersions. We

choose the scaling transformations for the fields and the vari-

ables as τ = bzτR, x = b xR, y = b yR, z = bz1 zR, vz =

Z−1
vz vz,R, m

−1 = Z−1
m−1m

−1
R , η = Z−1

η ηR, e = Z
−1/2
e eR,

ψ = Z
−1/2
ψ ψR, φ = Z

−1/2
φ φR, where the parameter b = eℓ

represents a length scale slightly greater than one with a log-

arithmic length scale ℓ ≪ 1 and the subscript R labels renor-

malized variables during coarse-graining.

For analytically extracting the RG equations, we adopt

the RG scheme in Ref. 35 and perform integration within

a momentum shell in the q⊥ ≡
√

q2x + q2y direction, i.e.

q⊥ ∈ [Λe−ℓ,Λ], and no restriction along qz direction (|qz | ∈
[0,Λz → ∞]). For clarity in the presentation of RG results,

we introduce two variables α ≡ me2

12π2Λ , and λ ≡ m2vze
2

48π2√ηΛ2 .
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FIG. 2. RG stream plot for the model action, Eq. (1). The red dot

represent the fixed point (α∗, λ∗) = (0, 1/2), where the Coulomb

interaction receives anisotropic screening. The RG streams mostly

flow to the stable fixed point along the λ = 1/2 path.

We obtain the one-loop RG equations, detailed in App. A,

d ln vz
dℓ

= z − z1 +
3

4

α2

λ
, (2)

d lnm−1

dℓ
= z − 2 +

3c

4

α2

λ
, (3)

dα

dℓ
= α

[

1− 2λ− 3c+ 2

4

α2

λ

]

, (4)

dλ

dℓ
= 2λ

[

1− 2λ− 6c− 3

8

α2

λ

]

. (5)

where c = ln(3 + 2
√
2)/2 ≃ 0.881. If we hold vz and m−1

fixed, we get

z = 2− 3c

4

α2

λ
, (6)

z1 = z +
3

4

α2

λ
= 2 +

3(1− c)

4

α2

λ
. (7)

We can see that fixed points are located at (α, λ) = (0, 0),
and (0, 1/2). Linearizing around these two fixed points, we

find that the fixed point (0, 0) is the unstable Gaussian fixed

point, and (0, 1/2) is the stable fixed point controlled by the

parameters α and λ. The RG streamplot is shown in Fig. 2.

The Coulomb interaction decreases to the stable fixed point

mostly along the path of λ = 1/2. Along this path, the

square of the Coulomb interaction (e4) decreases to zero in

a logarithmic manner, which is reflected as the nonmonotonic

temperature or frequency dependences of physical quantities

such as the specific heat C, compressibility κ, the finite fre-

quency (dynamic) conductivity σµµ=x,y,z(ω), the dc conduc-

tivity σdcµµ, and the diamagnetic susceptibility χD , which we

will show below.

At the fixed point (αs, λs) = (0, 1/2), the dynamical ex-

ponent z = 2 = z1. If we focus on the renormalized boson

propagator (which gives the Coulomb screening effects), at
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the fixed point it is (below we will suppress the irrelevant di-

mensionful variables)

q2⊥ + q2z −Π(q) ∼ q2⊥(1 + α2
s/λsℓ) + q2z(1 + 4λsℓ)

= q2⊥ + q2z(1 + 2ℓ), (8)

which shows that there is only a correction along the qz direc-

tion. If we consider the relative scalings between q⊥ and qz ,

we can obtain

q2⊥ + q2z −Π(q) ∼ q2⊥ + q2z |qz |−
2
z1 = q2⊥ + |qz |, (9)

where z1 = 2 at the stable fixed point. The renormalized

Coulomb interaction at the fixed point becomes Vc(~q) ∼
1/(q2⊥ + |qz |). Fourier transforming Vc(~q) back to the real

space, we find that the renormalized Coulomb potential falls

off anisotropically, Vc(r⊥, |z| = 0) ∼ r−2
⊥ , and Vc(r⊥ =

0, |z|) ∼ |z|−1, where r⊥ ≡
√

x2 + y2. In the App. B, we

perform RPA analysis of the screened Coulomb interaction

and we find that the scaling analysis above is consistent with

the RPA analysis.

III. LOGARITHMIC CORRECTIONS TO THE SCALING

BEHAVIOR OF PHYSICAL QUANTITIES

According to the strong-coupling analysis in App. C, we

find that the renormalized Coulomb interaction causes an in-

frared logarithmic divergence that can lead to the logarith-

mic corrections to physical quantities. Instead of calculating

higher-order corrections in the perturbation theory, we follow

Ref. 36 to utilize the RG equations near the stable fixed point

and the scaling arguments to obtain the scaling behaviors of

the physical quantities.

Focusing on the path of λ = 1/2 near the stable fixed point,

we know that the mass inverse m−1 and velocity vz receive

nontrivial renormalization as m−1(1 + 3c
2 α

2 ln b) and vz(1 +
3
2α

2 ln b), where ln b = ℓ. From the scaling invariance of ac-

tion, we know Zψ = bz1+2, Zm−1 = bz−2
(

1 + 3c
2 α

2 ln b
)

,

and Zvz = bz−z1
(

1 + 3
2α

2 ln b
)

. For a finite potential term,

we can consider to add a term −µ
∫

d3x
∫

dτψ†ψ to the ac-

tion and we can obtain the transformation µ = b−zµR. We

can also consider the free energy F , which can be a general

function of T , α, µ, magnetic field B, etc., that transforms

as F = Z−1
F FR. Considering the exponent of a partition

function
∫

d3x
∫

dτF , we know that the exponent should be

dimensionless, which requires F = b−(2+z1)b−zFR. In ad-

dition, the temperature transforms under coarse-graining as

T = b−zTR.

The relevant RG equations near the stable fixed point along

the path λ = 1/2 are

dα

d ln b
= −3c+ 2

2
α3(b), (10)

dT

d ln b
= T (b)

[

2− 3c

2
α2(b)

]

. (11)

Solving the RG equations, we get

α2(b) = α2
(

1 + (3c+ 2)α2 ln b
)−1

, (12)

T (b) = Tb2
(

1 + (3c+ 2)α2 ln b
)− 3c

2(3c+2)

≃ Tb2
(

1 +
3c

2
α2 ln b

)−1

, (13)

where α and T represent the bare Coulomb interaction α(0)
and bare temperature T (0). Choosing the temperature cut-off

T (b∗) = T0 = m−1Λ2, we get

b∗ ≃
[

T0
T

(

1 +
3c

4
α2 ln

T0
T

)]
1
2

(14)

The renormalization of specific heat under RG can be obtained

as C = −T ∂2F
∂T 2 = b−(2+z1)CR. Choosing the cut-off b to

be b∗ and using the high temperature result of specific heat,

CR ∼ T 2
0 which is originated from D(ǫ) ∼ ǫ in the noninter-

acting double-Weyl semimetals, we get

C ∼ T 2

(

1 + 3
4α

2 ln T0

T

) (

1 + 3c
4 α

2 ln T0

T

) ∼ T 2

(

1 + 3
4α

2 ln T0

T

)2 ,

(15)

where we crudely approximate c ∼ 1 in the last line. The

compressibility can be obtained as κ ≡ ∂2F
∂µ2 = bzb−(2+z1)κR.

If we substitute b∗ for b and use the noninteracting result κR ∼
T0, we get

κ ∼ T
(

1 + 3
4α

2 ln T0

T

) (

1 + 3c
4 α

2 ln T0

T

) ∼ T
(

1 + 3
4α

2 ln T0

T

)2 .

(16)

Let’s shift our focus on the scaling behavior of the fi-

nite frequency conductivity and dc conductivity. In the

presence of magnetic vector potential, the kinetic terms are

modified as −i∂j → −i∂j + eAj , with j = x, y, z.

Due to the minimal coupling, we require that the compos-

ite variables eAj rescale the same as that of ∂j , which leads

to A⊥ = b−1
[

1 + 3c
2 α

2 ln b
]−1/2 [

1 + 2α2 ln b
]−1/4

A⊥,R,

with A⊥ = Ax/y , and Az = b−2
[

1 + 3c
2 α

2 ln b
]1/2 ×

×
[

1 + 3
2α

2 ln b
]−1 [

1 + 2α2 ln b
]−1/4

Az,R, where we ex-

plicitly use λ = 1/2 near the fixed point and the scaling of

electric charge Ze obtained in the RG equations derivation in

App. A.

In order to obtain the scaling relations for the conduc-

tivity, we can rely on the Kubo formula. According to

the Kubo formula, the current-current correlation function

Πµµ(iωn) =
∫

dτeiωnτ
∫

d3q 〈Tτ [jµ(~q, τ)jµ(~q, 0)]〉
can be related to the dynamic conductivity as

σµµ(ω) = −ImΠµµ(ω)/ω, where iωn → ω + i0+. j⊥(~q, τ)
and jz(~q, τ) can be obtained from the Fourier transform of

j⊥(~x, τ) ≃ em−1ψ†(~x, τ)(−i∇) · ~σ⊥ψ(~x, τ) and jz(~x, τ) =
evzψ

†(~x, τ)σzψ(~x, τ). We first obtain that j⊥(~q, τ) =

b−1
[

1 + 3c
2 α

2 ln b
]1/2 [

1 + 2α2 ln b
]1/4

j⊥,R and jz(~q, τ) =
[

1 + 3c
2 α

2 ln b
]1/2 [

1 + 2α2 ln b
]1/4

jz,R, which lead to
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σ⊥⊥ = b−2
[

1 + 3
2α

2 ln b
]−1 [

1 + 2α2 ln b
]1/2

σ⊥⊥,R, and

σzz =
[

1 + 3c
2 α

2 ln b
]−1 [

1 + 2α2 ln b
]1/2

σzz,R. For ω > T
(with T → 0, ω → 0), we introduce the cut-off frequency

ω0 = ω(b∗) with

b∗ ≃
[

ω0

ω

(

1 +
3c

4
α2 ln

ω0

ω

)]
1
2

, (17)

which is due to the fact that the ω(b) scales the same as the

temperature T (b), i.e. O = b−zOR, where O = T, ω. With

the cut-off frequency, we obtain

σ⊥⊥(ω) ∼
[

1 + α2 ln
(

ω0

ω

)]
1
2

[

1 + 3c
4 α

2 ln
(

ω0

ω

)] [

1 + 3
4α

2 ln
(

ω0

ω

)]e2ω

≃
[

1− 3c+ 1

4
α2 ln

(ω0

ω

)

]

e2ω, (18)

σzz(ω) ∼
[

1 + α2 ln
(

ω0

ω

)]
1
2

1 + 3
4α

2 ln
(

ω0

ω

) e2 ≃
[

1− 1

4
α2 ln

(ω0

ω

)

]

e2.

(19)

where we approximate σ⊥⊥,R(ω) and σz,R(ω) to be the non-

interacting results of the dynamic conductivity at finite fre-

quency obtained in App. D.

The dynamic conductivity calculations at µ ≪ T in the

noninteracting limit in App. Dl also show the existence of

the Drude peak and the linear-T dependentxx/yy-component

dc conductivity, σdcxx/yy ≡ σdc⊥⊥, and T -independent zz-

component dc conductivity, σdczz . Following similar discus-

sions above with high temperature cut-off, Eq. (14), the dc

conductivity also receive nonmonotonic temperature suppres-

sion, which are similar to Eqs (18)-(19) with ω → T ,

σdc⊥⊥(T ) ∼
[

1− 3c+ 1

4
α2 ln

(

T0
T

)]

e2T, (20)

σdczz(T ) ∼
[

1− 1

4
α2 ln

(

T0
T

)]

e2. (21)

Last but not least, we focus on the temperature dependence

of the diamagnetic susceptibility. The diamagnetic suscep-

tibility can be obtained from taking second derivative of the

free energy, χD = −∂2F/∂B2. Since ~B = ∇× ~A, the renor-

malization of the magnetic field under coarse-graining can

be obtained straightforward using the renormalization of Aj
illustrated above. We find that the diamagnetic susceptibility

scales differently for in-plane magnetic field ~B = B~r⊥ and

for perpendicular magnetic field ~B = Bẑ. For ~B = B~r⊥,

the diamagnetic susceptibility renormalizes as χ⊥
D =

[

1 + 3c
2 α

2 ln b
] [

1 + 3
2α

2 ln b
] [

1 + 2α2 ln b
]1/2

χ⊥
D,R.

For ~B = Bẑ, the diamagnetic sus-

ceptibility renormalizes as χzD =

b−2
[

1 + 3c
2 α

2 ln b
]3 [

1 + 3
2α

2 ln b
]−1 [

1 + 2α2 ln b
]1/2

χzD,R.

We use Eq. (14) and the noninteracting results of χD,R
which we derive using the Fukuyama formula for the orbital

diamagnetic susceptibility37 in App. E. We obtain

χ⊥
D ∼

[

1 +
3c+ 5

4
α2 ln

(

T0
T

)]

e2vz , (22)

χzD ∼
[

1 +
6c− 2

4
α2 ln

(

T0
T

)]

e2T

mvz
. (23)

We expect that the temperature dependence of the diamagnetic

susceptibility for a magnetic field in general direction at low

temperature to be

χD ∼
[

1 + α2 ln

(

T0
T

)]

(

sin2 θ χ0 + cos2 θ T
)

, (24)

where θ is the angle between the magnetic field and ~z-axis,

i.e. ~B · ~z = B cos θ, and χ0 is a constant independent of

temperature and the diamagnetic susceptibility gets enhanced.

IV. DISCUSSIONS

We study the long-range Coulomb interaction effects on

the double-Weyl semimetals. Within one-loop renormaliza-

tion group analysis we find that the composite variable de-

fined as the ratio of the Coulomb interaction strength and the

square root of the anisotropy parameter, ∼ e2/
√
η, is fixed

to be finite at long-wavelength, which defines the fixed point.

Focusing near the fixed point, we utilize RG equations to ob-

tain nonmonotonic temperature or frequency dependences of

various physical quantities.

Though the long-range Coulomb interaction induces log-

arithmic corrections to several physical quatities in experi-

ment, the fundamental Berry curvature structure around the

double Weyl-point remains unaltered, similar to the situa-

tions in single-Weyl point and the Dirac points of graphen38.

In the presence of Coulomb interaction, the renormalized

low-energy description near a double-Weyl point is similarly

Hf (~k) ∼
[

1 + α2 ln (Λ/|k|)
]

~d(~k) · ~σ. The Berry curvature

∇× ~A is independent of the overall real renormalization fac-

tor since it measures the “complex phase” of the Hamiltonian

eigenstates as they are parallel transported in the BZ. The

Chern flux through a small sphere enclosing a double-Weyl

point remains unaltered and so do the associated topological

quantities.

Despite the similarities between the present work and

Ref. 35, the conclusions are in sharp difference. The RG fixed

point in Ref. 35 is defined, in our convention, as the composite

parameter ∼ e2
√
η flowing to a fixed value with e2 → 0 and√

η → ∞. In stark contrast to our results, the e2 in Ref. 35

vanishes exponentially under RG flow, which leads to the fact

that the physical properties, such as C, κ, and etc., are the

same to noninteracting ones.

In the end, we briefly discuss the effects of the short-range

interactions and disorders. The Lagrangian density of a short-

range interaction can be written similarly as gj(ψ
†Γjψ)

2,

where Γj = 12, σi. A short-range coupling at tree-level is

stronly irrelevant and scales as gj = b−2gj,R. A e4 term

may be generated under RG that drives the short-range
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couplings to strong coupling, similar to the situations in the

parabolic semimetals17,18. However, due to the fact that the

e2 vanishes near the fixed point, the short-range couplings

remain irrelevant and negligible. The effects of the disorders

are more intriguing and detrimental. The Lagrangian density

of a disorder can be written as Vjψ
†Mjψ, with Mj = 12, σj .

If we choose Gaussian white noise distribution for the

disorder according to 〈〈Vi(~x)Vj(~x′)〉〉 = ∆ijδ
(3)(~x − ~x′),

we perform the average over disorder by employing replica

method18,39. The effective disorder terms mimic the four-

fermi interactions but nonlocal in imaginary time, i.e. S̄D ∼
∫

d3~xdτdτ ′∆jψ
†
a(~x, τ)Mjψa(~x, τ)ψ

†
b(~x, τ

′)Mjψb(~x, τ
′),

where a, b are replica indices. The disorder average vertices

are marginal, ∆j = ∆j,R, at the tree-level RG analysis.

Hence, a more thorough treatment including one-loop correc-

tions is needed, which we leave for the future studies.

Note added–During the journal review process, we found

a preprint40 working on similar topic. Ref. 40 also finds a

new fixed point within one-loop weak-coupling RG analy-

sis in the presence of the long-range Coulomb interaction,

where the Coulomb interaction gets screened anisotropically

and specific heat, C, receives a logarithmic correction, sim-

ilar to the conclusion of the present paper. However, the

qualitative differences between the results here and those

in Ref. 40 originate from the different way of introducing

anisotropy, the second term in Eq. (1) involving the bosonic

field φ and the anisotropy variable η. Due to the subtle dif-

ference of characterizing the anisotropy, the fixed points are

different. Unlike the RG fixed point in this paper defined as

λ ∼ e2/
√
η → constant, the RG fixed point in Ref. 40 is

defined as ∼ e2/η → constant, which leads them to the

result that the logarithmic correction to the specific heat is

δC ∼ −T 2α ln(T0/T ), in constrast to our result in Eq. (15),

δC ∼ −T 2α2 ln(T0/T ).
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Appendix A: One-loop RG corrections for double-Weyl

Semimetal in clean limit

The action of a double-Weyl fermion coupled to the long-

range Coulomb interaction is given in Eq. (1) in the main texts.

We can define the fermion Green’s function and the (boson)

scalar Green’s function as

G0(~k, ω) =
iω + ~d · ~σ

ω2 +m−2k4⊥ + v2zk
2
z

, (A1)

D0(~k, ω) =

√
η

k2⊥ + ηk2z
, (A2)

where we define ~k⊥ = (kx, ky) and |~k⊥| ≡ k⊥ ≡
√

k2x + k2y .

The Fig. 1(a) in the main texts illustrates the Coulomb in-

teraction induced fermion self-energy Σex(~k, ω)

Σex(~k, ω) = −e2
∫

Ω

∫ ′

q

G0(q,Ω)D0(~k − ~q, ω − Ω)

=
e2

2

∫ ′

q

~d(~q) · ~σ
√

m−2q4⊥ + v2zq
2
z

√
η

|~k⊥ − ~q⊥|2 + η(kz − qz)2
.(A3)

where we introduce the abbreviations
∫

Ω
≡

∫∞
−∞ dΩ/(2π)

and
∫ ′
q ≡

∫ ′
d3q/(2π)3, and the prime means the momentum

integral within a momentum shell between [Λe−ℓ,Λ], with

ℓ ≪ 1. We adopt the RG scheme introduced by B.-J. Yang

et al. and introduce the large momentum cut-off Λ along ~q⊥
direction, while there is no restriction for the integral along qz .

We take the calculation for the correction to d3σ
z for exam-

ple. We consider Tr[σz∂kzΣ
ex(~k, 0)]/T r[σzσz]|~k→0, which

gives the correction to d3(~k),

Tr[σz∂kzΣ
ex(~k, 0)]

Tr[σzσz ]

∣

∣

∣

∣

~k→0

= η3/2vze
2

∫ ′

q

q2z
√

m−2q4⊥ + v2zq
2
z(q

2
⊥ + ηq2z)

2

=

√
ηe2ℓ

4π2

∫ ∞

−∞
dz

z2
√

z2 +
(√

ηΛ

mvz

)2

(z2 + 1)2

=

√
ηe2ℓ

2π2mvz

∫ ∞

0

dz
1√

z2 +A2 (z2 + 1)3

≃
√
ηe2

4π2
ℓ, (A4)

where we introduced z =
√
ηqz/Λ, and dimensionless A ≡√

ηΛ/(mvz). If we solve the RG equations, we will see that

the parameter A is irrelevant and flows toward zero, and we

show the leading contribution in the last line above.

For the correction to d2σ
y for example. We consider

Tr[σy∂kx∂kyΣ
ex(~k, 0)]/T r[σyσy]|~k→0, which will give the

correction to d2(~k),

Tr[σy∂kx∂kyΣ
ex(~k, 0)]

Tr[σyσy]

∣

∣

∣

∣

~k→0

=
8
√
ηe2

m

∫ ′

q

q2xq
2
y

√

m−2q4⊥ + v2zq
2
z (q

2
⊥ + ηq2z)

3

=

√
ηe2

4π2m

∫ Λ

Λe−ℓ

q⊥dq⊥

∫ ∞

−∞
dqz

q4⊥
√

m−2q4⊥ + v2zq
2
z (q

2
⊥ + ηq2z)

3

=

√
ηe2

2π2mvz

∫ Λ

0

dqz
Λ6ℓ

√

q2z +
(√

ηΛ2

mvz

)2

(q2z + Λ2)
3

=

√
ηe2ℓ

2π2mvz

∫

√
η

0

dz
1√

z2 +A2 (z2 + 1)
3

=
c
√
ηe2ℓ

2π2mvz
, (A5)
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where c = ln(3 + 2
√
2)/2 ≃ 0.881. During the calculation,

we introduced the momentum cut-off for qz since if there is no

restriction, we will get an artificial logarithm of A. It is also

physically intuitive to introduce a momentum cut off for qz .

Since if we choose Λ⊥ to be the largest momentum scale and

perform the momentum shell integral along q⊥, the largest

momentum Λz along qz should satisfy vzΛz ≃ m−1Λ2
⊥,

which are the energies along q⊥ and qz . Therefore, we can get

an identity as mvz/(Λ
2
⊥/Λz) ≃ 1. For Λ⊥ ≃ Λz , we can get

mvz/Λ ≃ 1 and thusA =
√
ηΛ/(mvz) ≃

√
η. From rotation

symmetry, we know the correction to d1(~k) is the same to that

of d2(~k). Combining the corrections with the bare terms, we

get

~d⊥(~k) · ~σ⊥
[

1 +

√
ηe2

4π2vz
ℓ

]

+ d3(~k)σ
z

[

1 +

√
ηe2ℓ

4π2vz

]

,

(A6)

where we define ~σ⊥ = (σ1, σ2). It may seem that there is

some inconsistency in performing the RG calculations. The

more valid way to perform the calculation should be stated

as follows. Since we set Λ⊥ to be the largest momentum

scale and we perform momentum shell integration within

|q⊥| ∈ [Λ⊥e
−ℓ,Λ⊥], we should consistently introduce the

large momentum cutoff for the integrations of qz in the self-

energy calculations. However, we note that these will simply

complicate the coefficients of the corrections and the structure

of the RG equations will remain the same, i.e. the fixed point

structure will remain the same.

The Fig. 1(b) in the main texts represents the boson self-

energy Π(~k, ω)

Π(~k, ω) = e2
∫

Ω

∫ ′

q

Tr
[

G0(~q,Ω)G0(~q + ~k,Ω+ ω)
]

.(A7)

Since the boson propagator is frequency dependent, we can

focus on static Π(~k, ω = 0). After frequency integral, we get

Π(~k, 0) = −e2
∫ ′

q

[

1

Eq + Ek+q
−

~d(~q) · ~d(~q + ~k)

Eq+kEq(Eq+k + Eq)

]

,

(A8)

where we define E2
q ≡ m−2q4⊥ + v2zq

2
z . After expansion to

quadratic order in ~k, the integrals give

e2ℓ

6π2vz

(

k2x + k2y
)

+
m2vze

2ℓ

24π2Λ2
k2z (A9)

Combining the corrections and the bare terms, we obtain

1

2
√
η

(

k2x + k2y
)

[

1 +

√
ηe2

3π2vz
ℓ

]

+

√
η

2
k2z

[

1 +
m2vze

2

12π2√ηΛ2

]

.

(A10)

The renormalized action after inclusion of the self-energy

corrections due to the long-range Coulomb interaction is

S̃L =

∫

dτd3~x

{

ψ†
[

∂τ − ieφ+

(

1 +
c
√
ηe2

4π2vz
ℓ

)

~d⊥ · ~σ⊥ +

(

1 +

√
ηe2ℓ

4π2vz

)

d3σ3

]

ψ +

+
1

2
√
η

(

1 +

√
ηe2

3π2vz
ℓ

)[

(∂xφ)
2 + (∂yφ)

2

]

+

√
η

2

(

1 +
m2vze

2ℓ

12π2√ηΛ2

)

(∂zφ)
2

}

. (A11)

We rescale the parameters as τ = τRe
zℓ, x = xRb

ℓ, y =

yRe
ℓ, z = zRe

z1ℓ, e = Z
−1/2
e eR,ψ = Z

−1/2
ψ ψR, and φ =

Z
−1/2
φ φR to bring the action back to the original form. We

obtain

Zψ = e(2+z1)ℓ, (A12)

Zvz = e(z−z1)ℓ
[

1 +

√
ηe2ℓ

4π2vz

]

, (A13)

Zm−1 = e(z−2)ℓ

[

1 +
c
√
ηe2

4π2vz
ℓ

]

, (A14)

Zφ = e(z+1)ℓ

[

1 +

√
ηe2

3π2vz
ℓ

]

1
2
[

1 +
m2vze

2

12π2√ηΛ2
ℓ

]

1
2

,(A15)

Zη = e(1−z1)ℓ
[

1 +
m2vze

2

12π2√ηΛ2
ℓ

] [

1 +

√
ηe2

3π2vz
ℓ

]−1

,(A16)

Ze2 = e(z−1)ℓ

[

1 +

√
ηe2

3π2vz
ℓ

]− 1
2
[

1 +
m2vze

2

12π2√ηΛ2
ℓ

]− 1
2

.(A17)

The RG equations are

d ln vz
dℓ

= z − z1 +

√
ηe2ℓ

4π2vz
, (A18)

d lnm−1

dℓ
=

(

z − 2 +
c
√
ηe2

4π2vz

)

, (A19)

d ln η

dℓ
= 2(1− z1) +

m2vze
2

12π2√ηΛ2
−

√
ηe2

3π2vz
, (A20)

d ln e2

dℓ
= z − 1−

√
ηe2

6π2vz
− m2vze

2

24π2√ηΛ2
. (A21)

Introducing the dimensionless parameters,

α ≡ me2

12π2Λ , λ ≡ m2vze
2

48π2√ηΛ2 , (A22)
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we obtain the RG equations,

d ln vz
dℓ

= z − z1 +
3

4

α2

λ
, (A23)

d lnm−1

dℓ
= z − 2 +

3c

4

α2

λ
, (A24)

d lnα

dℓ
= z − 1− 2λ− 1

2

α2

λ
, (A25)

d lnλ

dℓ
= z + z1 − 2− 4λ. (A26)

If we hold vz and m−1 fixed, we get

z = 2− 3c

4

α2

λ
, (A27)

z1 = z +
3

4

α2

λ
= 2 +

3(1− c)

4

α2

λ
. (A28)

The RG equations for double-Weyl semimetals in the presence

of long-range Coulomb interaction are

dα

dℓ
= α

[

1− 2λ− 3c+ 2

4

α2

λ

]

, (A29)

dλ

dℓ
= 2λ

[

1− 2λ− 6c− 3

8

α2

λ

]

. (A30)

We can see that fixed points are located at (α, λ) = (0, 0),
and (0, 1/2). Linearizing around these two fixed points, we

find that the fixed point (0, 0) is the unstable Gaussian fixed

point, and (0, 1/2) is the stable fixed point controlled parame-

ter defined as the ratio of long-range Coulomb interaction and

the anisotropic parameter. The RG flow diagram is shown in

Fig. 2 in the main texts.

Appendix B: Random Phase Approximation analysis of

screened Coulomb interaction in double-Weyl semimetals

We use RPA analysis to examine the screened Coulomb in-

teraction in double-Weyl semimetals. We will focus on po-

larization function Π(~k, ω) illustrated in Fig. 2(b) in the main

texts and perform the integral without restricting integrating

range. For clarity, we relabel the frequency and the momenta

(ω, kx, ky, kz) → (k0, k1, k2, k3). The polarization function

after proper scaling of the variable is

− vz
2me2

Π(k0,
√
m~k⊥,

k3
vz

)

=

∫

q

q0(q0 + k0)− q3(q3 + k3)− dj(~q − ~k
2 )dj(~q +

~k
2 )

[

q20 + E2
q

]

[

(q0 + k0)
2
+ E2

q+k

]

=

∫

q,x

q0(q0 + k0)− q3(q3 + k3)− dj(~q − ~k
2 )dj(~q +

~k
2 )

[

(q+ xk)
2
+ x(1− x)k2 + x(q+⊥)

4 + (1− x)(q−⊥)4
]2 ,

(B1)

where
∫

q,x =
∫

q

∫ 1

0 dx and we introduced the Feynman pa-

rameter x, which leads to two vectors q = (q0, q3), k =

(k0, k3) and (q±⊥)
2 ≡ (q1 ± k1/2)

2 + (q2 ± k2/2)
2 and the

repeated subscript indices j means summation over j = 1, 2.

We also introduce the rescaled dispersion E2
k = k4⊥ + k2z .

We then introduce q̄ = q + xk so that q(q + k) = (q̄ −
xk) [q̄+ (1− x)k] and perform the integration of q0 and q3.

We obtain the static polarization function as

Π(0,
√
m~k⊥,

k3
vz

)

= − me2

8π3vz

∫ 1

0

dx

∫

q⊥

−dj(q+⊥)dj(q−⊥) + x(1 − x)k23
x(1− x)k23 + x(q+⊥)

4 + (1 − x)(q−⊥)4
.

(B2)

Now we can examine the leading terms in k3 and k⊥. First if

we set k⊥ = 0, the result after regularization is

Π(0, 0,
k3
vz

) = −πme
2

64vz
|k3| ∝ |k3|, (B3)

which is linear in k3. If we set k3 = 0, the integral can not

be performed analytically. But we can factorize out the k⊥
dependence to see how the result scales with k⊥. We find that

the result is

Π(0,
√
m~k⊥, 0) = − me2

4π3vz
k2⊥

∫

x,y

f(x, y) ∝ k2⊥, (B4)

where

f(x, y) =
1
16 + x4 + y4 − 3

2y
2 + x2(2y2 − 1

2 )

4x3 + 4xy2 + x
×

× ln

∣

∣

∣

∣

(2x− 1)2 + 4y2

(2x+ 1)2 + 4y2

∣

∣

∣

∣

.(B5)

We can see from Eq. (B4) that the leading term in k⊥ is still

quadratic. We can conclude that the leading terms in RPA

analysis is

Π(0,
√
m~k⊥,

kz
vz

) ∼ k2⊥ + |kz|, (B6)

which is consistent with the RG analysis.

Appendix C: Large-Nf analysis

In this appendix, we will illustrate how the infrared diver-

gency near the stable fixed point arises via a simplified large

Nf analysis. The strong-coupling analysis starts with the ac-

tion at the stable fixed point,

Ss =

∫

ψ† (H0 − iφ)ψ +Nf

∫

(

q2⊥ + |q3|
)

|φq,ω |2 ,(C1)

where Nf different copies of fermions are introduced and we

suppress dimensionful numbers and the boson propagator is

from the RPA calculation. Here instead of evaluating the

Nf → ∞ limit exactly, we use the RPA results that capture

the correct momentum dependence in each direction. Since

we are only interested in how the infrared divergence appears,

the use of the simplified RPA result can be justified. It is im-

portant that the electric charge does not appear in the action
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since it is always possible to absorb the constant into the bo-

son field by redefining the field.

Given the approximate action, we can evaluate 1/Nf cor-

rection. The electron self-energy with the momentum cutoff

Λ in the quadratic direction is

Σf (k, ω) =
1

Nf

∫

q

da(k + q)σa

Ek+q

1

q2⊥ + |q3|
, (C2)

where daσ
a ∼ (k21 − k22)σ

1 + 2k1k2σ
2 + k3σ

3 and the dis-

persion E(k) =
√
∑

a(da)
2. The correction can be read off

by considering the k → 0 limit as

∂Σf (k + q)

∂da

∣

∣

∣

∣

k→0

∼ 1

Nf

∫ Λ2
⊥

µ2

dq2⊥
q2⊥

∼ ln
Λ2
⊥
µ2

. (C3)

We can see there is a logarithmic divergence at the infrared

limit (µ → 0). Hence, the anisotropic screening induces

the logarithmic correction similar to conventional graphene

physics.

Appendix D: Dynamic conductivity at noninteracting limit

Within linear response theory, we first start from the Mat-

subara formalism to calculate the current-current correlation

function

Πµµ(iωn) = −e2
∫ β

0

dτeiωnτ 〈Tτ [Jµ(τ)Jµ(0)]〉 ,

(D1)

and perform analytic continuation to the real frequency as

Πµµ(ω) = Παβ(iωn → ω + iη+). (D2)

In the end, we can extract the dynamic conductivity by ex-

tracting the imaginary part

σµµ(ω) = −Im [Πµµ(ω)]

ω
. (D3)

Before the indulging in the calculations, we first note that

due to the rotation symmetry, Πxx(iωn) = Πyy(iωn) 6=
Πzz(iωn). We will discuss separately Πxx(iωn) = Πyy(iωn)
and Πzz(iωn), which lead to the conductivity σxx(ω) =
σyy(ω) 6= σzz(ω).

The current components are

Jx =

∫

q

ψ†
q

(

2qx
m
σx +

2qy
m
σy

)

ψq ≡
∫

q

ψ†
q Jx ψq, (D4)

Jy =

∫

q

ψ†
q

(

−2qy
m
σx +

2qx
m
σy

)

ψq ≡
∫

q

ψ†
q Jy ψq,(D5)

Jz =

∫

q

ψ†
qvzσ

zψq ≡
∫

q

ψ†
q Jz ψq. (D6)

and the diagonal current-current correlation function in the

Matsubara domain can be expressed as

Πµµ(iωn) =
e2

β

∑

m

∫

q

Tr [JµG(~q, ipm)JµG(~q, ipm + iωn)] ,

(D7)

where G(~q, iωn) is the noninteracting fermion green’s func-

tion in the Matsubara domain as

G(k, iωn) =
1

iωn + µ−H0
,

(D8)

where the H0 is the Hamiltonian density of the system. After

straightforward derivation, below we list the main results.

(A) Drude weight at zero frequency, σµµ(ω)

∣

∣

∣

∣

ω→0

:

σxx/yy(ω)

∣

∣

∣

∣

ω→0

=

= − e2

3πmvz
(2mT )

[

Li2(−eµ/T ) + Li2(−e−µ/T )
]

δ
(ω

T

)

,

(D9)

σzz(ω)

∣

∣

∣

∣

ω→0

=

= −mvze
2

16

[

Li1(−eµ/T ) + Li1(−e−µ/T )
]

δ
(µ

T

)

. (D10)

The Drude weights show different behaviors at different lim-

its.

(1) µ/T ≪ 1:

σxx/yy(ω)

∣

∣

∣

∣

ω→0

→ ζ(2)e2

3πmvz
(2mT )δ

(ω

T

)

; (D11)

σzz(ω)

∣

∣

∣

∣

ω→0

→ mvze
2

8
ln(2)δ

(ω

T

)

. (D12)

(2) µ/T ≫ 1:

σxx/yy(ω)

∣

∣

∣

∣

ω→0

→ e2

6πmvz
(2mT )

(µ

T

)2

δ
(ω

T

)

;(D13)

σzz(ω)

∣

∣

∣

∣

ω→0

→ mvze
2

16

( µ

T

)

δ
(ω

T

)

. (D14)

(B) Dynamic conductivity at finite frequency, σµµ(ω 6=
0):

σxx/yy(ω)

∣

∣

∣

∣

ω>0

=
e2

24πmvz
(mω)

[

tanh

(

ω − 2µ

4T

)

+ tanh

(

ω + 2µ

4T

)]

;

(D15)

σzz(ω)

∣

∣

∣

∣

ω>0

=
mvze

2

128

[

tanh

(

ω − 2µ

4T

)

+ tanh

(

ω + 2µ

4T

)]

. (D16)

Combining both the zero frequency and finite frequency parts,

the dynamic conductivity can be expressed as σxx(ω, T ) =

σyy(ω, T ) =
e2

3πmvz
(2mT )Φ⊥(ω/T, µ/T ), and σzz(ω, T ) =
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mvze
2

16 Φz(ω/T, µ/T ) with the scaling function

Φ⊥(a, b) = −
[

Li2(−eb) + Li2(−e−b)
]

δ(a) +

+
1

16
a

[

tanh(
a

4
+
b

2
) + tanh(

a

4
− b

2
)

]

;(D17)

Φz(a, b) = −
[

Li1(−eb) + Li1(−e−b)
]

δ(a) +

+
1

8
a

[

tanh(
a

4
+
b

2
) + tanh(

a

4
− b

2
)

]

. (D18)

Appendix E: Diamagnetic susceptibility at noninteracting limit

In the noninteracting limit, the Hamiltonian is

HDWS =
q2x − q2y
m

σx +
2qxqy
m

σy + vzqzσz . (E1)

In order to calculate the diamagnetic susceptibility, we will

use the Fukuyama formula as

χD = e2
1

β

∑

n

∫

q

Tr [G0γaG0γbG0γaG0γb] , (E2)

where G0 is the fermion Green’s function in the Matsubara

domain, the n summation represents the Matsubara frequency

sum, and γa ≡ ∂H/∂qa, with a being the direction axis that

perpendicular to the direction of the magnetic field. Before we

go into the calculations, we first note that due to the anisotropy

it is expected that the diamagnetic susceptibilities for the cases

with ~B = Bx̂ and ~B = Bx̂ are the same. However, the dia-

magnetic susceptibility for the case with ~B = Bẑ should be

different to the two former cases. Let us discuss each case

separately below to see the temperature dependence of the dia-

magnetic susceptibilities in different cases. Below, we set the

chemical potential to be zero.

First, we choose ~B = Bx̂ and the result should be the same

to the case of ~B = Bŷ. Now, we have γy = −(2qy/m)σx +
(2qx/mσy) and γz = vzσz . The Fukuyama formula gives

χ⊥
D = e2

1

β

∑

n

∫

q

Tr [G0γyG0γzG0γyG0γz] (E3)

=
4e2v2z
m2

1

β

∑

n

∫

q

Tr

[

q2xG0σyG0σzG0σyG0σz +

+q2yG0σxG0σzG0σxG0σz

]

= χ
⊥,(I)
D + χ

⊥,(II)
D . (E4)

After expansion and exchanging qx and qy forχ
⊥,(II)
D , we find

χ
⊥,(II)
D = χ

⊥,(I)
D . After performing the Matsubara frequency

summation, we get

χ⊥
D = −16e2v2z

m2

∫

q

{

q2x

[

tanh( d
2T )

4d3
+
sech2( d2T )

8d2T

]

+

+ 8q2xd
2
2d

2
3

[

sech2( d2T ) tanh
2( d2T )

192d4T 3
+
sech2( d

2T ) tanh(
d
2T )

32d5T 2
+

5sech2( d
2T )

64d6T
− 5 tanh( d2T )

32d7

]}

. (E5)

The momentum integral is complicated, but since we are only

interested in the temperature dependence, we can factorize out

the temperature dependence by rescaling

qx = (mT )
1
2x, qy = (mT )

1
2 y, qz = Tv−1

z z. (E6)

After the rescaling and straightforward algebra, we get the

diamagnetic susceptibility for ~B = Bx̂,

χ⊥
D = −e2vz

∫ ∞

−∞

dxdydz

(2π)3

{

2x2
[

2 tanh( d̄2 )

d̄3
+
sech2( d̄2 )

d̄2

]

+

+
2

3
x2d̄22d̄

2
3

[

sech2( d̄2 ) tanh
2( d̄2 )

d̄4
+

6sech2( d̄2 ) tanh(
d̄
2 )

d̄4
+

15sech2( d̄2 )

d̄6
− 30 tanh( d̄2 )

d̄7

]}

∼ −e2vz, (E7)

where we introduce d̄ ≡
(

d̄21 + d̄22 + d̄23
)1/2

, and d̄1 = x2 −
y2, d̄2 = 2xy, and d̄3 = z. The result above should be

the same for the case with ~B = Bŷ. Now let us check

the temperature dependence for the diamagnetic susceptibil-

ity in the presence of ~B = Bẑ. In this case, we need

γx = (2qx/m)σx + (2qy/m)σy , and γy = −(2qy/m)σx +
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(2qx/m)σy . The Fukuyama formula gives

χzD = e2
1

β

∑

n

∫

q

Tr

[

G0γxG0γyG0γxG0γy

]

. (E8)

After expansion and performing Matsubara frequency sum-

mation, we get

χzD =−32e2

m4

∫

q

[

q4⊥ tanh( d2T )

4d3
+
q4⊥sech

2( d2T )

8d2T

]

−256e2

m8

∫

q

q2xq
2
y

[

q8⊥ + 4(q2x − q2y)
4

][

sech2( d
2T ) tanh

2( d
2T )

192d4T 3
+
sech2( d2T ) tanh(

d
2T )

32d5T 2
+

+
5sech2( d2T )

64d6T
− 5 tanh( d

2T )

32d7

]

. (E9)

We can again factorize out the temperature dependence. We find

χzD = −4e2T

mvz

∫ ∞

−∞

dxdydz

(2π)3

[

2 tanh( d̄2 )

d̄3
+
sech2( d̄2 )

d̄2

]

−

− 4e2T

3mvz

∫ ∞

−∞

dxdydz

(2π)3
x2y2

[

r8⊥ + 4(x2 − y2)4
][

sech2( d̄2 )

d̄4
tanh2(

d̄

2
) +

6sech2( d̄2 ) tanh(
d̄
2 )

d̄5
+

+
15sech2( d̄2 )

d̄6
− 30 tanh( d̄2 )

d̄7

]

∼ − e2T

mvz
. (E10)

Hence, in the presence of ~B = Bẑ the diamagnetic suscep-

tibility is actually linearly proportional to the temperature.

Combining the results of the cases of ~B = Br̂⊥ and ~B = Bẑ,

we expect that the diamagnetic susceptibility in the presence

of magnetic field in arbitrary direction ~B = Br̂ should show

the temperature dependence as

χD ∼
(

sin2 θ χ0 + cos2 θ T
)

, (E11)

where χ0 is a constant independent of T and we introduce the

periodic function with θ being the angle between the magnetic

field and the ~z−axis, i.e. ~B·~z = B cos θ. The square of the pe-

riodic functions roughly gives the correct angular dependence

with χD(θ) = χD(θ+π). Therefore, at low temperature limit

T → 0 we expect that the constant diamagnetic susceptibility

dominates.
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