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Abstract

Accurate models of carrier transport are essential for describing the electronic properties of

semiconductor materials. To the best of our knowledge, the current models following the frame-

work of the Boltzmann transport equation (BTE) either rely heavily on experimental data (i.e.,

semi-empirical), or utilize simplifying assumptions, such as the constant relaxation time approxi-

mation (BTE-cRTA). While these models offer valuable physical insights and accurate calculations

of transport properties in some cases, they often lack sufficient accuracy – particularly in capturing

the correct trends with temperature and carrier concentration. We present here a transport model

for calculating low-field electrical drift mobility and Seebeck coefficient of n-type semiconductors,

by explicitly considering relevant physical phenomena (i.e. elastic and inelastic scattering mech-

anisms). We first rewrite expressions for the rates of elastic scattering mechanisms, in terms of

ab initio properties, such as the band structure, density of states, and polar optical phonon fre-

quency. We then solve the linear BTE to obtain the perturbation to the electron distribution –

resulting from the dominant scattering mechanisms – and use this to calculate the overall mobility

and Seebeck coefficient. Therefore, we have developed an ab initio Model for calculating mobility

and Seebeck coefficient using the Boltzmann Transport (aMoBT) equation. Using aMoBT, we

accurately calculate electrical transport properties of the compound n-type semiconductors, GaAs

and InN, over various ranges of temperature and carrier concentration. aMoBT is fully predictive

and provides high accuracy when compared to experimental measurements on both GaAs and InN,

and vastly outperforms both semi-empirical models and the BTE-cRTA. Therefore, we assert that

this approach represents a first step towards a fully ab initio carrier transport model that is valid

in all compound semiconductors.

PACS numbers: 72.20.-i, 73.61.Ey, 31.15.A-, 71.20.Nr

Keywords: band transport model, mobility, Seebeck coefficient, electron scattering, ionized impurity, acous-

tic phonon, polar optical phonon, band structure, density of states, III-V semiconductors
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I. INTRODUCTION

Accurate models of carrier transport are essential for describing the electronic properties

of semiconductor materials, which are particularly important for clean energy applications

ranging from photovoltaics to thermoelectrics to photoelectrocatalysts. There has been an

increased focus on using compound semiconductors, including those that are degenerately

and heavily doped, for these applications. To better understand existing materials and

discover new ones, a fully predictive model that correlates electronic structure to properties

is essential. Unfortunately, to the best of our knowledge, no model, based on ab initio

calculations, currently exists to fully capture the elastic and inelastic scattering effects of

charge carriers; as a result, errors arise when utilizing the current models. While an ab

initio model will certainly improve our understanding of the carrier transport mechanism(s)

in existing semiconductors, it can also aid in the search for high-performing materials by

improving the accuracy of high-throughput computations1,2.

There currently exist two main categories of models, based on the Boltzmann transport

equation (BTE), for calculating the conductivity and Seebeck coefficient of semiconductors

that are governed by band conduction. The first category of BTE-based models are com-

monly known as single parabolic band models, even though the treatment of the conduction

band may not be explicitly parabolic. These models can be described as ”semi-empirical”,

since experimentally measured parameters, such as the electron or hole effective mass, band

gap, dielectric constant and polar optical (PO) phonon frequency, are used in closed-form

expressions for the various scattering rates. Note that the overall mobility due to elastic

scattering is calculated by averaging, according to Matthiessen’s rule, the mobilities due to

each scattering contribution. The main adjustable parameter in these models is the effective

mass, which can be varied to fit the calculated transport properties to the experimental

measurements. While such models often impressively capture the changes in properties over

various ranges of temperature and carrier concentration, they are restricted to the materials

for which experimental data are available; therefore, the predictability of such models are

very limited.

There are numerous examples of models in this category3–7, such as that by Ehrenreich6,

who modeled the GaAs band structure and PO-phonon scattering by reviewing the exper-

imental data6, and that by Sankey et al.5, who considered the effects of resonance, ionized
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impurity, and polar optical phonon scattering in GaAs. In these models, all of the scat-

tering mechanisms are commonly treated using the relaxation time approximation (RTA);

here, the relaxation time is written as a power law function of energy – thus, the details of

elastic and inelastic scattering (e.g., PO phonon) captured by the ab initio band structure

are disregarded. Scattering rates, particularly inelastic ones, have already been shown to not

follow such power law distributions3,8, so the basic assumptions fail. Even in cases where the

BTE is explicitly solved for PO phonon and the perturbation to the electronic distribution

is obtained without the RTA assumption, the results are still heavily dependent on available

experimental data. As an example, Miller et al.8 used the latter approach to calculate the

mobility and Seebeck coefficient of InN samples, which had been grown by molecular beam

epitaxy (MBE) and plasma assisted MBE so that all exhibited heteroepitaxial growth with

linear charged dislocations; thus, these dislocations were found to be the limiting scattering

mechanism.

The second category of BTE-based models relies on the ab initio band structure of the

material, rather than specific experimentally measured parameters, but generally utilizes

the relaxation time approximation to the BTE (BTE-RTA) as a simplification. Restrepo et

al.9 calculated the mobility of n-doped silicon at different electron concentrations in BTE-

RTA and ab initio framework where electron-phonon interactions are treated as elastic with

the electron distribution unchanged from the equilibrium Fermi-Dirac. On the other hand,

the constant relaxation time approximation (BTE-cRTA) simplifies the equation even more,

which enables closed form expressions for both conductivity divided by relaxation time and

Seebeck coefficient. The advantage of these models is the ability to calculate properties

of new materials, for which experimental data is unavailable. This type of model works

well for some materials for which the relaxation time is fairly constant, as evidenced by the

work of Madsen and Singh10. However, inelastic scattering mechanisms change the electron

energy and directly affect the distribution. Lumping all the elastic and inelastic scattering

mechanisms into a single constant and assuming an equilibrium Fermi-Dirac distribution

in BTE-cRTA framework greatly damages the predictive ability of such models; as an ex-

ample, transport properties in some cases are very far from experimental measurements.

Furthermore, the relaxation time constant is usually determined by fitting the calculated

conductivity to experimental data. It should be noted that the calculation of this constant

is not necessary when calculating the Seebeck coefficient. This is due to the simplifying
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assumptions that the relaxation time is both a constant and direction independent10 which

does not always hold. Therefore, BTE-cRTA suffers not only from inaccuracy in predict-

ing the changes of properties with temperature or carrier concentration in many materials,

but also from lack of pure predictability since it still relies on experimental data for the

computation of the relaxation time.

Instead, we propose that accurate calculations of electronic transport properties, within

the Boltzmann transport framework, are possible by combining relevant treatment of the

elastic and inelastic scattering mechanisms with ab initio calculations of the electronic and

phonon band structures. Ultimately, an ab initio theory for carrier transport will need to

qualitatively and quantitatively predict trends in material properties, such as conductivity

and Seebeck coefficient, as a function of temperature or carrier concentration. Validation

of the theory against experimentally measured properties will thus give insight into which

scattering effects are dominant.

In this paper, we present a band transport model for calculating low-field electrical drift

mobility and Seebeck coefficient of n-type semiconductors which we refer to as aMoBT: ab

initio Model for calculating mobility and Seebeck coefficient using the Boltzmann Transport

(aMoBT) equation. We then validate aMoBT by calculating the properties of two III-V

semiconductors, GaAs and InN, with different carrier concentrations over various temper-

atures, and comparing them to experimental values as well as those calculated using the

other transport models described above. We choose these materials because the ab initio

band structure of GaAs is similar to those used in the earlier semi-empirical models at it can

be reasonably well described with a single band model, whereas the ab initio band structure

of InN and the limiting scattering mechanisms are quite different; thus, these two materials

allow us to bracket the range of expected behavior of our proposed model.

II. CARRIER TRANSPORT MODEL

A. Solution to the Boltzmann Transport Equation

In order to calculate the mobility and Seebeck coefficient, we solve the Boltzmann trans-

port equation (BTE) using Rode’s iterative method3,8,11–17 (Appendix A 2) to obtain the

electron distribution in response to a small driving force (e.g. a small electric field or a

5



small temperature gradient). It is important to note that we do not use the relaxation time

approximation (RTA) in solving the BTE, so neither a variable nor a constant relaxation

time appears in this expression. Due to the assumption of a small driving force, we aim to

calculate only the linear response to the perturbation; thus, the general form of the electron

distribution remains the at equilibrium Fermi-Dirac distribution. We can then write:

f (k) = f0 [ε (k)] + xg (k) (1)

where f is the actual distribution of the electrons, including both elastic and inelastic scat-

tering mechanisms, f0 is the equilibrium Fermi-Dirac distribution, x is the cosine of the

angle between the small driving force and k, g (k) is the perturbation to the distribution

caused by the small driving force and finally k = |k|. For the sake of simplicity, we express

the conduction band as the average energy of the electrons as a function of distance, k, from

the conduction band minimum (CBM) which is often at the center of the Brillouin Zone (i.e.

Γ point); furthermore, we assume that the small driving force is aligned with k (i.e., x=1).

Although this is similar in spirit to the isotropic band assumption, we take the anisotropy

into account by averaging the energy values of the ab initio calculated band structure, ε (k),

as a function of k rather than explicitly including k in every direction. Alternatively, if we

wish to consider the directional transport properties, we can include the calculated band

structure only in that specific direction. Here, we will focus on calculating and reporting

the overall average mobility and Seebeck coefficient.

Our goal is to calculate the perturbation to the distribution3, g (k). In the reformu-

lated Boltzmann transport equation shown in Equation 2, there are scattering-in, Si (g),

and scattering-out, So, terms for inelastic scattering mechanisms. However, these terms

also depend, in turn, on the electronic distribution as well as elastic scattering rates, νel.

Therefore, the BTE must be solved self-consistently to obtain g (k):

g (k) =
Si [g(k)]− v (k)

(
∂f
∂z

)
− eE

h̄

(
∂f
∂k

)
So(k) + νel(k)

(2)

where E is the low electric field and v (k) is the electron group velocity. The derivation of

the BTE in the form shown in Equation 2 can be found in the literature3. The inelastic

scattering mechanism that tends to dominate at room temperature is polar optical (PO)

phonon scattering, for which we have provided the description of the Si (g) and So terms in

Equations A9 and A10. The influence of inelastic scattering mechanisms on g, and therefore
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the overall mobility, are captured through the terms Si (g) and So in Equation 2, while elastic

scattering mechanisms affect the overall mobility by the term νel. This term is the sum of all

elastic scattering rates inside the material, it can be evaluated according to Matthiessen’s

rule:

νel (k) = νii (k) + νpe (k) + νde (k) + νdis (k) (3)

where the subscripts el, ii, pe, de, and dis stand for elastic, ionized impurity, piezoelectric,

deformation potential and dislocation scattering rates, respectively. Therefore, the effect

of relevant elastic and inelastic scattering mechanisms are taken into account by explicitly

solving the BTE (Equation 2) to obtain g (k).

When calculating various properties, several terms in Equation 2 will be set to zero. For

a Seebeck coefficient, S, calculation, the applied electric driving force, −
(
eE
h̄

) (
∂f
∂k

)
, is set to

zero. Only the thermal driving force, v
(
∂f
∂z

)
, in Equation 2 is taken into consideration when

calculating the perturbation to the electron distribution3. Assuming a uniform electron

concentration over the space at which a small temperature difference exists, the Seebeck

coefficient is3:

S =
kB
e

 εF
kBT

−
∫
k2f (1− f)

(
ε

kBT

)
dk∫

k2f (1− f) dk

− J
σ
∂T
∂z

(4)

For a mobility calculation, the applied thermal driving force in Equation 2 is set to zero,

so that only the contribution of the electric driving force is included. The mobility is:

µ =
1

3

∫
v (k)

(
k
π

)2 ( g
E

)
dk∫ ( k

π

)2
fdk

(5)

Note that in Equation 5, the free electron density of states,
(
k
π

)2
, has been used, which would

limit its applicability in compound semiconductors. Thus, the replacement of this term by

its ab initio-calculated counterpart would greatly improve the accuracy of the resulting

mobility. Furthermore, the scalar group velocity, v (k), is used since the energy is averaged

as a function of distance from the Γ point. In general, we use the band structure, density

of state, electron group velocity, conduction band wavefunction admixture and PO phonon

frequency in calculating the mobility and Seebeck coefficient. Therefore, all of the required

inputs to Equation 5 are calculated ab initio, which greatly enhances the predictability of the

model. In other words, the main difference between our proposed carrier transport model

and previous semi-empirical models3–6,8,11–14,18–20 is the use of ab initio parameters instead of
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experimentally measured electron effective mass, band gap, etc., which eliminates the need

for theories such as k·p to describe the nonparabolicity or anisotropy of the conduction band.

Instead, for calculating the overlap integral, we express the conduction band wavefunction

as a linear combination of s-type and p-type basis functions, with coefficients of a and c,

respectively3. These coefficients can be directly calculated ab initio without the need to

assume an s-like conduction band wavefunction (i.e., no assumption of a parabolic band).

The rates of the elastic scattering mechanisms, νel, are calculated from the electron group

velocities, v, and density of states, DS; thus, the mobility may be calculated directly from

the electronic band structure. The original form of these equations from k · p theory, and

the modified equations that we propose, are listed in Table I. Note that in every equation,

h̄k
md(k)

, which, in semi-empirical models, is the group velocity fitted to experiment by the

band gap and effective mass of the semiconductor (included in d (k), see Table I), has been

replaced by its ab initio counterpart, or v (k), which is calculated directly from the band

structure.

As an example, the DFT-calculated density of states (DOS) can be plugged into Equa-

tion A7 to obtain the inverse charge screening length, β, in ionized impurity scattering.

Furthermore, the numerator and denominator of the integrand in Equation 5 both contain

the density of states of a free electron gas,
(
k
π

)2
. Since this can also be calculated ab ini-

tio for the specific system of interest, DS can instead be substituted in the equation for

calculating the mobility and reformulated in terms of the energies, ε:

µ =
1

3E

∫
v (ε)DS (ε) g (ε) dε∫
DS (ε) f (ε) dε

(6)

where, again, v (k) is the electron group velocity and g is the perturbation to the electron

distribution, which is calculated iteratively using Equation 2, and can be expressed both as

a function of k or ε (k) (i.e., the band structure).

Once the mobilities of the electrons and holes are known, the electrical conductivity can

be readily calculated:

σ = neµe + peµh (7)

where n and p are the concentration of electrons and holes, respectively, e is the absolute

value of the charge of an electron and µe and µh are the mobility of electrons and holes

respectively.
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TABLE I. The original equations3,8, based on k · p theory for elastic scattering rates and overall

drift mobility, and proposed modifications, based on ab initio parameters, introduced in this work.

k · p theory with empirical parameters ab initio

a νii (k) = e4Nmd(k)

8πε20h̄
3k3

[
D (k) ln

(
1 + 4k2

β2

)
−B (k)

]
νii (k) = e4N

8πε20h̄
2k2v(k)

[
D (k) ln

(
1 + 4k2

β2

)
−B (k)

]
β2 = e2

ε0kBT

∫ ( k
π

)2
f (1− f) dk β2 = e2

ε0kBT

∫
DS (ε) f (1− f) dε

νpe (k) = e2kBTP
2md(k)

6πh̄3ε0k

[
3− 6c2 (k) + 4c4 (k)

]
νpe (k) = e2kBTP

2

6πh̄2ε0v(k)
(3− 6c2 (k) + 4c4 (k))

b c2 (k) = 1− 1+α
2α , α2 (k) = 1 + 2h̄2k2

mεg

(
m
m∗ − 1

)
c (k) : obtained directly from wavefunctions

νde (k) =
e2kBTE

2
Dmkd(k)

3πh̄3cel

[
3− 8c2 (k) + 6c4 (k)

]
νde (k) =

e2kBTE
2
Dk

2

3πh̄2celv(k)

[
3− 8c2 (k) + 6c4 (k)

]
νdis (k) = Ndise

4md(k)

h̄3ε20c
2
l

1(
1+ 4k2

β2

)3/2

β4

, 1
d(k) = 1 + m/m∗−1

α νdis (k) = Ndise
4k

h̄2ε20c
2
l
v(k)

1(
1+ 4k2

β2

)3/2

β4

µoverall = h̄
3m

∫
k3(g(k)/Ed(k))dk∫

k2fdk
µoverall = 1

3E

∫
v(ε)DS(ε)g(ε)dε∫
DS(ε)f(ε)dε

g (k) = f (k)− f0 (k) g (ε) = f (ε)− f0 (ε)

a The subscripts stand for: ii (ionized impurity), pe (piezoelectric acoustic phonon), de (deformation), and

dis (charged dislocation scattering). The parameters are: m (electron mass), m∗ (effective mass), ε0

(low-frequency dielectric constant), εg (band gap), v (k) (electron group velocity), DS (ε) (ab initio

calculated density of states), c (k) (contribution of p-type orbitals to the conduction band), β (inverse

ionized impurity charge screening length), ED (deformation potential), cl (lattice constant), E (small

electric field), and cel (spherically averaged elastic constant). B (k) and D (k) are just collection of the

parameters: c, k and β. Their purpose is to simplify the equation3.
b The c(k) parameter is the contribution of the p orbital to the wavefunction of the band. In the k · p

formulation, it has a closed-form expression that includes the band gap and experimental effective mass.

In the ab initio formulation, this wavefunction admixture can be calculated by projecting the

wavefunctions onto spherical harmonics that are nonzero within the sphere around each ion; this

procedure is already implemented in the Vienna ab initio Simulation Package (VASP)21–24.

It should be noted that there are fundamental differences between the model that we

have presented here and those relying on the relaxation time approximation (RTA), and

particularly, BTE-cRTA. Rather than simplification of the collision term in the BTE (Equa-

tion A2) through the RTA (Equation 1), we fully involve this term by considering both

elastic and inelastic scattering mechanisms. It is noteworthy that the BTE-cRTA formula-

tion only implicitly takes into account elastic and inelastic scattering mechanisms, by fitting
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the overall relaxation time to experimental data with no explicit consideration of changes

in electron distribution from each type of scattering mechanism. Furthermore, unlike the

semi-empirical models that were described above, we use ab initio parameters; thus, higher

predictability and little to no dependence on experimental data is achieved.

B. ab initio Parameters

The main input that is needed for the transport model is the crystal structure of the

semiconductor material, from which ab initio parameters, such as the (optimized) lattice

constant, PO phonon frequency, dielectric and piezoelectric constants, deformation potential

and effective mass, can be computed.

We also need to know the Fermi level to compute scattering rates in Table I. In order

to obtain the Fermi level, we calculate the carrier concentration and match it to the given

concentration (input), n, according to Equation 8:

n =
1

V

∫ +∞

εc
g (ε) f (ε) dε (8)

Since both of the III-V semiconductors considered here are n-type, the concentration of hole

carriers is negligible. The concentration of ionized impurities, Nii (see Table I), is the sum

of the concentration of all ionized centers regardless of the sign of their charge, since they

are scatterer centers in both cases25:

Nii = NA +ND +
Ndis

cl
(9)

where ND and NA are concentration of donors and acceptors, respectively. Nii can then

be calculated at a given electron concentration, n, by iteratively solving the charge balance

equation8:

n+NA = ND +
Ndis

cl
(10)

where the density of dislocations, Ndis, is only relevant for InN and is considered to be zero

for GaAs. In both GaAs and InN, temperatures lower than 20 K need not be considered due

to the deionization of shallow donors at lower temperatures, as observed experimentally26. In

the case of InN, electronic scattering from existing linear charged dislocations thus becomes

important. The density of the dislocations, Ndis, can be determined from TEM images, in

the units of (cm−2). We can thus obtain the overall density in bulk, by assuming that these
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linear dislocations are uniformly developed along the c-axis. This is reflected in dividing

the dislocation density by the lattice constant, cl, in Equation 10. By doing that, we are

assuming that there is one unit of positive charge (donor) per unit cell. For InN samples,

according to Miller et al.8, one can assume full ionization of the donors, and therefore,

a compensation level of one (i.e., ND+NA
n

= 1 or ND >> NA). Also, the assumption of

donor or acceptor charged dislocations yields similar results8; therefore, we assume donor

dislocations dominate here. It should be noted that we compare the calculated Ndis with the

corresponding experimental data if available; otherwise, the limit for electronic properties

at different values of Ndis can be calculated without the need for experimental data.

On the other hand, in a pure, epitaxially-grown, high-mobility GaAs sample with an elec-

tron concentration of n = 3.0×1013, no dislocations exist (i.e. Ndis = 0). The concentrations

of donors and acceptors have been separately reported3,26, so this provides validation of the

accuracy of aMoBT, without needing to solve for Nii. However, in the general case where

the electron concentration is unknown, we can plot the mobility and Seebeck coefficient at

different compensation ratios to define the limit of the transport properties, as shown in

Figure 5. Therefore, it is important to note that only when comparing with experimental

mobilities/Seebeck coefficients do we use experimentally measured electron concentrations;

otherwise, we may calculate ab initio mobility or Seebeck coefficient, for example, at various

electron concentrations, without any reliance on experimental data (e.g., as shown in Figure

5).

We use Brooks-Herring theory for singly-charged ionized impurity scattering25, as shown

in Table I. This is supported by the fact that in GaAs, oxygen impurities, O+1
As , have been

confirmed to be dominant and singly charged27, while in InN, nitrogen (donor) vacancies,

V+1
N , are dominant and singly charged28. It should be noted that the Brooks-Herring formu-

lation is more accurate at low carrier concentrations, since at high concentrations, despite

the inherent assumption of the theory, not all electrons are screened by the charge of an

ionized center. More information on the Brooks-Herring ionized impurity model is available

in Appendix A 2.

In order to calculate the low- and high-frequency dielectric constants, we use density

functional perturbation theory (DFPT), as implemented in VASP, to determine Born effec-

tive charges, dielectric and piezoelectric tensors, including local field effects in DFT, as well

as the force-constant matrices and internal strain tensors. We then subtract the ionic con-
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tribution to the static dielectric tensor to obtain the high-frequency dielectric constant29,30.

Furthermore, the inelastic scattering effect is strongly dependent on the longitudinal polar

optical phonon frequencies, ωpo. These frequencies can be calculated using the Phonopy

code31, where we identify the highest energy peak in the optical phonon density of states.

It should be noted that at and around the Γ point, the phonon frequency is almost constant

(Figure 8).

To calculate ab initio the deformation potential, ED, we strain the system and calculate

the energy of the conduction band of InN and GaAs unit cells at different volumes. Then,

we approximate the deformation potential using the following equation:

ED = −V
(
∂ECBM
∂V

)
T

∣∣∣∣∣
at V=V0

(11)

where V is the volume, ECBM is the energy of the CBM and V0 is the volume of the

relaxed structure (i.e., zero pressure)32,33. It should be noted that since the absolute value

of ECBM is a function of the volume itself, we use the difference between the energy of

the first conduction band and the first valence (core) band. Furthermore, the elastic and

piezoelectric constants have been already calculated ab initio for GaAs and InN, and are

available in the literature. For GaAs, we use the values calculated by Beya-Wakata et al.34,

and for InN we use the values calculated by Sarasamak et al.35, to obtain the piezoelectric

coefficient and elastic constant used in the equations for piezoelectric scattering in Table I.

As a comparison, the electrical conductivity and Seebeck coefficient are also computed

using the widely-used BTE-cRTA formulation. We choose the BoltzTraP package10, which

uses Fourier interpolation of the calculated bands, and differentiate the band energies to

find the group velocities of the electrons. Other than the need to fit the relaxation time to

experimental measurements of the conductivity, the BoltzTraP/BTE-cRTA implementation

represents an otherwise parameter-free model that can be adapted to different semiconductor

materials.

III. COMPUTATIONAL METHODOLOGY

For each semiconductor material, the geometry of the unit cell is optimized, and the

density of states and band structure are calculated. In the case of zinc blende GaAs and

wurtzite InN, the unit cells are optimized using Kohn-Sham density functional theory (KS-

12



TABLE II. Structure of GaAs and InN calculated with DFT, using the GGA-PBE exchange-

correlation functional. Changes in the lattice constants compared to experimental values42,43 upon

optimization are reported below.

Compound Space Group |a| (Å) % change in |a| |c| (Å) % change in |c|

GaAs F-43m 5.75 2.17% - -

InN P63mc 3.533 0.56% 5.693 0.8%

DFT)36,37, as implemented in VASP. The generalized gradient approximation of Perdew,

Burke, and Ernzerhof (GGA-PBE)38,39 is used to express the exchange-correlation potential,

and Projector Augmented Wave (PAW) potentials40,41 are used to represent the valence

wavefunctions. Information regarding the structure of these two systems and their changes

upon geometry optimization have been summarized in Table II. The initial structures are

obtained from the literature42,43.

We then compute the electronic band structure of these materials. The energy cutoff for

the plane wave basis set is set to 500 eV. The band structure is computed in line mode

along seven high-symmetry k-points in the IBZ, with 20 k-points between each pair of high-

symmetry points. The self-consistent density of states (DOS) calculation is performed using

a 20×20×20 k-point mesh, for both GaAs and InN. The non-self consistent energy calcula-

tions are performed in a special k-point mesh around the Γ point, at which the conduction

band minimum (CBM) occurs in both direct band gap GaAs and InN. This k-point mesh

contains a total of 10,234 points in the Irreducible Brillouin Zone (IBZ), with mesh spac-

ing of 0.001, 0.01, or 0.1 fractional units, to completely account for band anisotropy while

remaining dense enough around the Γ point to obtain accurate group velocity and effective

mass values. For BTE-cRTA calculations, we used a 21×21×21 k-point mesh, equivalent

to 4831 k-points in the IBZ, to minimize the band crossing error10. We did not observe

any changes in the calculated properties in larger k-point meshes. To determine the effect

of presumably more accurate band structure calculations on the band curvature, effective

mass, and group velocity, we have also employed the GW method. Only 941 k-points in

IBZ have been used for GW calculations since it is more computationally demanding. Us-

ing more k-points does not change the calculated effective mass. The GW0 band structure

calculations are performed using the maximally-localized Wannier functions (MLWFs) in-
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terpolation, as implemented in VASP and the Wannier code44. It is very important to also

show the feasibility of the ab initio model with band structures calculated using DFT+U,

since the GW and hybrid functional (e.g., HSE45–47) methods are computationally demand-

ing for complex materials with larger unit cells than GaAs. On the other hand, for InN,

all methods and functionals attempted, including LDA, GGA, HSE and GW0, resulted in

a band structure with zero band gap and a falsely predicted p-like conduction band. Only

GGA+U48, with U values obtained from the literature49,50 (Ud = 6 for In and Up = 1.5 for

N), produced a correct band structure and with a more s-like conduction band particularly

around Γ point, which is consistent with the self-interaction corrected band structure re-

ported by Furthmüller et al.51. In the process of choosing the U value for GGA+U band

structure calculations on GaAs, however, the values (U = 8 eV for both d orbitals of Ga

and As) recommended by Persson and Mirbt52, with an emphasis on correctly obtaining

the band gap and effective mass values, result in GaAs falsely becoming an indirect semi-

conductor, with the conduction band minima located at the L and X k-points rather than

the Γ point52. Therefore, we have also employed effective U values of 7 eV (Ga) and 6 eV

(As), for which a direct band structure is obtained. We have calculated mobilities obtained

from both of these band structures and compared them with the ones obtained by the GW

band structure. In order to calculate the group velocities, v (k), and the overall average

effective mass, we have fitted a sixth degree polynomial to the calculated conduction band

(i.e., average energy as a function of distance from Γ point or ε (k)) with R2 > 0.99:

v (k) =
1

h̄

∂ε

∂k
(12)

m∗ =

(
1

h̄2

∂2ε

∂k2

)−1
∣∣∣∣∣∣
at k=0

(13)

It should be noted that we do not use the value of effective mass in the proposed carrier

transport model. Rather, we calculate it solely to compare with experiment and evaluate

the effect of the shape of the conduction band (i.e., group velocities) calculated by various

methods, such as GGA, GGA+U, and GW. Fitting polynomials to the numerically calcu-

lated conduction band and density of states results in smooth plots of mobility and Seebeck

coefficient, as presented here, while preserving the values that are calculated ab initio with

R2 > 0.99 in all segments fitted. We fit these polynomials at different segments of the band

structure and carefully choose only the ones that result in the maximum R2 and minimum
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FIG. 1. Band structure of cubic GaAs and wurtzite InN, normalized so that the Fermi level is set

to zero at the conduction band minimum.

discontinuity where the polynomials meet. This results in very smooth calculated group

velocities, and, subsequently, other transport properties.

IV. RESULTS AND DISCUSSIONS

A. ab initio Calculated Parameter Inputs to the Transport Model

The computed band structures of GaAs and InN are shown in Figure 1. We have cal-

culated a GW0 band structure, which starts from the wavefunctions previously computed

using the GGA-PBE functional, as shown in Figure 1a.

The band structures used in previous semi-empirical models3,8 express the energy of the

conduction band as a function of the distance from the Γ point. Instead, we calculate the

ab initio band structure in a three-dimensional grid around the CBM, and then average the

energy values of the k-points that share the same distance from the Γ point (Figure 2). For

both GaAs and InN, the ab initio and k · p band structures agree well at small k-points;

however, they diverge at larger k-points. This directly impacts the group velocity of the

electrons and, ultimately, the transport properties – particularly at higher temperatures

where higher energy electrons have nonzero occupation.

We have also calculated a GGA+U48 band structure, with U values taken from the pub-

lished literature49,50, as shown in Figure 1. For InN, GGA+U correctly yields an s-like
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TABLE III. Inputs to the transport model, as calculated ab initio compared to experimentally

measured values. The bolded numbers are used in our transport property calculations; note that

not all appear in the final expressions listed in Table I.

GaAs InN

Parameter a ab initio Exp. ab initio Exp.

cl (nm) 0.562 0.575 3 0.565 0.569 3

ωpo (THz) 8.16 8.73 3 17.83 3 17.65

ε0 12.18 12.91 3 11.42 10.3 8

ε∞ 10.32 10.91 3 6.24 6.7 8

ED (eV) 6.04 8.6 3 4.46 3.6 3

m∗ 0.053-0.066 b 0.0636-0.082 53,54 0.062, 0.071 (GW) 0.05-0.08 55–60

εg (eV) 0.96, 1.19 (GW) 1.424 6 0.50 0.675-0.7 55,57,61

a The parameters are: cl (lattice constant), ωpo (PO phonon frequency), ε0 (low-frequency dielectric

constant), ε∞ (high-frequency dielectric constant), ED (deformation potential), m∗ (effective mass), εg

(band gap).
b The GaAs effective masses are calculated as 0.053 (GGA+U, this work), 0.066 (GGA+U, with published

U52), and 0.063 (GW0).

conduction band and a band gap of 0.5 eV, which is comparable to the self-interaction cor-

rected band gap of 0.58 eV reported by Furthmüller et al.51 and the experimental values of

0.675-0.7 eV55,57,61 (Table III). We include DFT+U calculations only to show the feasibility

of these less-expensive methods, in the case of more complex semiconductor materials for

which a GW calculations is too expensive. Also, DFT usually suffers from vastly underesti-

mating the effective mass1,2, and the introduction of the fitting parameter U may reduce the

predictability of the ab initio model as a whole. Therefore, we stress that all reported trans-

port properties are calculated here using the parameter-free GW band structures, unless

otherwise stated.

Although we do not directly use the value of the electron effective mass in the transport

property expressions, we see that the calculated effective mass of 0.062 for InN is consistent

with the previously calculated effective mass (0.066) using an empirical pseudopotential62,

and well within the range (0.05-0.08) measured experimentally55–60.

16



0.25

0.20

0.15

0.10

0.05

0.00

En
er

gy
 (e

V)

0.60.40.20.0
k (nm-1)

 k·p
 GW
 DFT+U(7,6)
 DFT+U(8,8)

(a) GaAs

0.25

0.20

0.15

0.10

0.05

0.00

En
er

gy
 (e

V)

0.60.50.40.30.20.10.0
k (nm-1)

 k·p
 GW
 DFT+U

(b) InN

FIG. 2. The conduction bands expressed in terms of the average energy as a function of distance

from the CBM (i.e., center of Brilloun zone, or Γ point), as calculated from semi-empirical expres-

sions (in k · p formulation) versus ab initio. The difference at higher k values has a significant

impact on transport properties, especially at high temperatures. The values of U for the d orbitals

of Gallium and Arsenic, respectively, are in parentheses, while those for InN are taken from the

published literature49,50.

We also show the calculated phonon band structure and density of states of these two

compounds in Figure 8. For GaAs, the calculated PO-phonon frequency of 8.16 THz is

shown in Figure 8a. For InN, the calculated optical phonon frequency of 17.83 THz is close

to the 17.65 THz value reported by Bungaro et al.55,63. We have listed all the parameters

that are used in our transport model in Table III. We have calculated all of these parameters,

as bolded in Table III, ab initio to demonstrate the feasibility of a fully predictive model for

transport properties. The only exceptions are the elastic and piezoelectric constants, which

are necessary to calculate the piezoelectric coefficient, P , in Table I. As described earlier,

we have instead used the previously calculated values from published DFT studies for these

constants34,35.
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TABLE IV. Carrier concentrations of various experimentally fabricated and characterized GaAs

samples. For the ”pure” sample, data is available roughly between 5-1000 K. For the real samples,

mobility data is also tabulated at different temperatures.

Sample Concentration, n
(
cm−3

)
Donor, ND Acceptor, NA Reference

pure 3× 1013 5.2× 1013 2.2× 1013 3

a 2.7× 1013 4.8× 1013 2.1× 1013 26

c 7.7× 1014 1.1× 1015 3.3× 1014 26

e 3.1× 1015 4.7× 1015 1.6× 1015 26

B. Model Validation on GaAs

In order to evaluate the accuracy of aMoBT, we first calculate the mobility of three

experimentally synthesized and characterized GaAs samples, as described by Stillman et

al.26. We also perform this analysis over a wide temperature range for high purity GaAs

samples with very low electron concentrations, as labeled as ”pure” in Table IV.

As shown in Figure 3a, the most accurate GW band structure results in the best agree-

ment with experimental data. The DFT+U band structure, however, does provide us with

limits of the mobility over different temperatures. When calculating the mobility and See-

beck coefficient, we calculate the Fermi level by first calculating the electron concentration

through Equation 8, and then matching it to a given concentration. The calculated prop-

erties are very sensitive to the calculated Fermi level. Therefore, for comparison, we have

included the results using both the ab initio DOS used in Equation 8, and the free electron

DOS. As shown in Figure 3a, the ab initio model for DOS performs better for lower electron

concentrations and lower temperatures, while the free electron DOS is more suitable for

higher temperatures, and, particularly, at higher electron concentrations. We acknowledge

that because of the log scale in Figure 3a, seeing the quantitative agreement is difficult.

Therefore, we report the calculated relative error compared to the experiment for the best

cases for each sample – from the ab initio DOS for sample a and from the free electron

DOS for samples c and e. The minimum, maximum and the relative error in calculating

the mobility of sample a are 2.25% (at 195 K), 29.42% (at 29 K), and 13.33%, respectively.

These numbers are 1.02% (at 167K), 15.01% (at 49K), and 7.97% for sample c and 0.22% (at
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195K), 7.90% (at 40K), and 4.04% for sample e. Overall, the agreement is poorer at higher

electron concentrations and lower temperatures; this is attributed to the inaccuracy of the

Brooks-Herring ionized impurity scattering model at high electron concentrations, as briefly

described in Section II. Furthermore, the model has also been validated with the data on

crystalline samples with very high purity. The calculated electron mobilities, assuming the

limit that only one scattering mechanism exists at a time, along with the overall mobility,

are shown in Figure 3b. The reasonable agreement between the calculated and experimental

mobilities provides independent validation of the transport model. The minimum, maximum

and average relative error of calculated mobility are 0.46% (at 394K), 23.55% (at 175K) and

9.53% respectively for temperatures above 20 K. The mobility is mainly limited by ionized

impurity scattering at low temperatures, piezoelectric scattering at intermediate tempera-

tures, and polar optical phonon scattering at higher temperatures (> 60 K); all of these are

consistent with the previous results shown by semi-empirical models3,4,6 yet no experimental

parameter has been used here in predicting the correct changes with the temperature and

the carrier concentration.

Once we have the calculated mobility, at a given electron concentration, we can calculate

the electrical conductivity of GaAs by Equation 7. For now, we assume that the carrier con-

centration remains constant with temperature over the range of interest. We then compare

to the experimental conductivity and those values calculated using the BTE-cRTA frame-

work, under the scenarios listed in Figure 4. As shown, not only does BTE-cRTA fail to

correctly predict the trend for conductivity with temperature, but also quantitatively differs

from the experimental values.

Finally, we calculate the Seebeck coefficients of the GaAs samples (assumed to be at 300

K), and compare them to the values reported previously by Rode and Knight4 (Figure 5).

Since the data are for various samples with different electron concentration and compensation

ratios, we choose various values of Nii/n = (ND + NA)/n. As shown, a range of Seebeck

coefficients are calculated at each electron concentration, which includes the experimentally

measured points. It should be noted that not knowing beforehand the compensation and

concentration of donors and acceptors, as well as their charge states, limits the overall

predictability of aMoBT. However, even given these limitations, the close fit between ab initio

and experimental properties provides independent validation of the viability of aMoBT. For

further evaluation, we have calculated the Seebeck coefficient, assuming Pisarenko behavior
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FIG. 3. The calculated and experimental3,64 mobility data for GaAs at various electron concen-

trations and temperatures. More details on the experimental data, including donor and acceptor

concentrations, are available in Table IV.

and compared it to aMoBT in Figure 5. We use Equation 14 with two fitting parameters:

effective mass, m∗ and r. It should be noted that in the case where the best agreement with

experiment, through Pisarenko behavior, is only achievable by choosing either m∗ = 0.11

or r = 0.35, both of these values are far from experimental measurements and thus lack

physical meaning. Furthermore, in Figure 5, while BTE-cRTA correctly predicts the trend

in Seebeck coefficient with carrier concentration, without the need to calculate the relaxation

time constant, the predicted values are far from the experimental results and those calculated

by aMoBT. This is attributed to the treatment of τ(ε) as a single constant, τ , which affects

both conductivity and Seebeck coefficient when integrated over energy.

S ' kB
e

5

2
+ r + ln

2 (2πm∗kBT )3/2

h3n

 (14)
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FIG. 4. Electrical conductivity of GaAs calculated using aMoBT (solid line) and the BTE-cRTA

framework, and compared to experimental3 data. The Fermi level is calculated by matching the

calculated carrier concentration to n = 3 × 1013. This has been done either at the mentioned

temperature and kept constant over the whole temperature range, or in the case of ”matched

Fermi”, at each temperature, the Fermi level is adjusted to the given n. The relaxation time, τ , is

determined by fitting the calculated conductivity to the corresponding experimental value at 300

K. The calculated value for τ is 5× 10−13s.

C. Model Validation on InN

In order to further evaluate the accuracy of aMoBT and its applicability to more com-

plicated semiconductors, we also calculate the mobility and Seebeck coefficient (Figure 6)

of three experimentally synthesized and characterized InN samples by Miller et al.8. These

calculations are more challenging due to the reported presence of linear charged dislocations

in the crystal structure8,65–67, due to the processing conditions employed. For each sample

at a given carrier concentration, as shown in Table V, we change the concentration of dis-

locations, Ndis, until the calculated mobility values match the experimental measurements.

The fitted Ndis (Table V) is within the range of measured concentrations from transmission

electron microscopy analysis (TEM)8, which confirms that the limiting mechanism is indeed

scattering from dislocation lines.

As shown in Figure 6a and 6b, while there is an excellent agreement between the cal-

culated and experimental mobility, the calculated Seebeck coefficients for samples B and C

exhibit more pronounced changes with temperature than the experimental Seebeck coeffi-
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TABLE V. Measured8 and calculated InN dislocation density, corresponding to the mobility and

Seebeck coefficient reported in Figures 6a and 6b.

Ndis

(
cm−2

)
Sample Experimental Semi-empirical8 This work

A ≈ 1× 1011 1.5× 1011 8.20× 1010

B 2− 5× 1010 1.5× 1010 1.18× 1010

C ≈ 1× 109 − 5× 1010 4.1× 109 3.47× 109

cients. The mobility of the samples is found to be limited by charged dislocations, particu-

larly at low temperatures. The next limiting mechanism is polar optical phonon scattering,

which is more important at higher temperatures while ionized impurity scattering is more

important at lower temperatures. This can be seen in Figure 7, which shows the mobility

of sample B if it were limited by each type of scattering mechanism, as well as the overall

mobility. These findings are in agreement with the semi-empirical transport model8, except

that all parameters are obtained from ab initio calculations that require knowledge only of

the crystal structure of the material. Comparing the transport properties calculated from

using model with those calculated using semi-empirical models (including experimentally

measured band gap and effective mass (See Table III under ”Exp.”) in Figure 6 shows that

although quantitative agreement with experiment is slightly better with the semi-empirical

model, Seebeck coefficient calculations on samples B and C, and the mobility of the sample

at high temperature, show much better accuracy with the ab initio model presented here.

Finally, we should once again acknowledge the assumptions and limitations of the current

model when applied to the other types of semiconductors. Most importantly, the formula-

tion presented in this work is for low-field transport (particularly drift mobility and Seebeck

coefficient), in which the changes to the electron distribution are merely a linear pertur-

bation to the equilibrium Fermi-Dirac distribution; thus, the applicability of the current

model for high-field transport or heavily doped and polar semiconductors where the linear

BTE formulation fails68, is very limited. Furthermore, we have averaged the energy around

CBM and expressed the energy values in the band structure as a function of the absolute

value of k, or simply, the distance from Γ point in the reciprocal space. Therefore, the

reported mobility values are averaged and the effect of band structure anisotropy is not fully
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FIG. 7. Calculated and experimental8 values for InN mobility at n = 9× 1017 cm−3 (sample B in

Table V). Each line represents the mobility if limited only by the corresponding mechanism.

captured. It is possible, however, to include the band structure of the material only in the

specific orientation of interest to account for anisotropy. Currently, the model is limited

to a single conduction band. Although the single band ab initio model can be used for

prediction of many direct band gap semiconductors, it will only result in an overestimation

of transport properties of semiconductors with more complex band structure. This is due to

the fact that currently, interband scatterings between several bands that are participating

in transport are neglected. In future, we will solve coupled-BTE and take into account two

and more participating bands which enables calculation of both electron and hole mobilities

in more materials. Finally, although the usage of the Hubbard U parameter in the band

structure calculation might limit the predictability of the model in calculating overall trans-

port properties, this can be properly addressed by using more accurate methods of band

structure calculations as reported here. We include DFT+U calculations here only to show

the feasibility of working with the model when GW or other less commonly used methods

are not technically or otherwise feasible.

V. CONCLUSIONS

We have presented an ab initio transport model for calculating the electrical mobility

and Seebeck coefficient of n-type semiconductors using the Boltzmann transport (aMoBT)
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equation. By using the inputs from density functional theory calculations, and consider-

ing all relevant physical phenomena (i.e., elastic and inelastic scattering mechanisms), we

have successfully calculated highly-accurate transport properties of GaAs and InN over var-

ious ranges of temperature and carrier concentration. aMoBT provides both qualitative and

quantitative improvements in accuracy compared to the widely-used semi-empirical and con-

stant relaxation time approximation model solutions to the Boltzmann transport equation.

Future work will focus on extending this model to p-type semiconductors.
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Appendix A: Boltzmann Transport Equation

The Boltzmann transport equation (BTE) describes the non-equilibrium behavior of

charge carriers (e.g., electrons or holes) by statistically averaging over all possible quan-

tum states. For the electron distribution, f , this is represented by the BTE:

df (k, T, t)

dt
=

(
∂f (k, T, t)

∂t

)
s

− dk

dt
· ∇kf (k, T, t)− v (k) · ∇rf (k, T, t) (A1)

where f is a function of state k, temperature T , and time t, and v (k) are the electron group

velocities. The three terms on the right-hand side of Equation A1 refer, respectively, to

the temporal rate of change of f due to all scattering processes, rate of change of f due to

external forces, and diffusion from the carrier density gradient.

If the external forces consist only of a low electric field, E, and no magnetic field, B, such

that dk
dt

= eE
h̄

, then the low-field BTE becomes:

df (k, T, t)

dt
+ v (k) · ∇rf (k, T ) +

eE

h̄
· ∇kf (k, T ) =

(
∂f (k, T, t)

∂t

)
s

(A2)

1. Constant Relaxation Time Approximation

Furthermore, f can be described as a first-order (linear) perturbation, g (k), from the

(equilibrium) Fermi-Dirac distribution, f0, due to scattering:(
∂f (k, T, t)

∂t

)
s

= −f (k)− f0 (k)

τ
= −g (k)

τ
(A3)

f0 [ε (k)] =
1

e[ε(k)−εF ]/kBT + 1
(A4)

where the dependence of ε on k is given by the electronic band structure, and the various

scattering terms and time dependence are lumped into the electronic relaxation time, τ .

If τ is a constant, then this major simplification results in the BTE-cRTA. This assump-

tion simplifies the theory to an extent that closed form expressions for conductivity and

Seebeck coefficient can be obtained10. In this approach, the details of all elastic and inelas-

tic scattering mechanisms are lumped into the relaxation time constant, τ . While popular,

this approach suffers from the following disadvantages: 1. τ is obtained by fitting to the

experimental data for the conductivity of the material, which limits the predictability of the

model, and 2. Due to oversimplification of the transport mechanism, it may result in incor-

rect values and even incorrect trends with temperature or carrier concentration, as illustrated
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in Figure 4. Therefore, by explicitly including all possible electronic scattering mechanisms,

one can determine which mechanisms are physically relevant for a given semiconductor.

2. Explicit Solution of Linear BTE

To go beyond the relaxation time approximation, both elastic scattering mechanisms, for

which the kinetic energy of the electrons remains constant, and inelastic scattering mecha-

nisms, for which there is a change in the electron distribution, should be taken into account.

If the system is governed only by elastic scattering mechanisms, the relaxation time, τ , is

equal to the inverse of the overall elastic scattering rates, which is the sum of all individual

rates. Evidently, τ is not constant but does depend on energy; however, it does not necessar-

ily follow a power law dependence (e.g., in InN8). However inelastic scattering mechanisms

also limit the mobility, and therefore, the conductivity, of the semiconductor; as an exam-

ple, polar optical (PO) phonon scattering is the main electron-phonon interaction that limits

mobility at high temperatures in GaAs. Thus, we need to first calculate the perturbation,

g, to the electron distribution due to elastic and inelastic scattering mechanisms, and then

integrate g over all states to obtain the mobility. Details on this approach are given below.

The most relevant elastic scattering mechanism for compound semiconductors is expected

to be ionized impurity scattering at low temperatures. Ionized impurity scattering occurs

when a charged center is introduced inside the bulk material. As a result of Coulombic

interactions between the electron and ion, electrons scatter to different states (i.e., become

distracted). The ionized impurity scattering rate, νii (i.e., a component of the overall ν),

may be expressed using Brooks-Herring theory25:

νii =
e4N

8πε20h̄
2k2v

[
D ln

(
1 +

4k2

β2

)
−B

]
(A5)

where the charge screening potential, φ, is obtained by solving Poisson’s equation:

φ =
q

4πε0r
exp (−βr) (A6)

and inverse screening length, β, is given by:

β2 =
e2

ε0kBT

∫
DS (ε) f (1− f) dε (A7)

where f is the electron distribution and ε0 is the low-frequency dielectric constant. Details

on the α, D and B parameters are given in the literature3.
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At high temperatures, after an inelastic (e.g., electron phonon) scattering event, where

the electron scatters from momentum state k to k′, the energy of an electron changes,

and hence, the electron distribution also changes. (Note that the distribution may also be

perturbed by external forces, such as an electric field or temperature gradient.) Thus, f

becomes a function of k, so it must be mapped via the electronic band structure, ε (k). This

effect can be shown as a deviation from Fermi-Dirac behavior (Equation 1). After some

mathematical manipulation, for which details can be found in the literature3, the BTE can

be reformulated as:

g =
Si (g

′)− ν
(
∂f
∂z

)
− eF

h̄
∂f
∂k

So + νel
(A8)

Si (g
′) =

∫
dk′Xg (k′) [sinel (k

′, k) [1− f (k)] + sinel (k, k
′) f (k)] (A9)

So =
∫
dk′ [sinel (k, k

′) [1− f (k′)] + sinel (k
′, k) f (k′)] (A10)

Detailed integrated expressions for the scattering in, Si, and scattering out, So, terms are

available in the literature3. The reformulated BTE can then be solved iteratively, using

Rode’s method3,8,11–14 since Si (g
′) and f themselves are functions of g. First, the Fermi-

Dirac distribution can be plugged into the right-hand side of Equation A8 to obtain the

first guess, g1, which in turn is used to obtain a new electron distribution to solve for the

next guess, g2; this process continues until g converges to a unique value. Typically, five

iterations are required for the perturbation to converge for polar optical phonon scattering

in GaAs and InN. More details on Equations A8-A9 are available in the literature3.

3. Phonon Dispersion

Polar optical phonon scattering originates from interactions between electrons and high-

frequency optical phonons. They provide the dominant inelastic electron scattering mecha-

nism near (and above) room temperature in compound semiconductors. This is attributed

to the high energies of optical phonons being comparable to kBT at high temperatures. The

scattering rates themselves are strongly dependent on the polar optical phonon frequencies.

ωpo. These frequencies can be calculated using the Phonopy code31 which solves for dy-

namical matrix from the force constants calculated using density functional perturbation

theory (DFPT), as implemented in VASP. The phonon band structures for GaAs and InN

are shown in Figure 8.
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(a) GaAs (b) InN

FIG. 8. Phonon band structures of InN and GaAs calculated by Phonopy31.

Appendix B: Sensitivity analysis

1. Sensitivity to the calculated dielectric constants

We have done sensitivity analysis for the calculated mobility of GaAs pure sample at

different dielectric constants. As shown in Figure 9, the result is sensitive to dielectric

constants at low and high temperatures but much less sensitive at temperatures in 100-

200K range. Inaccurate calculation of dielectric constant in this case can result in up to

-41% (at 40 K) calculated value of mobility compared with measured values in case of -20%

from the base value for dielectric constant and it can go up to +43% (at 5K) for +20% from

the base value. The base values are the ones reported in Table III calculated from ab intitio

assuming the relaxed structure. This shows the importance of accurate calculation of these

constants at least with 5-10% accuracy.

2. Sensitivity to the lattice constants

We also applied ±3% strain to the lattice constant of the relaxed GaAs and recalculated

the band structure, DOS and optical phonon frequencies to see how sensitive is the calculated

mobility with respect to the crystal structure. We assume that everything else is kept

constant according to the base case (see Table III). According to Figure 10, the calculated

mobility is extremely sensitive to the crystal structure. This is mainly due to the impact that
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FIG. 9. Sensitivity analysis of the mobility of GaAs pure sample (see Table IV). We changed here

only the static, εs, and high frequency, ε∞, dielectric constant from -20% to +20% of the base

case values reported in Table III. The results are sensitive to dielectric constant at low and high

temperatures.

the structure has on the band shape (i.e. group velocity of the electrons) since the mobility

at any temperature is affected. For example, the GW band structure of -3% strained GaAs

gives the effective mass of 0.026 while that of +3% strained GaAs gives the effect of 0.10

. Both of these values are well outside of the range of the reported experiemntal values

0.064-0.082 (see Table III). Also, these strained structures are extremely unlikely to be

relaxed with any functional since their built in pressure with GGA-PBE functionals are

already 10.66 kB and -74.77 kB while the relaxed structure that we have calculated and

reported in Table II has a built in pressure of only -0.3 kB. Nevertheless, Figure 10 shows

the importance of accurate calculation of the crystal structure and subsequently the band

structure (i.e. group velocities).
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FIG. 10. Sensitivity analysis of the mobility of GaAs pure sample (see Table IV) calculated by

aMoBT. We changed here the crystal structure and subsequently the newly calculated optical

phonon frequencies. The calculated mobility is sensitive to the strain at all temperatures.
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