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Refined infra-red magneto-transmission experiments have been performed in magnetic fields B up
to 35 T on a series of multi-layer epitaxial graphene samples. Following the main optical transition
involving the n = 0 Landau level, we observe a new absorption transition increasing in intensity
with magnetic fields B ≥ 26T. Our analysis shows that this is a signature of the breaking of the
SU(4) symmetry of the n = 0 LL. Using a quantitative model, we show that the only symmetry
breaking scheme consistent with our experiments is a charge density wave (CDW).

I. INTRODUCTION

In multicomponent quantum Hall systems, interaction
effects lead to a rich variety of broken symmetry ground
states. In graphene, the spin and valley degrees of free-
dom of the lowest Landau level (LL) form an SU(4)
symmetric quartet. Refined transport experiments have
shown evidence of a broken symmetry state [1–8], but
there is no clear consensus on its nature [9–12], and how
it is affected by different substrates and disorder. While
the spin degree of freedom has been probed in tilted mag-
netic fields [1, 2, 5, 6], we show here that the valley degree
of freedom can be accessed by examining the signatures
of optical phonons in magneto-transmission spectra. In
this paper, we show that our observation of a new absorp-
tion transition supports the existence of a charge density
wave (CDW) in our epitaxial graphene samples.
In a quasiparticle picture, charge carriers in graphene

are characterized by a Dirac-like spectrum around the
K and K ′ equivalent points (“valley”) of the Brillouin
zone of the hexagonal crystal lattice. As a consequence,
the application of a magnetic field B perpendicular to
the plane of the structure splits the electronic levels into
Landau levels (LL) indexed by n, with specific energies
En = sgn(n)vF

√

2e~B|n| where n are integers includ-
ing 0 (vF being the Fermi velocity). In this paper, we
are concerned with how a broken symmetry phase can
be observed in infra-red magneto-optical transitions in-
volving the n = 0 LL (i.e., transitions from n = −1 to
n = 0 or from n = 0 to n = 1 equivalent to a cyclotron
resonance (CR) transition in the quantum limit) with an
energy E01 = vF

√
2e~B [13]. Our previous work [14] has

reported on the magnetic field dependence of this tran-
sition revealing its interaction with the K-phonon. Be-
sides this specific interaction, we observed that the basic
broadening γ01(B) ∝

√
B of the transition had an ad-

ditional component proportional to B in contrast to all
theoretical models [15]. This could be already a sign of
the breaking of the valley degeneracy.

In the present work, we use the Γ-phonon at the Bril-
louin zone center as a probe of the valley symmetry
breaking. In the absence of valley symmetry breaking,
the Γ-phonon does not affect the infra-red absorption
spectrum because the electron-phonon matrix elements
are of opposite signs for the K and K ′ valleys [16]. How-
ever, one expects to see signs of valley symmetry break-
ing when the energy E01(B) is larger than that of the
optical Γ-phonon (~ωΓ = 0.196eV). It turns out, indeed,
that when that condition is reached, a new optical tran-
sition develops at an energy higher than the main line
(Fig. 1). We interpret this as a signature of the breaking
of the SU(4) symmetry. A model has been established
to reproduce these findings and applied to the different
phases which have been proposed.

In Sec. II, we discuss these experimental observations
and methods in more detail. We first interpret our ex-
perimental findings within a simplified model for valley
symmetry breaking in Sec. III before deriving a more
complete Hamiltonian in Sec. IV and calculating the op-
tical conductivity in various broken symmetry phases in
Sec. V. Finally, a comparison between experiment and
theory is presented in Sec. VI, followed by conclusions in
Sec. VII.

II. EXPERIMENTAL OBSERVATIONS AND
METHODS

In our experiment, precise infra-red transmission
measurements were performed on multi-layer epitaxial
graphene samples, at 1.8 K, under magnetic fields up
to 35 T. The light (provided and analyzed by a Fourier



2

160180200220240260

0.8

1.0

1.2

1.4

1.6

1.8 27T

28T

29T

30T

31T

32T

33T

34T

35T

S5

R
e
la

ti
v
e
 t
ra

n
s
m

is
s
io

n

Energy (meV)

∆
v

= 0.24 meV/T

g
ph

= 2.3 meV/ T
1/2

160180200220240260
0.0

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

27T

29T

31T

33T

35T

S5

1
- 
re

la
ti
v
e
 t
ra

n
s
m

is
s
io

n

Energy (meV)

∆
v

= 0.24 meV/T

g
ph

= 2.3 meV/ T
1/2

FIG. 1: (color online). Left panel: Evolution of the E01 tran-
sition for different values of the magnetic field beyond 27 T.
Experimental transmission data for sample S5 (open circles)
is compared with calculated transmission spectra (red lines),
for different values of magnetic field, using the proposed CDW
model. Right panel: 1 - (relative transmission) measured in
the experiment and calculated (red lines) for the CDW phase,
for magnetic fields B = 27, 29, 31, 33, 35 T. Deconvolution
of the experimental spectra into two Lorentzians is shown in
blue dashed and dotted lines.

transform spectrometer) was delivered to the sample by
means of light-pipe optics. All experiments were per-
formed with nonpolarized light, in the Faraday geom-
etry with the wave vector of the incoming light paral-
lel to the magnetic field direction and perpendicular to
the plane of the samples. A Si bolometer was placed
directly beneath the sample to detect the transmitted
radiation. The response of this bolometer is strongly de-
pendent on the magnetic field. Therefore, in order to
measure the absolute transmission TA (B,ω), we used a
sample-rotating holder and measure for each value of B
a reference spectrum through a hole. These spectra are
normalized in turn with respect to TA(0, ω) to obtain
a relative transmission spectrum TR(B,ω) which only
displays the magnetic field dependent features. Those
spectra are presented in Fig. 2.

The samples were grown [17] on the C-terminated sur-
face of SiC and display the characteristic transmission
spectra of isolated graphene monolayers that arise from
rotational stacking of the sheets [18]. The thickness d of
the SiC substrate has to be reduced significantly in order
to minimize the very strong double-phonon absorption
of SiC in the energy range of interest. In the first se-
ries d was reduced to 60µm and related samples have
been used to perform the experiments reported earlier
[14]. One of them, named S4, was used to compare the
data with those obtained on sample S5 from a new se-
ries where the thickness d was further reduced down to
32µm. We compare in Fig. 2 the transmission spectra, at
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FIG. 2: (color online). Top: Relative transmission spectra
of sample S5, for different magnetic field values up to 35 T.
Bottom: Evolution of the E01 transition for different values
of the magnetic field between 27 T and 34 T, for samples S4
(open dots) and S5 (full lines).

high fields, for samples S4 and S5. Technically speaking,
the optical response of both samples is almost the same,
showing that they have a similar number of active layers.

Taking into account all layer dielectric properties of
each sample in a multi-layer dielectric model, we de-
termine the effective number, Neff , of graphene sheets
with their respective carrier density (see Appendix). For
samples S4 and S5, we have found that Neff = 7 with
carrier densities {5.5, 3.2, 1.8, 1.1, 0.5, 0.1, 0.1}1012cm−2

and {6.0, 3.5, 2.0, 1.2, 0.5, 0.1, 0.1}1012cm−2 respectively.
These carrier densities are fixed for each sample.

The transmission spectra of sample S5 at high mag-
netic fields are displayed in Fig. 1. We observe a new
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transition occurring at an energy higher than that of the
CR line, growing in intensity when increasing the mag-
netic field. This behavior cannot be explained without
breaking the SU(4) symmetry in graphene. In order to
characterize more clearly these findings, one can treat the
data, as a first step and in a very rough way, extracting
from the transmission data the real part of the effective
diagonal component of the conductivity σxx(ω,B) [20].
We have deconvoluted this result with two Lorentzians of
equal width, extracting the evolution of the two extrema
with the magnetic field. The resulting energies are dis-
played in Fig. 3 (top panel) for samples S4 and S5.

Though the procedure adopted at this initial level is
quite rough, it provides important information: (i) The
evolution of the lower energy line varies at low fields like
B1/2 (function F2(B) in Fig. 3) with a coefficient pro-
portional to the Fermi velocity vF and ends at higher
fields with a similar dependence (function F1(B)) but
with a smaller value of vF which is, by itself, a sign of
some interaction occurring at an energy close to that of
the Γ-phonon; (ii) The second component of the decon-
volution always appears at energies larger than that of
the Γ-phonon; (iii) In principle, in the SU(4) symmet-
ric picture, it is not possible to explain the occurrence
of an additional transition, growing in intensity with B,
at higher energies than the main transition line; (iv) It
is therefore clear that the Γ-phonon plays a crucial role
though it should not, indicative that the SU(4) symmetry
is broken. Using these observations, we now have some
guidelines to develop a theory which can explain quanti-
tatively the experimental observations. In addition, we
note that results for samples S4 and S5 are quite similar
within the experimental errors. Knowing that the ac-
tive layers which contribute to the E01 transition should
have a filling factor ν ≤ 2 ( ν = NsΦ0/B,Φ0 being the
flux quantum and Ns the carrier density) and that, in
samples S4 and S5, the carrier density for active layers
do not have the same sequence, the physical mechanisms
describing the experimental findings should not be very
dependent on the doping of active layers. This is indeed
the case as discussed below.

III. SIMPLIFIED MODEL FOR VALLEY
SYMMETRY BREAKING

To illustrate how the electron-phonon interaction and
the valley symmetry breaking give rise to the observed
features in the transmission spectrum, we first introduce
a simplified model for the interaction of the Γ phonon
with the E01 excitation, before discussing the full SU(4)
calculation. The simplified model provides a minimal de-
scription of the valley symmetry breaking by neglecting
the spin degree of freedom in the n = 0 LL. We assume
that K and K ′ sublevels of the n = 0 LL are separated in
energy by ∆V , and have different filling factors νK and
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FIG. 3: (color online). Top: CR energies, resulting from the
deconvolution of the experimental transmission traces, as a
function of

√
B for samples S4 (full dots) and S5 (open dots).

Error bars are similar for both samples. The full lines are
a linear fit of the data for the low energy transition at low
(F2(B)) and high (F1(B)) field. Bottom: Comparison of the
variation of experimental CR energies for sample S5 (open
dots), with that calculated for the CDW phase (open squares),

as a function of
√
B. The size of the open squares mimics the

relative oscillator strength of the optical transition.

νK′ . Considering just the n = 0 to n = 1 transitions, the
interaction with the Γ phonon is captured by the Hamil-
tonian (in the basis of creating an electronic excitation in
K, electronic excitation in K ′, and a Γ phonon, in that
order)

H =





E01 −∆V /2 0 gph
√
νK

0 E01 +∆V /2 −gph
√
νK′

gph
√
νK −gph

√
νK′ ~ωΓ



 . (1)

where gph characterizes the electron-Γ-phonon interac-
tion. The optical conductivity is calculated using the
Green’s function formalism introduced by Toyozawa [21].
The diagonal component of the conductivity is:
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σxx(~ω) =
1

ω
ImM †

xG(~ω)Mx (2)

where the Green’s function is G = (~ω −H − iη)
−1

, with
η → 0+ (see Sec. IVB). The optical matrix elements for
the simplified model areM †

x =
(√

νK ,
√
νK′ , 0

)

. The sim-
plified model explains the splitting of the main transition
line in the two limits E01 ≈ ~ωΓ and E01 ≫ ~ωΓ. In the
absence of valley splitting (∆V = 0 and νK = νK′), the
eigenstates of the pure electronic part of H in Eq. 1 are
valley-symmetric and valley-antisymmetric combinations

of E01 transitions, i.e. 1
2

(

c†1,Kc0,K + c†1,K′c0,K′

)

|GS〉

and 1
2

(

c†1,Kc0,K − c†1,K′c0,K′

)

|GS〉, respectively, where

|GS〉 denotes the ground state and c†n,K are creation op-
erators at LL n and valleyK. The valley-symmetric com-
bination is infra-red active but does not interact with
the Γ phonon, while the valley-antisymmetric combina-
tion is infra-red inactive and interacts with the Γ phonon.
The symmetry breaking valley splitting term ∆V allows
both eigenmodes to interact with the Γ phonon while
remaining infra-red active, inducing a splitting of the
main transmission line in the vicinity of the Γ phonon
frequency. Away from the Γ phonon frequency (E01 ≫
~ωΓ), E01 transitions at K and K ′ interact weakly with
the phonon and the splitting of the main transmission
line is controlled directly by the energy difference ∆V .

IV. THEORY OF MAGNETO-PHONON
RESONANCE IN THE PRESENCE OF SU(4)

SYMMETRY BREAKING

We reintroduce the spin degree of freedom and the
n = −1 to n = 0 transitions in order to obtain a quantita-
tive understanding of the experiment. We consider differ-
ent theoretical models of the n = 0 LL SU(4) symmetry
breaking, taking into account the effects of ν 6= 0 and dis-
order by introducing Gaussian broadening into a mean
field theory (Sec. IVA). Different symmetry-breaking
phases are represented in the mean field theory by dif-
ferent orderings and filling factors of the four sublevels
of the n = 0 LL. We consider four candidate symmetry-
breaking phases that have been proposed in the literature
[9]: Ferromagnetic(F), Charge Density Wave (CDW),
Canted Antiferromagnetic (CAF) and Kekulé-distortion
(KD), and calculate the optical conductivity using Eq. 2
with the appropriate Hamiltonian H for each phase.
Treating these phases on the same footing (detailed in
Sec. V), we find that each phase results in characteristic
features in the evolution of the transmission spectrum as
a function of the magnetic field. By examining the inten-
sities and positions of the transmission lines, we identify
the symmetry broken phase in the samples used in our
experiment as the CDW type [27, 28].

A. Description of the ground state

We assume that the ground state is a single Slater de-
terminant of the form:

|GS〉 =
4
∏

j=1

Nj
∏

mj=1

Ψ†
j,mj

|0〉 (3)

the index j runs over the 4-dimensional spin/valley space
and mj describe the ”guiding center” degree of free-
dom. The state (j,mj) is represented by the wavefunc-
tion ξjφmj

(−→r ) where ξj is a four-component spinor and
φmj

(−→r ) is the orbital part of the wavefunction. These
wavefunctions belong to the n = 0 landau level (LL) of
graphene. The occupation numbers Nj count the number
of j states that are occupied in this ground state.

There are different models proposed to describe the
symmetry-broken phase of graphene which have been re-
viewed by Kharitonov [9]. For a given model, we assume
that the system is polarized along a certain direction in
j-space. For instance, with increasing order of energies,
j = 1, 2, 3, 4 corresponds to (K ′ ↑,K ′ ↓,K ↑,K ↓) in
the charge density wave (CDW) phase. The remaining
degrees of freedom, φmj

(−→r ) and Nj, are treated as vari-
ational parameters, subject to the constraint N1 +N2 +
N3 + N4 = N . We minimize the energy of the ground
state EGS = 〈GS|H0 +He−e +Hdisorder|GS〉. Here H0

is the single part of the Hamiltonian without disorder,
He−e the interaction term and Hdisorder the disorder po-
tential. Because we assume a single Slater determinant,
we can apply mean-field theory and obtain single-particle
energy levels Ej,mj

(The origin of the energies is taken to
be at the energy of the n = 0 LL of the non-interacting
system).

In a system with finite disorder, the energy levels Ej,mj

are clustered about mean values Ej = avg
mj

Ej,mj
. We re-

move the mj degrees of freedom by replacing the energy
levels Ej,mj

by broadened energy levels centered at Ej .
There is a Fermi level EF which fixes the occupation
numbers Nj when the graphene layer is doped with a
total filling factor ν. Assuming the broadening to be of
Gaussian type with a width γ0 the Fermi level is deter-
mined by solving the following equation:

ν =
∑

j

Erf(
EF − Ej√

2γ0
) (4)

from which one can calculate the individual filling factors
νj = (1+Erf(

EF−Ej√
2γ0

))/2 for each level Ej . These Ej will

be used, later on, as fitting parameters dependent on the
broken-symmetry phase under consideration. Note that
in this approach all optical transitions to or from the
n = 0 LL are allowed.
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B. Description of the optical transitions

We first consider the transitions from the n = 0 LL
to n = 1 LL. The Hamiltonian of the magneto-excitons,

including their interaction with the Γ-phonon, denoted
H� (reminding that it describes the optical transitions
allowed in the σ+ polarization), is:

H� =













~ω01 − E1 0 0 0 g1
√
ν1

0 ~ω01 − E2 0 0 g2
√
ν2

0 0 ~ω01 − E3 0 g3
√
ν3

0 0 0 ~ω01 − E4 g4
√
ν4

g∗1
√
ν1 g∗2

√
ν2 g∗3

√
ν3 g∗4

√
ν4 ~ωph













. (5)

where ~ω01 is the energy of the E01 transition from the
n = 0 LL to n = 1 LL in the absence of interactions
and ~ωph that of the Γ-phonon. This Hamiltonian de-
scribes the excitations from the 4 sublevels {Ej , j = 1..4}
of the n = 0 LL to the n = 1 LL. The matrix ele-
ments {gj, j = 1..4} respectively describe their interac-
tion with the Γ-phonon, and is dependent on the wave-

function character of the 4 sublevels (i.e., dependent
on the broken-symmetry phase). In general, gj ∝

√
B

[16], with a prefactor dependent on j and the broken-
symmetry phase.
Similarly, the Hamiltonian describing the magneto-

excitons for the transitions from the n = −1 LL to the
n = 0 LL (allowed in the σ− polarization) is written as:

H	 =













~ω01 + E1 0 0 0 g1
√
1− ν1

0 ~ω01 + E2 0 0 g2
√
1− ν2

0 0 ~ω01 + E3 0 g3
√
1− ν3

0 0 0 ~ω01 + E4 g4
√
1− ν4

g∗1
√
1− ν1 g∗2

√
1− ν2 g∗3

√
1− ν3 g∗4

√
1− ν4 ~ωph













. (6)

The total Hamiltonian H describing the magneto-
excitons is therefore:

H =

(

H� 0
0 H	

)

. (7)

We will also need to introduce the optical matrix ele-
ments Mx and My for corresponding transitions. These
matrix elements depend on the ground state under con-
sideration. In CDW case they are (see Sec. VA) :
Mx/v0 = {√ν1,

√
ν2,

√
ν3,

√
ν4, 0, −

√
1− ν1, −

√
1− ν2,

−√
1− ν3, −

√
1− ν4, 0} and My = iMx. For a different

scenario, the optical matrix elements will be transformed
to a different basis, as will be detailed in Sec. V.

The Green’s function for the magneto-excitons, is ob-
tained as G = ((~ω + iγ01).I−H)−1 (where I is the unit
matrix and γ01 the broadening of the E01 transition).
This allows us to calculate the different components of
the conductivity:

σxx(ω) =
i

ω
MT

x .G.Mx

σxy(ω) =
1

ω
MT

x .G.M∗
y

(8)

V. OPTICAL CONDUCTIVITY IN THE
DIFFERENT PHASES

Here, we calculate the optical conductivity for the dif-
ferent symmetry broken phases, using Eq. 8.

A. Charge density wave (CDW) phase

The CDW phase is characterized, at filling factor
ν = 0, by two electronic LL full in one valley (say K ′

for instance) and two LL empty in the other valley (K).
We will introduce a valley asymmetry ∆V mainly deter-
mined by electron-electron interactions [9] and a Zeeman
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splitting ∆S . Therefore the sequence of sublevels take
the following form:

E1(K
′ ↑) = −∆V /2−∆S/2

E2(K
′ ↓) = −∆V /2 + ∆S/2

E3(K ↑) = ∆V /2−∆S/2

E4(K ↓) = ∆V /2 + ∆S/2

(9)

In this case, the parameters governing the electron-
Γphonon interaction g1, g2 on one hand and g3, g4 on
the other hand are of opposite sign. That is,

〈GSCDW + Γphonon|He−phΨ
†
Ks,1ΨKs,0|GSCDW 〉 = gph/

√
2

〈GSCDW + Γphonon|He−phΨ
†
K′s,1ΨK′s,0|GSCDW 〉 = −gph/

√
2

(10)
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FIG. 4: (color online). CDW phase with ∆V ∝ B: evolution
of the σxx component of the conductivity for different values
of the magnetic field between 25 T and 35 T for a) a carrier
density Ns = 0.5 × 1011cm−2 and b) Ns = 1× 1012cm−2. In

both cases gph = 2.3×
√

B[T ] meV.

where Ψ†
K,s,n is the creation operator for electrons in val-

ley K, spin s, Landau level n. On the other hand, the
electron-light interaction (which determines M) has the
same sign at both valleys.

〈GSCDW + photon|He−lightΨ
†
Ks,1ΨKs,0|GSCDW 〉 = 1

〈GSCDW + photon|He−lightΨ
†
K′s,1ΨK′s,0|GSCDW 〉 = 1

(11)

The results obtained for this phase are presented in
Fig. 4, assuming ∆V proportional to B, for two extreme
values of the carrier density. The electron-phonon cou-
pling was taken to be gph = 2.3 ×

√

B[T ] meV, which
agrees with density functional theory (DFT) calculations
[23] and experiments [24–26]. The results are not very
dependent on Ns. The value of ∆S = 0.15 meV B corre-
sponds to a g-factor of 2.6 to be compared with 2.7± 0.2
reported in [22]. The splitting of the transition is directly
governed by the amplitude of ∆V whereas the introduc-
tion of ∆S modifies only the relative amplitude of the
two transitions. In all cases both ∆V and gph need to be
finite to observe the effect. We finally note that, in this
case, ∆V > ∆S in coherence with the assumption made

in our previous work [14].
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of the σxx component of the conductivity for different values
of the magnetic field between 25 T and 35 T for a) a carrier
density Ns = 0.5 × 1011cm−2 and b) Ns = 1 × 1012cm−2. In

both cases gph = 2.3×
√

B[T ] meV.

However there is no clear consensus about the field de-
pendence on ∆V [9]. Therefore one can alternatively as-
sume that ∆V is proportional to

√
B. The corresponding

results are displayed in Fig. 5 keeping all other param-
eters fixed. We obtained essentially the same results as
in Fig. 4. Within the experimental errors we will not
be able to differentiate between the two magnetic field
variations of ∆V .
The CDW state is compatible with the experimental

results as we will see below.

B. Kekulé-distortion (KD) phase

In this phase [9], the K and K ′ valleys hybridize into
linear combinations K, K ′. At ν = 0, both spin ↑ and
spin ↓ electrons occupy one of these valley-combinations,
say K. The ν = 0 ground state for the KD phase is
Ψ†

K↑,0Ψ
†
K↓,0|0〉. Therefore, the ”natural” basis for this

phase, where the density matrix is diagonal, is {K ↑,K ↓
,K ′ ↑,K ′ ↓} in contrast to the basis {K ↑,K ↓,K ′ ↑
,K ′ ↓} used in the CDW phase. Therefore the sequence
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of sublevels take the following form:

j = 1 : K ↑
j = 2 : K ↓
j = 3 : K ′ ↑
j = 4 : K ′ ↓

(12)

The transformation rules for the operators in this basis
are

Ψ†
K,s,n

=
1√
2

(

Ψ†
K,s,n + eiφΨ†

K′,s,n

)

Ψ†
K′,s,n

=
1√
2

(

Ψ†
K,s,n − eiφΨ†

K′,s,n

)

(13)

where Ψ†
K,s,n

is the creation operator for electrons in val-

ley state K, spin s, Landau level n. Making use of this
change of basis (Eq. 13) and Eq. 10 and Eq. 11, we de-
rive that the electron-light matrix elements do not change
with respect to the CDW phase, and the electron-phonon
matrix elements g vanish by symmetry. That is,

〈GSKD + Γphonon|He−phΨ
†
K↑,1ΨK↑,0|GSKD〉 = 0

〈GSKD + photon|He−lightΨ
†
K↑,1ΨK↑,0|GSKD〉 = 1

(14)
and the same for K ′. The structure of the Hamilto-
nian (Eq.7) becomes only diagonal and no splitting is
observed when calculating the conductivity. Therefore
the KD phase does not explain the experimental results.

C. Ferromagnetic (F) phase

In the F phase [9], the ground state, at filling factor
ν = 0, is composed in both valleys K and K ′ of a single
full LL with the same spin. In analogy with the CDW
phase, we will introduce a valley asymmetry ∆V and a
Zeeman splitting ∆S . Therefore the sequence of energy
levels take the following form:

E1(K
′ ↓) = −∆V /2−∆S/2

E2(K ↓) = ∆V /2−∆S/2

E3(K
′ ↑) = −∆V /2 + ∆S/2

E4(K ↑) = ∆V /2 + ∆S/2

(15)

Note that, in this case, ∆S should be larger than ∆V

to preserve the ferromagnetic nature of the state. In
the present case the parameters governing the electron-
Γphonon interaction (Eq.5,6) g1, g3 on one hand and g2,
g4 in the other hand are of opposite sign.
The results are displayed in Fig. 6 where we have taken

for ∆S the same evolution that in the CDW phase and
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0
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3000 S(eV) = 1.5 10-4 B(T)

V (eV)= 1.4 10-4 B(T)

NS = 5.0 1011 cm-2

xx
 (a

.u
)

B = 35T

 

 

Energy (eV)

B = 25T

F phase

FIG. 6: (color online). Ferromagnetic phase with ∆V ∝ B:
evolution of the σxx component of the conductivity for differ-
ent values of the magnetic field between 25 T and 35 T for a
carrier density Ns = 5.0×1011cm−2 and gph = 2.3 meV/T1/2.

∆V ∝ B. The conductivity does not show any significant
splitting of the main line. In fact there is an eigenvalue
of the corresponding Hamiltonian larger than that of the
main line but it remains optically inactive. Therefore
here also, the F phase does not explain the experimental
results.

D. Canted anti-ferromagnetic (CAF) phase

The CAF phase for the ground state is described by a
spin in direction θK in valley K and a spin in direction
θK′ in valley K ′. (The directions θK and θK′ are in
general not opposite to each other except in the special
case of the anti-ferromagnetic phase). The direction θK
is oriented at an angle θ relative to the magnetic field
B and the direction θK′ at an angle −θ with respect to
it. (In the anti-ferromagnetic phase, θ = π/2). Here the
Zeeman splitting should vary like ∆S ∝ cos θ and if θ is
close to π/2 this term should not play a dominant role.
We choose the following order of states:

E1(K, θK) = −∆1/2−∆2/2

E2(K
′, θK′) = −∆1/2 + ∆2/2

E3(K,π + θK) = ∆1/2−∆2/2

E4(K
′, π + θK′) = ∆1/2 + ∆2/2

(16)

where the introduction of ∆1 reflects the CAF pattern of
spin. We assume in addition that the asymmetry between
valleys is reflected by ∆2 (favoring here the K valley).
To preserve the CAF phase ∆2 should be smaller than
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∆1. Similar to the F phase, the parameters governing
the electron-Γphonon interaction (Eq.5,6) g1, g3 on one
hand and g2, g4 in the other hand are of opposite sign.
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FIG. 7: (color online). CAF phase with ∆1 ∝
√
B and ∆2 ∝√

B: evolution of the σxx component of the conductivity for
different values of the magnetic field between 25 T and 35 T
for a) a carrier density Ns = 0.5 × 1011cm−2 and b) Ns =

1× 1012cm−2. In both cases gph = 2.3 meV/T1/2.

The results are displayed in Fig. 7 where we have taken,
∆1 and ∆2 proportional to

√
B. The results are not

very dependent on the carrier concentration. We observe
indeed a splitting of the transition when both ∆2 and gph
are different from zero : in fact the splitting is governed
by ∆2. In the present case we do not have, a priori, a
guide for choosing the values of ∆1 and ∆2. In order to
be consistent with experimental results, we have taken
for ∆1 a value which provides an upper transition energy
close to that observed.
However the evolution of the spectra does not reflect

the experimental observations: whatever is the choice of
parameters, the intensity of the high energy transition
never reaches that of the main transition in contrast to
the CDW phase where it should become dominant at
fields higher than 35 T. This is discussed further in the
next section.

VI. COMPARISON OF EXPERIMENT AND
THEORY

The KD, F and CAF phases result in transmission
spectra incompatible with experiment (Fig. 8). In the
KD phase, electrons occupy linear combinations of the
K and K ′ valleys; the electron-phonon matrix elements
vanish by symmetry, resulting in a single transmission
line. For the F phase, the occupancy of the K and K ′

valleys are almost equal (Sec. VC), and there is no sig-
nificant splitting of the main transmission line (Fig. 8)
. Similarly, the calculated transmission spectra for the
CAF phase show a second CR line of much lower inten-
sity than the main CR line. Deconvoluting these spectra
with two Lorentzians we find a ratio of the CR weights
of 0.9 ± 0.05 for the experiment, to be compared to the
value 0.9 for the CDW phase and 0.4 for the CAF phase.
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FIG. 8: (color online). Real part of the conductivity measured
in the experiment (open dots) and calculated with the CDW,
CAF, F and KD phases (red continuous lines), for magnetic
fields B = 31T (left panel) and 35T (right panel). The De-
convolution of the model into two Lorentzians is shown for
the CDW and CAF phases (blue dashed and dotted lines).

Despite the introduction of valley asymmetry into the
CAF phase, we find that it cannot explain the observed
evolution of CR energies in the experiment.

The CDW phase has unequal occupation numbers of
the n = 0 LL at the K and K ′ valleys, corresponding to
a density modulation of the graphene A and B sublat-
tices in real space. Unlike the ideal disorder-free CDW
discussed in [9], both K and K ′ valleys have non-zero
occupation number in our calculation, due to disorder-
induced broadening. Nevertheless, the mechanism giving
rise to the splitting of the E01 transmission line remains
essentially the same as illustrated by the simple model
(Eq. 1) above.

The spin and valley splittings ∆S and ∆V parameterize
our model for the CDW phase and determine the filling
factors that enter the Hamiltonian and the optical matrix
elements. We fix ∆S using the experimental graphene g-
factor measured in Ref.[22]. We treat ∆V as a fitting pa-
rameter, obtaining ∆V = 0.24×B[T]meV. In our calcu-
lations, we use gph = 2.3×

√

B[T]meV, which is in good
agreement with density functional theory (DFT) calcula-
tions [23] and experiments [24–26]. We take the position
of the E01 transition line and its broadening to be given
by vF = 1.01× 106ms−1 and γ01[meV] = 3 + 0.8

√

B[T]
respectively, consistent with their measured values at low
magnetic fields away from the Γ-phonon frequency. For
the parameter γ0 characterizing the broadening of the
Landau levels in Eq.4, we have taken γ0 = γ01/2 be-
cause the broadening of the E01 transition should have
contributions from both the n = 0 and n = 1 Landau
levels. The calculations for the splitting at high mag-
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netic fields are in excellent agreement with the experi-
mental transmission spectra for both samples S4 (Fig. 9)
and S5 (Fig. 1). We neglect K-phonon absorption [14],
which might account for the discrepancy between theory
and experiment at the lower frequency and magnetic field
range of our data.
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FIG. 9: (color online). Fit of the experimental data (open
dots) for sample S4 with the conductivity model derived for
the CDW phase (continuous lines) using ∆V = 0.24 meV/T

and gph = 2.4 meV/T1/2.

Upon changing the carrier density Ns by a factor of
∼ 10 in our calculations, we find only minor changes
in the transmission spectra, which is consistent with the
observation that samples S4 and S5 have remarkably sim-
ilar transmission spectra despite having different carrier
densities. This is because the disorder induced broaden-
ing reduces the dependence of the sublevel filling factors
(νK↑, etc.) on the carrier density.

For symmetry breaking driven by electron-electron in-
teractions, the details of the screening function plays
a vital role in determining the nature of the ground
state. The additional screening afforded by the multiple
graphene layers in our epitaxial graphene samples might
favor the CDW configuration, with two electrons on the
same sublattice, over the CAF state observed in hBN-
supported samples [6]. Furthermore, coupling between
rotationally misaligned layers breaks the local A-B sub-

lattice (i.e. valley) symmetry [29, 30], promoting the
CDW ground state.

VII. CONCLUSIONS

In conclusion, we have used magneto-optical spec-
troscopy to characterize a SU(4) symmetry broken phase
in our epitaxial graphene samples. Based on the evo-
lution of the transmission lines near the Γ phonon fre-
quency, we identify this phase as a CDW phase for the
specific samples considered, with different occupation
numbers at valleys K and K ′. Because of the valley-
sensitive nature of the electron-phonon interaction, the
transmission study used here complements spin-sensitive
transport measurements in tilted magnetic fields in the
study of symmetry breaking in graphene. Our experi-
mental method can be applied to open questions such as
symmetry breaking of the different LLs in graphene and
bilayer graphene, as well as the effect of disorder on the
broken symmetry phase in these systems.
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Appendix

In general, the detailed analysis of magneto-
transmission spectra requires the use of a multi-layer di-
electric model including all layer dielectric properties of
the sample. In particular, for each graphene sheet, one
has to introduce the corresponding components of the op-
tical conductivity tensor σxx(ω) and σxy(ω). Here, the
x and y-axis lie in the plane of the sample. For instance
σxx(ω), in a one-electron approximation, for transitions
involving the n = 0 LL, is written as:

σxx(ω,B) = i
e3B

hω

∑

r,s

M2
r,s(fr(B)− fs(B))

~ω − Er,s(B) + iΓrs(B)
(17)
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where r,s scan the values 0 and ±1, 0 ≤ fr ≤ 1 is the
occupation factor of the LL r, Mr,s the optical matrix
element, Er,s = Er − Es = E01 and Γrs(B) = γ01(B)
measures the broadening of the transition. Mr,s ∝ v0
where v0 is the Fermi velocity given by LDA calcula-
tions [31]. In the present work, we have taken for all
samples v0 = 0.85× 106ms−1. This is a different param-
eter from vF which appears in E01 because the energies
and wavefunctions are corrected to different extents by
the electron-electron interaction [31]. This approach re-
quires the knowledge of the number of effective active
layers as well as their carrier densities Ns (ν = NsΦ0/B,
Φ0 being the flux quantum) which, in turn, implies some
approximations.
The multi-layer dielectric model assumes that each

graphene sheet is uniformly spread over the sample. This
is a strong assumption, difficult to justify a priori and
we have been lead to correct it by assuming a mean cov-
erage which, in the present case for samples S4 and S5,
has been determined to be about 70 per cent. We next
evaluate the number Neff for each sample. In the range
of magnetic fields 12 to 17 T, the relative transmission
spectra (Fig. 2, top panel) reaches values above 1 which
depends on the number Neff : we have therefore a guide
to estimate this quantity. We estimate Neff = 7 for
samples S4 and S5.
The carrier density Ns for each layer is determined in

the following way: one knows that, for 2 < ν < 6, upon
increasing B, the intensity of the E01 absorption starts to
increase, at the expense of the intensity of the E12 tran-
sition (E12 = E2 − E1). The intensity does not change
with B for ν < 2. Therefore, the disappearance of the
optical transition E12 corresponds to ν = 2. Following
the transmission spectra as a function of B, one can eval-
uate the carrier density Nsm for each layer m. This is
an iterative process which converges reasonably (within
20 per cent) but has to be done independently for each
sample. The value of Ns1 for the layer close to the SiC
substrate can be set arbitrary to 5 to 6 1012cm−2 as given
by transport data on samples grown under similar con-
ditions: this layer indeed and the two following ones do
not contribute to the transition E01 in the present ex-
periment. Finally, in the range of magnetic field larger
than 27 T, where we focus our attention in this paper,
the number of optically active layers (for optical transi-
tions involving the n = 0 LL) ranges between 3 to 4 for
samples S4 and S5 with carrier densities ranging from 0.5
to 12 ×1011cm−2.
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