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We use the symmetry constrained low energy effective Hamiltonian of iron based superconductors
to study the Raman scattering in the normal state of underdoped iron-based superconductors. The
incoming and scattered Raman photons couple directly to orbital fluctuations and indirectly to the
spin fluctuations. We computed both couplings within the same low energy model. The symmetry
constrained Hamiltonian yields the coupling between the orbital and spin fluctuations of only the
same symmetry type. Attraction in By symmetry channel was assumed for the system to develop
the subleading instability towards the discrete in-plane rotational symmetry breaking, referred to
as Ising nematic transition. We find that upon approaching this instability, the Raman spectral
function develops a quasi-elastic peak as a function of energy transferred by photons to the crystal.
We attribute this low-energy B, scattering to the critical slow-down associated with the build up

of nematic correlations.

PACS numbers: 74.25.nd, 74.70.Xa

I. INTRODUCTION

The discovery of iron-based superconductors, (FeSCs)
opened a new avenues in the research of strongly corre-
lated systems.!® Despite the diversity in crystallographic
structure and chemical composition all the FeSCs share
in common several generic trends. FeSCs are multi-band
and multi-pocket materials. According to ARPES the
Fermi surface (FS) contains two or three hole pockets
at the center of the Brillouin zone, I' point, and two
electron pockets centered at (m,7), M point in two iron
unit cell notations. The underdoped compounds undergo
structural tetragonal to orthorhombic transition at the
temperature Ty followed by or coincident with the spin
density wave (SDW) transition at Ts py. The supercon-
ductivity sets in when the magnetism is suppressed by
doping® 10 or pressure!12,

The interplay between the magnetism and supercon-
ductivity is manifest in the weak coupling renormaliza-
tion group analysis of competing instabilities.! 1> The
interaction amplitude in the spin density wave channel is
renormalized similar to the usual renormalization in the
particle-particle channel that normally leads to Cooper
instability. Above the Fermi energy, Er the two channels
affect each other. As a result, the inter-pocket pairing in-
teraction is enhanced by the spin fluctuations which was
suggested to drive the unconventional s* superconduc-
tivity with the order parameter changing sign between
the electron and hole FSs. In this picture low (high)
doping makes the magnetic (Cooper) instability a win-
ner in a competition at energies below Ep. It follows
that the proximity of the magnetic and superconducting
phases on a phase diagram is not accidental. Hence, the
understanding of magnetic and structural transitions is
instrumental for the description of the superconductivity.

Most commonly at the magnetic transition the con-
tinuous O(3) symmetry and the discrete time reversal

symmetry are broken. In the FeSCs the spin alignment
is magnetic along one direction and anti-ferromagnetic in
the orthogonal direction. Such stripe magnetization low-
ers, therefore the discrete C4 rotational symmetry of the
lattice down to Cs. The possibility of breaking the Cy
symmetry without breaking the spin O(3) and time rever-
sal symmetry was studied in the context of the structural
transition, and the corresponding transition was referred
to as Ising nematic.'® In this picture, below T, the spin
correlation length increases in one of the symmetry di-
rections and decreases in the other, and the magnetisms
sets in with little or no delay.

The prevailing scenario of the structural transition is
electronic. Specific to FeSCs is rather high degree of
ab anisotropy in electronic properties. The resistivity
anisotropy py/pa in cobalt doped BaFesAs, is reported!”
to reach values as high as 2 for cobalt concentration
z ~ 0.03 whereas the maximal orthorhombic distortion
for the parent material, z = 0 is only about 0.36%.
Moreover in strain controlled samples the derivative of
(po — pa)/(Po + pa) with respect to the strain shows a di-
vergence at the interpolated mean field temperature 7%
= 116K for parent compound. '® The T* so obtained
is only 22K lower than the actual transition tempera-
ture, Ts= 138K. The relatively small difference Ts — T
is due to the lattice fluctuations being suppressed under
the conditions of fixed strain. Likewise, the optical reflec-
tivity is nearly divergent at the nematic transition.'® All
these findings are indicative of a dominance of electronic
degrees of freedom in the nematic transition.

It is in general hard to disentangle different electronic
fluctuations channels breaking the same symmetry. At
present the dominance of either charge or spin degrees
of freedom in driving the structural transition is not set-
tled. There are two schools of thought as for the ori-
gin of electronic nematicity. 20 In orbital nematicity sce-
nario the difference in populations nx, — ny, of the dx.



and dy . iron orbitals is believed to be a primary cause
of the nematic transition. 2!"2% In another scenario it is
the spin that drives the nematic transition.?:26 Let m »
be the two staggered (antiferromagnetic) magnetizations
on the even and odd iron sub lattices respectively. The
nematic transition occurs when the two spin sublattices
lock, (m1-ma2) # 0.27 The two alternatives being the pos-
itive and negative (my - m2) resulting in the two orthog-
onal stripe magnetizations, AX"Y = m+my. These are
the spin arrangements ferromagnetic in X (Y") direction
and antiferromagnetic in V(X)) direction in Fe only lat-
tice. The magnetic perspective is supported by the NMR,
data showing low-T Curie-Weiss-like upturn of a spin-
lattice relaxation rate 1/T17,%29 as well as by the scal-
ing between the magnetic fluctuations and softening of
the elastic shear modulus at the structural transition.3’

In this paper we do not attempt to resolve the above
controversy, but rather explore the consequences of the
nematic fluctuations as observed in recent Raman experi-
ments.?' 33 Even though the region of the phase diagram
contained between Ts and Tspw is either absent or quite
tiny, the dynamical nematic fluctuations revealed by Ra-
man spectroscopy kick in far into the paramagnetic phase
up to room temperatures. The Raman spectroscopy is es-
sentially dynamic probe of electronic correlations of pre-
scribed symmetry.343% The photon scattered inelastically
leaves some of its energy with the crystal. Selection rules
fix the symmetry of the excitation while the energy dif-
ference between the incoming and scattered photon, the
so-called Raman shift, determines the energy of the elec-
tronic excitations.

II. RAMAN RESPONSE IN FOUR BAND
MODEL

A. Band structure model

In this section we discuss the phenomenological four
band model based on the work of Cvetkovic and Vafek.3¢
In this model constructed using the method of invari-
ant due to Luttinger” the interaction of electrons with
light is easily obtained by the standard gauge invariant
minimal coupling procedure®®. Here we neglect the cou-
pling between the different layers and consider the crystal
structure as quasi-two-dimensional, see Fig. 1(a). Gener-
ically, in FeSCs each layer contains the iron atoms form-
ing a simple square lattice with the basis unit vectors X
and Y. The pnictogen or chalcogen atoms forming the
checkerboard with even and odd sublattices above and
below the iron layer. Above the SDW transition the unit
cell contains two iron atoms with the basis denoted by &
and ¢.

It is sufficient to comnsider slightly simplified version
of the model®® whereby the four dimensional effective
Hamiltonian describing the M point is replaced with the
two-dimensional one and the remaining electronic bands
that are not crossing the Fermi level are discarded. We
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FIG. 1: (color online) (a) The unit cell of a quasi-two-
dimensional FeSC contains two iron atoms and two pnictogen
atoms such as As (or chalcogen atom such as Se). The atoms
above and below the iron layer are denoted by crosses and by
circles respectively. The basis vectors of the iron-only lattice
are denoted by X and Y. The vectors & and ¢ are chosen as a
basis vectors of the two-iron unit cell lattice. (b) The two-iron
Brillouin zone. The I' point hosts two hole pockets and the
M points hosts two electron pockets. The solid (black) and
dashed (blue) lines denote the dx. and dy. orbital contents
respectively. The admixture of the dxy orbital at the outer
parts of the crossed Fermi pockets at M is neglected. The po-
larization vectors e’ and e for the B34 Raman configuration
are shown.

write for the quadratic part of the Hamiltonian,

H= Z Z C;r,kaHg;i,jCj,ka + fikaHlﬁ{i,jfj,k’a , (1)

ko i,j=1,2

where c; ko ( fZT ko) Creates a hole (an electron) in a state
with spin index o and momentum k counted from I" (M)
point. The index i = 1 (i = 2) refers to the dx . (dy.) or-
bital content. For that reason the Hamiltonian (1) refers
to the orbital basis and reads
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for electrons. The parameters entering the equations (2)
and (3) obtained from the fits to the tight binding calcu-
lations®83? are tabulated in Ref. (36). Below we set a = ¢
which corresponds to circular hole FSs. In this work we
neglect the spin-orbit coupling and at I', k = 0, the two
Bloch states are degenerate. The equation (3) neglects
the admixture of dxy orbitals, and the parameter b is
the pocket ellipticity.

The Hamiltonians Eqs. (2) and (3) describe the band
structure shown in Fig. 1(b). The band structure ob-
tained by diagonalization of these Hamiltonians contains
two hole pockets at I" with orbital content alternating be-
tween dyx, and dy, with 7 periodicity, and two electron
pockets at M. The electron pockets cross and their outer



parts contain an admixture of the dxy orbital. Here we
neglect such an admixture while preserving the overall
symmetry of the Hamiltonian.

B. Raman coupling

Raman scattering is a two-photon process. Its ampli-
tude contains one part which is second order in the dipo-
lar interaction and the first order in the coupling via the
effective mass tensor. Assuming that the base frequency
is detuned off the dipole transitions it is customary to ig-
nore the dipolar coupling. Under these circumstances the
inelastic Raman scattering cross-section as a function of
the Raman shift w is proportional to the imaginary part
of the retarded Raman susceptibility, [x%(q,w)]”. We
compute it from the corresponding Matsubara correla-
tion function of the Raman vertices,

k(q) = (77)q, (4)

where the vector ¢ = (g, iwy,) includes the spatial wave
vector, g and 1Mautsubarau frequency, w,,, and we denote,

B), = fOT d7 exp(iwmT)(Aq(T)B_4(0)). The experi-
mental situation corresponds to g = 0 in Eq. (4), and the
Raman susceptibility x(0,w) is obtained from x(q) by
setting g = 0 and performing the analytical continuation,
Wy — w. Below in writing the Matsubara frequency wy,,
we omit the subscript m for brevity.

The expression for the Raman vertices

T_Z Z clka %JCJxk'O‘—’—fzka Z]f.];ka (5)

k,a i,j=1,2

is fixed by the Hamiltonian, as formulated by Egs. (1), (2)
and (3), as well as the polarization vectors of incoming
and scattered photons, e! and e”,
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In this work we focus on the By, Raman configuration
such that polarlzatlon vectors of incoming and scattered
photons are e/ = (X +Y)/v2 = &, and e5 = (Y —
X)/\/i = g, respectively, see Fig. 1. The reason for this is
twofold. First, the build up of the low energy By, Raman
intensity upon cooling is the dominant feature observed
experimentally above T,.3133 Second, both orbital and
the nematic fluctuations have the By, symmetry. Indeed,
Eq. (6) in combination with Egs. (2) and (3) gives

st oy o

Equation (7) shows that photons in By, Raman configu-
ration couple directly to orbital fluctuations.

IIT. EFFECTIVE ACTION AND RAMAN
SUSCEPTIBILITY

We compute the Raman susceptibility as given by
Eq. (4) with the Raman vertex specified by Eqgs. (5)
and (7). In doing so we follow closely the derivation of
Ref. (16). To compute the Raman susceptibility we add
to the quantum action the source term,

Sy = Jufow+ J_wie (8)

and the Raman susceptibility, Eq. (4) is obtained by a
functional derivative of a free energy functional,

5 F(J]
570 )

K(w) =

computed at J, = J_, =

Here we focus on the spin interactions for definiteness,
and comment on the role of the orbital fluctuations. In
the purely magnetic scenario of the nematic transition
we write the interaction in the form,

Hint = __Us Z Z Si,qSi,—q > (10)

q i=1,2

where the spin operator is diagonal in orbital index i,

Sia =Y. > ChigiaTasfris (11)

k i=1,2

where the 0,5 are the Pauli matrices. The standard
Hubbard-Stratonovich transformation amounts to the
decoupling of the interaction term, Eq. (10) via the stripe

magnetizations, AXY) >k cLJrq 1(2)a0'a5fk71(2)5.
The integration over fermion operators results in the ef-
fective action that closely resembles that of Ref. (16),

SIAXY Ty, = /
q/
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where we introduced the notation

Z [AXM-H')A -Q
Q,q

EXY( ) Aqw-l—QA—q Q}

(13)

For w = 0, Eq. (13) describes the classical contribution of
the nematic fluctuations into the Ginzburg-Landau free
energy, while Zxy (w) describes the quantum nematic
fluctuation driven by the external source at the same
frequency.

We now comment on Eq. (12). First, we omitted the
term o [(AX)% + (AY)2]? responsible for the renormal-
ization of the spin susceptibility x4, and crucially impor-
tant for the nature of the magnetic and structural phase



transition. Here we are not concerned neither with the
feedback of nematic fluctuations on magnetism, nor with
the mapping out the phase diagram, and for that reason
do not include this term in the action keeping the spin
susceptibility renormalized.

Second, the last term in Eq. (12) describes the cou-
pling of the Raman vertex to the spin nematic order pa-
rameter oc (A%X)2 —(AY)? via the triangular Aslamazov-
Larkin like vertex, A 47, evaluated in the App. A. We have
shown this vertex can be approximated by a frequency
and momentum independent function. Most relevant for
the present analysis is the weak temperature dependence
of A4, for temperatures exceeding the mismatch between
the electron and hole Fermi surfaces. As the latter can
be few tens of meVs the above statements hold for most
of the relevant temperatures.

We further perform the second Hubbard-Stratonovich
transformation by introducing the nematic filed ¢. Cor-
responding to the two terms quartic in AX () in Eq. (12)
we introduce the static nematic field ¢ and the quantum
time dependent nematic field ¢(7) = @,e™7. The result-
ing quadratic action reads,

§ = Z
+ [(0—w + AarJ-w)Exy (W) + c.c.]

2
9, 16l
29 g
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(14)

The action (14) is quadratic with respect to the stripe
order parameters, which thus can be integrated out ex-
plicitly. This procedure results in the effective action,

exp(—F) = /dAXdAY exp(—9)

_ ¢ |oul
= exp <—2—;— p; )Det(D3)Det(D3) (15)

where we have defined matrices in the Fourier space

Dy = )A(;I:l + (¢—w +)\st—w)M+ + ((bw +Astw)M— (16)
= 0g1,q:001 02 (Xq_11 + ¢o) and My =
0g1,q20ws,wotw- With the help of the standard formula
we convert determinant into the trace of the logarithm,
DetD = exp(TrinD), and expand the resulting effective
action up to the second order in the nematic fields and the
source strength. Such an expansion amounts to the mean
field approximation that can be justified in the large NV
limit. In Ref. (16) the thermodynamic properties of the
same model were shown to be reasonably well captured
in this approximation for N = 3 and we employ it here
as well, and write

with 3"

F= —363(0) = 3|(dw + Aardu)” T(w),

(17)
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FIG. 2: Feynman graphs illustrating the results (18), (19).
The pair of the thick (blue) wavy lines at the left and right
ends of both graphs represent an incoming and scattered pho-
tons. The black triangles represent the Aslamazov-Larkin tri-
angular vertex giving rise to the coupling constant A4y, of light
to spin nematic order parameter, (A~X)% — (AY)?, computed
in App. A. The double wavy (red) lines denote the spin sus-
ceptibilities, x(q,€). While the graph (a) is not specific to
the XY-geometry, the attraction in the nematic channel g > 0
makes it necessary to include the ladder diagrams shown in
the panel (b) and giving rise to the quasi-elastic peak in Bag
geometry.

where the dynamical spin nematic susceptibility
= x(a, Qx(
q,Q

has been introduced.
The action (17) is quadratic and the functional deriva-
tive in Eq. (9) gives for the Raman susceptibility,

T(w)
1-39Y(w)’

q,w+Q) (18)

K(w) = 3Aarl® (19)
see Fig. (2) for diagrammatic representation. To com-
pute Y(w) we use the standard finite temperature Mat-
subara summation technique over the discrete frequen-
cies followed by an analytic continuation to the real axis,
iw, — w —+ 10, to obtain the retarded spin nematic corre-
lation function Y (iw,) — YT (w).

To this end, we evaluate the bare susceptibility (18) by
converting the Matsubara sum over €2 into the complex
integral

(20)

The integrand has two branch cuts at Im(z + iw,) = 0
and Im(z) = 0 where the product of two y functions has
breaks of analyticity. As a result of analytic continuation
process we get

/— coth—

[x"(q, Q + w)Imx (g, Q) + Imx (g, A)x*(q, 2 — w)]

(21)
To make further progress we use standard expression for
the spin correlation function?:4!

Cc

X ) = @ g

(22)



where the important scale is

I~
nTE )

and Q = (w, ). Separating the real and imaginary com-
ponents one finds
Qr,
Imy® Q) =x" = c? u 24
mx (g +Q,Q) =x"=cf 0T Ze02 2 (24)
1+¢%¢?
Rex"(g+Q,Q) = x' = ¢ as (25)

1+ €22 + Q272

The symmetry between the two stripe-like spin order-
ing arrangement is broken at the Ising-nematic type tran-
sition. Here we assume the mean field critical exponent
v=1/2,ie.

T)zl\/TN/(T—TN) (26)

with Ty being the mean field SDW transition temper-
ature, and [ a microscopic length scale. We empha-
size that the the mean field transition temperature can
be substantially lower than the observed SDW transi-
tion temperature, Ty < Tspw. Eq. (22) also shows
that the critical behavior of the static susceptibility,
X(Qm = 0,Q) = €% o< (T — Ty)~ ! is as prescribed by
the mean field too.

We proceed by substituting (24) and (25) into the gen-
eral relation (21) to get for the imaginary part of the
susceptibility

T(w) =4 / /

x{ y+w
(14+2)2+ (y+w)?

dy ycoth(y/2t)
27 (14 )% 4 2
y—w
()2 (y—w)?

(27)

Here we introduced dimensionless variables z = (¢¢)?,
y = Qrg, t = T1s, and w = w7rs. The above expression
is general. In a view of Raman experiments, below we
consider in details the limiting case of high-temperatures,
T1s > 1, that corresponds to the regime of essentially
classical fluctuations.

In the classical region when ¢t > 1, assuming also
not too high frequencies, T > w, one can approximate
coth(y/2t) = 2t/y. The double integral in Eq. (27) can
be then evaluated analytically

2
wg?
1 — . 28
i ( 2y ) ] 2%
Since the integral decays at a scale ~ 47, the approxi-

mation made should be reasonable for all the frequencies.
Similarly we evaluate the real part of susceptibility

dr [ d
=27 1¢2 / 4—”3 / Y coth(y/2t)
o 4m J_ 2w

1+x
(I+2)2+ (y+w)?

Y (w) = ATy In

x (14 x)2 + 92 (29)

The integral in Eq. (29) is logarithmically divergent at ul-
traviolet. We therefore isolate the divergence in Eq. (29)
by focusing first on a static limit w = 0. Then the differ-
ence is well convergent and can be easily evaluated as

T (w) =Y'(0) — 16% arctan(wTs/2). (30)

To evaluate the static susceptibility Y/(0) we split the
y-integration range in Eq. (29) in two regions, y < ¢
and t < y < A7s, where the scale A is the ultraviolet
cutoff. Making approximations coth(y/2t) ~ 2t/y and
coth(y/2t) ~ sgn(y) in the two respective intervals the
resulting integrals can be easily evaluated with the result

52 7152
5.2 arctan(7T',) + 1 In T’

1'(0) = (31)

where arctangent can be further safely approximated by
/2. With these results at hand we find from Eq. (19)
for the imaginary part of Raman susceptibility

I(w, 1)
TR (@, 7) + (472972 (@, 7)

K" (w) = 3)2 (32)

Here we have introduced dimensionless frequency w =
w/Tn and temperature 7 = T'/T, and also two dimen-
sionless functions

(g 1))2] ’ )

R(w,7)=1-3 [Tl +~L — % arctan (ﬁ?]

I(W,T):Lln
@

where renormalized coupling g = 3¢gTn1? /4, decay rate
4 = v/7TnI? and cutoff L = In(A/T') should be used as
a fitting parameters, see Fig. (3) for results. The most
prominent feature of our results is the critical enhance-
ment of the Raman susceptibility upon approaching the
structural transition with the characteristic build up of
the quasi-elastic scattering.

IV. CONCLUSIONS

In this paper we investigated theoretically the low en-
ergy Raman scattering in underdoped FeSCs. The gross
feature of the data is the quasi-elastic peak that gains
in intensity and softens down at cooling above the struc-
tural transition. The phenomenon is observed exclusively
in Byy Raman geometry. The Lorentzian-like frequency
dependence of the B, Raman susceptibility describes
the relaxation dynamics with the relaxation rate given
by the position of the maximum. The temperature de-
pendence of the susceptibility indicates the freezing of
the electronic Ba, fluctuations at cooling. Such behavior
is naturally associated with the tendency to long range
order which breaks the By, symmetry. I.e. the broad
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FIG. 3: (color online) The modeling of quasi-elastic peak in
Raman response function in accordance to Eq. (32), where
k" is plotted in the units of 3A\% ;v for the following choice of
fitting parameters from bottom curve to the top one: 7 = 2,
(red) dashed line, 7 = 1.5 (black) thin solid line and 7 = 1.25
(blue) solid thick line; g = 0.2, 7 = 5, L = 10. The peak grows
when the structural transition is approached upon cooling.

relaxation-like feature can be attributed to the critical
slow-down associated with the approach to discrete sym-
metry breaking transition. Upon cooling the system ex-
periences locking in one of the two degenerate configu-
rations related by the Cy4 rotation for increasingly longer
time intervals.

To understand the origin of quasi-elastic peak as it ap-
pears in Eq. (19) note first that in the static limit the
real part of Raman susceptibility scales as ~ (T — 0)~!.
The temperature scale § < Ts which can be explained
in terms of the coupling of the electron nematic fluctu-
ations and the orthorhombic lattice vibrations studied
recently in Ref. 42. These fluctuations add to the static
nematic coupling constant, gg = g + v2/C?,4344 The
static coupling gs; determines Ts. Crucially, however it
is the dynamic rather than static nematic coupling con-
stant ¢ < g5 that defines 6, since the lattice response
function has different static and dynamic limits*>. Cor-
respondingly, the difference Ts —8 is expected to correlate
with the reduction of T, in strain controlled samples'®.
This is indeed reported to be the case in the recent
measurements®. Distinguishing between the two con-
tributions remains a challenge. Nevertheless we can de-
duce the low energy scattering by making the reasonable
assumption on the imaginary part of the bare response.
Assume that at low frequencies it scales as ~ w/I" with T’
being a non-critical at T' = 6 and hence weakly tempera-
ture dependent relaxation rate. Then it follows from the
denominator structure of Eq. (19) that at low frequencies

K'(w) ~ (T — 60 + iw/T)~* We thus see that the relax-
ation rate is suppressed by a factor of T'— 6 compared
to the bare rate I'. 'We conclude that the quasi-elastic
scattering is the case of critical slowing down.

Regardless of the origin of the attraction the intra-
band processes alone are insufficient to describe the large
frequency width of the quasi-elastic scattering. Indeed,
at zero momentum such transitions are forbidden and the
quasi-elastic peak is absent.*”*® The small momentum
intra-band transitions restricted to either I or M points
are gapped and cannot account for quasi-elastic scatter-
ing either. The excitation of two electron hole pairs at
momentum close to the antiferromagnetic wave vector
each enables the relaxation of zero momentum excita-
tions by lifting the kinematical constrains. It was argued,
however that the phase space limitations make the con-
tributions of such processes to the relaxation rate scale as
cubic power of the frequency difference of scattered and
incoming photons. 8 As our calculations demonstrate
this suppression is only relevant at very low frequencies
and for relevant temperatures and frequencies the scaling
is essentially linear. In that regard this situation is very
similar to that in cuprates.*’ Even though the latter are
single- rather than multi-band materials the processes
that matter the most are confined to the vicinity of hot
spots, i.e. the points on a FS connected by the antifer-
romagnetic wave vector.
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Appendix A: Derivation of the effective action in
terms of the stripe magnetizations

The calculations in this section are an extension of the corresponding derivations in Re. (16). We introduce the

eight component spinor,

vl =

i i T A i T T
(CUW Ca ket f1,k¢= fz,k@ Clk) C2 k) f1,k¢= f2.,k¢)

(A1)



in the direct product of orbital and spin spaces. Upon the introduction of the stripe magnetizations, AXY via the
Hubbard-Stratonovich transformation the action takes the form,

2
S, AN AY g, T ) = _szg;;/wk, +u—/ a¥@]” +]av @], (A2)
s Jq

where we denote k = (k, i¢), and the Green’s function is

G =Gy -V, (A3)
where
V=y2 -yl _ple, (A4)
The free Green’s function in Eq. (A3) is
Goike, ke’ = Ok i [gg’e gzd ®I, (A5)

where the two hole and electron Green’s functions are two dimensional matrices expressed in a standard way,
-1
Gt = (ie =" + Er) (A6)

through the hole and electron Hamiltonians Egs. (2), (3) with energies counted relative to the Fermi level. We further
have,

0 0 AYg 0
S 00 0 A
T = / Mk IAX@g) 00 0 |®° (A7)
0 A¥(g 0 0
The source term according to Egs. (5) and (8) reads,
r
VkJ’:]tclf = Jiwék,k/éeiw,e |:TO T?w:| ® I[ (A8)

with the two dimensional matrices 7% are defined by Eq. (7). In the presence of the source, (A8) it is necessary to
keep the term of the third order in V in the expansion of the free energy,

1 1 1 2
SIAX AY . T ] = 51&.«(%1})2 + —Tr(GoV)? + Zﬂ(govf + —

3 2 [1a¥@r+1a"wr)  (a9)

q

of prime interest for us in this work. While even order terms in Eq. (A9) were considered in details in the work
Ref. (16), here we focus on the third order term of Eq. (A9). We specifically determine the contribution to the
effective action that is linear in the sources J4i,, and quadratic in AX:Y. Such terms have the form,

Jiwr VAP AA N 1T 0|, (AX,in) 0 M (Ax,fsz) 0 r
Tr(V*GoV=GoV=Go) = adtw % Tr{{o _1] ngrq,e:I:w{ qo ¢ (A;/,m:w)g Oke—0 qO ¢ (Az;iﬂ)e Ok,e
10 (AXoL) 0 r (AX_g) 0 "
+b§ Jwa{[ }QM Ew[ 9.0/ g Gre KN Gyl b+ cc A10

7 - 0 —1] Fhtacs 0 (Agosw),] T 0 (A o) 7" (A10)

In obtaining Eq. (A10) we used the explicit form, Eq. (7) of the Raman vertices "™ the block diagonal structure
of all the three matrices given by Egs. (A5), (A7) and (A8). Furthermore the trace operation over the spin indices
results in a summation over the Cartesian coordinates of the vectors of the stripe magnetizations, AXY" labeled by
the index ¢ = z,y, z. The trace operation in Eq. (A10) includes in addition to the usual trace of the two-dimensional
matrices, the summation over fermion frequencies and momenta (i€, k) and boson frequencies and momenta (i€2, q).

The integral of Eq. (A10) over the fermion frequencies and momenta is convergent at the upper limit. As a result
assuming that the Fermi energy is much larger than the typical energy carried by the magnetic fluctuation, we can
neglect the boson momenta and frequency, g and €2 in the arguments of fermion Green functions. Furthermore, since



the energy splitting of electronic bands is normally smaller than the Fermi energy we can neglect it and approximate
the hole Hamiltonian by a scalar function. In terms of Green function we have

g};,e ~ g_};,e = (26 - 5h)71 ) (All)

where &, is the energy of the hole band relative to the Fermi energy with splitting neglected. Similarly, by neglecting
the ellipticity related energy that is small on the scale of the Fermi energy we arrive at the scalar Green function for
electrons,

glﬁ:\,ﬂ ~ gé\?e = (ZE - 58)71 ) (A12)

where & is the energy of the electron bands relative to the Fermi energy with ellipticity neglected. Clearly, the above
approximations make the corresponding Green’s function denoted by g};e and gé\{e scalar and allow us to rewrite

Eq. (A11) as

Tr (V= GoVAGoVAGo) ~ JowExy (£w) / [0 (Gh)° Gt + b (G1)* Gk - (A13)
k

Identifying the last term of Eq. (12) with Eq. (A13) we finally arrive at the expression for the triangular vertex,
_ 2 _ _ 2 —
aae= [ [a(@) ok + v (GG (A14)
k

where the expression for Zxy (w) is given in Eq. (13). For definiteness, we evaluate the first term o a in the expression
Eq. (A14). For simplicity we assume &, = —&. + dpe = &, and take the density of states to be a constant v for both
electrons and holes. Under these assumptions the substitution of the Green’s functions in Egs. (A11) and (A12) in
Eq. (A14), followed by the integration over & yields,

2 2
ST \2 5 M . 1 1
=2miT —_— | - Al5
/k (Gr.e)” Gre = 2miTry 20 [(%en + (5eh) <2i6n - 5eh) ] (A19)
As the Matsubara frequencies are of the form, e, = 27(n + 1/2)T we obtain from Eq. (A15),

=0 \2aM _ Yo (1 den
~/k(gk76) gk,é - 7_‘_T:Irn [¢ (2 ZQTFT):| ) (A16)

where ¢’ (z) is the derivative of the digamma function. Expression similar to Eq. (A16) holds for the contribution of
coupling of light to electrons, and we obtain,

_ 0 1 (L Gen
)\AL—(a+b)7TTIm [w (2 Z27TT>:| . (A17)
We note that the contributions of electrons and holes are additive. As typically d¢, is few tens of meVs we expect an
inequality T < d.p to hold. As the asymptotic expansion Im[¢)’'(1/2 — iz)] = 1/x holds already for = = 0.25 we can
write for the Aslamazov-Larkin vertex,

2V0

/\AL%(a—i-b)éh.

(A18)

We conclude, that the A4sp is insensitive to the temperature variation in the relevant temperature range, and is
suppressed with increasing mismatch between the hole and electron Fermi surfaces. This result is in agreement with
the alternative calculation for a different model.*>
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