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Weyl semimetals are a class of topological materials that exhibit a bulk Hall effect due to time-
reversal symmetry breaking. We show that for the idealized semi-infinite case, the Casimir force
between two identical Weyl semimetals is repulsive at short range and attractive at long range.
Considering plates of finite thickness, we can reduce the size of the long-range attraction even making
it repulsive for all distances when thin enough. In the thin film limit, we study the appearance of an
attractive Casimir force at shorter distances due to the longitudinal conductivity. Magnetic field,
thickness, and chemical potential provide tunable nobs for this effect, controlling the Casimir force:
whether it is attractive or repulsive, the magnitude of the effect, and the positions and existence of
a trap and antitrap.

PACS numbers: 04.50.-h 11.15.Yc 73.43.-f 78.20.Jq

In 1948, Casimir1 showed that quantum fluctuations
of the electromagnetic field cause a force between two
perfectly conducting, electrically neutral objects. This
has since been extended to other materials2,3. Through-
out this time, Casimir repulsion between two materials
in vacuum has been a long sought after phenomenon4,5.
There are principally four categories in which repulsion
can be achieved: (i) Modifying the dielectric of the inter-
vening medium4,6,7; (ii) Pairing a dielectric object and
a permeable object5 (such as with metamaterials8); (iii)
Using different geometries9–11; and (iv) Breaking time-
reversal symmetry12,13. In this letter, we are concerned
with Casimir repulsion in identical time-reversal broken
systems. Specifically, we will study how Weyl semimet-
als with time-reversal symmetry breaking can exhibit
Casimir repulsion. The key ingredient to Casimir repul-
sion in this letter is the existence of a nonzero bulk Hall
conductance σxy 6= 0, σxy = −σyx14.

It is a general theorem that mirror symmetric objects
without time-reversal symmetry breaking can only at-
tract one another with the Casimir effect15. This is un-
derstood with the Lifshitz formula2 where if we have two
materials characterized by the two reflection matrices R1

and R2 and separated by a distance a in a parallel plate
geometry, we have

Ec(a) = ~
∫

d2k

(2π)2

∫
dω

2π
tr log[I−R1R2e

−2qza], (1)

where the trace is a matrix trace and qz =
√
ω2 + k2.

This integral generally yields an attractive force; how-
ever, if we break time reversal symmetry, obtaining
antisymmetric off-diagonal terms in the reflection ma-
trix Rxy = −Ryx there is the possibility of Casimir
repulsion16. One candidate is a two-dimensional Hall
material12, and similarly, another is a topological insula-
tor where the surface states have been gapped by a mag-
netic field13,17. A Hall conductance does not guarantee
repulsion; longitudinal conductance can overwhelm any
repulsion from the Hall effect (though the magnetic field

FIG. 1. The setup we will consider here is two Weyl semimet-
als separated by a distance a in vacuum, and with distance
between Weyl cones 2b in k-space (split in the z-direction).

can lead to interesting transitions18), and a Hall effect
that is too strong can suppress Kerr rotation and hence
lead to attraction. The latter case is an interesting phe-
nomenon where “more” of a repulsive material can lead
to attraction.

The material we are interested in is marginal in both
the case of longitudinal conductance and an overwhelm-
ing Hall effect: Weyl semimetals14 with the Casimir setup
seen in Fig. 1 and resulting normalized Casimir pressure
in Figs. 2, 3, and 4. These materials have linearly disper-
sive band structure characterized by Weyl nodes with dif-
ferent chiralities and characterized by a chiral anomaly19.
Clean Weyl semimetals at zero temperature have a zero
DC longitudinal conductivity and optical conductivity
Re[σxx] ∝ ω20. Additionally, they exhibit a bulk Hall
effect exemplified in the DC limit by an axionic field
theory21 where in addition to the Maxwell action, we
have

SA =
e2

32π2~c

∫
d3r dt θ(r, t)εµναβFµνFαβ , (2)

where θ(r, t) = 2b · r − 2b0t, and 2b is the distance be-
tween Weyl nodes in k-space while 2b0 is their energy
offset; e is the charge of an electron; ~ is Planck’s con-
stant; c is the speed of light; Fµν is the electromagnetic
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field strength tensor; and εµναβ is the fully antisymmetric
4-tensor. Inversion symmetry breaking Weyl semimetals,
on the other hand, do not exhibit a DC Hall effect22 and
therefore will not see the effects described in this letter.
The electrodynamics of this were investigated in23 where
the authors even comment on the possibility for a repul-
sive Casimir effect.

The marginal nature of Weyl semimetals makes them
prime candidates for tuning the Casimir force between
attractive and repulsive regimes. In constructed Weyl
semimetals made of heterostructures of normal and topo-
logical insulators24 an external magnetic field can control
Hall effect25 and hence the repulsive effects. Addition-
ally, some of the first materials that have been predicted
were pyrochlore iridates26; these could also see a repul-
sion tunable with carrier doping or an additional mag-
netic field.

In a real material and experiment at finite tempera-
ture, disorder and interactions should be taken into ac-
count and in Weyl semimetals they lead to a finite DC
conductivity20,24,27. We simulate this effect in the latter
part of this letter by raising the chemical potential in our
clean system, leading to intraband transitions that con-
tribute to the longitudinal conductivity (in the DC limit
these are singular contributions).

To begin, we consider two semi-infinite slabs of Weyl
semimetal (z < 0 and z > a to be precise), neglecting all
frequency dependence to the conductivities by assuming
the electromagnetic response is captured by Eq. (2). The
result is just a material that is solely a bulk Hall material
with current responses given by the Hall conductivity
σxy = e2b/2π2~. This response can be encoded in the
dielectric function so that εxx = εyy = εzz = 1 and εxy =
−εyx = iσxy/ω. With this set up, if an incident wave k
hits such a material it will break up into two different
polarizations in the material k± that satisfy k±x = kx,
k±y = ky, and (k±z )2 = kz(kz ± σxy/c). Additionally,
the two elliptical polarizations D± = ε(ω)E± are D± ∝
ω
ck± (kz ± σxy/c)e1 ∓ ik±z e2 where e2 is perpendicular to
the plane of incidence and e1 = e2 × k±. Notice that for
kz < σxy/c, one of the polarizations is evanescent.

The incident and reflected polarizations can be bro-
ken up into transverse electric (TE) and transverse mag-
netic (TM) modes, and the reflection matrix R(ω,k)
just connects incident to reflected (ETM

r , ETE
r )T =

R(ω,k)(ETM
0 , ETE

0 )T . As shown in the Lifshitz formula
Eq. (1), we need the imaginary frequency reflection ma-
trix. If we let ω → iω and define q2

z = ω2/c2 + k2
x + k2

y,
the reflection matrix for a semi-infinite slab of this bulk
Hall material as

R∞(iqz) =
1

σxy/c

(
Q− − σxy/c −Q+ + 2qz
Q+ − 2qz Q− − σxy/c

)
, (3)

where we have defined for brevity Q± =√
2qz(

√
q2
z + σ2

xy/c
2 ± qz) (the real frequency ver-

sion of R∞ is found in the supplement28). Inspecting
R∞(iqz), we see that the reflection matrix only de-
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FIG. 2. The normalized Casimir force between two semi-
infinite bulk Hall materials. Repulsion is seen for σxya/c .
4.00. P0 is the distant-dependent ideal Casimir Force1. For
σxya/c→∞, Pc/P0 → 1.

pends on the ratio cqz/σxy. This dependence has
implications for the Casimir force. After changing
variables to solely qz, we can inspect the Casimir
pressure Pc(a) = −∂Ec/∂a, and we have an expression

Pc = 2~c
(2π)2

∫
dqz q

3
z g

[
qz

σxy/c
, 2qza

]
, with a function

g( qz
σxy/c

, 2qza) written out in the supplement28 for

completeness. If we then change variables to x = 2aqz
and normalize by Casimir’s original result for perfect

conductors P0 = − ~cπ2

240a4
1, we can write the equation for

the pressure as Pc/P0 = f(σxya/c).

With this formulation, we plot normalized force Pc/P0

as a function of σxya/c obtaining the single function
seen in Fig. 2. We see that for σxya/c . 4.00 we ob-
tain repulsion while for σxya/c & 4.00 we obtain attrac-
tion. Thus, these similar materials trap each other at a
fixed distance simply dependent on the Hall conductivity,
aTrap ≈ 4.00

σxy/c
. If we insert the value of σxy = e2b/2π2~

into this expression, we find aTrap ≈ 860/b. This means
that if 1/b ∼ O(nm), then aTrap ∼ O(µm) quite reason-
able.

As the distance between the materials gets large,
Pc/P0 → 1. This behavior is markedly different from
the thin film Hall case obtained by Tse and MacDon-
ald in12,17. They found a small (two-dimensional) quan-
tum Hall effect implies a quantized and repulsive Casimir
force at large distance. In our case, we get attraction at
large distances for a bulk Hall material independent of
the magnitude of the Hall effect. To resolve this seem-
ing inconsistency, imagine a finite thickness of the bulk
Hall material of thickness d, then the two-dimensional
conductivity σxyd diverges as d→∞, and in the case of
a 2D quantum Hall plate with infinite Hall conductivity,
the Casimir effect is attractive and approaches P0.

To make this argument more precise, one can actually
find the reflection matrix for a bulk Hall system of thick-
ness d and the result is (derivation of Rd depends only
on the axionic action Eq. (2) and can be found in the
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supplement28, calculated for real frequencies)

Rd(iqz) =

(
Rxx Rxy
−Rxy Rxx

)
, (4)

with

Rxx = − 1
2
σxy

c (Q− sinhQ+d+
σxy

c coshQ+d−Q+ sinQ−d− σxy

c cosQ−d)/D, (5)

Rxy = − 1
2
σxy

c (Q+ sinhQ+d+ 2qz coshQ+d−Q− sinQ−d− 2qz cosQ−d)/D, (6)

where

D = (Q2
+ + 1

2

σ2
xy

c2 ) coshQ+d+ (2qzQ+ +
σxy

c Q−) sinhQ+d+ (Q2
− − 1

2

σ2
xy

c2 ) cosQ−d+ (2qzQ− − σxy

c Q+) sinQ−d. (7)

It can be shown that limd→∞Rd(iqz) = R∞(iqz).
Similarly, in the limit of d→ 0, if we keep σ2D

xy = σxyd

constant, we obtain what was found in12

lim
d→0

Rd(iqz) =
1

1 + (σ2D
xy /2c)

2

(
−(σ2D

xy /2c)
2 −σ2D

xy /2c
σ2D
xy /2c −(σ2D

xy /2c)
2

)
.

For the rest of our discussion, define R0(iqz) =
limd→0Rd(iqz) with σ2D

xy = σxyd held constant.
With the correct limits identified, we first notice that

we can write Rd as a function of only two variables Rd =
Rd(cqz/σxy, σ

2D
xy /c). Thus, by similar arguments to what

we had for the semi-infinite case, the Casimir pressure
Pc = P0f(σxya/c, σ

2D
xy /c).

The limiting cases can be understood now by con-
sidering first Eq. (1). The exponential constrains
qz ∼ 1/a and since technically the “thin-film” limit is
limqzd→0Rd(iqz) = R0(iqz), we have that d/a → 0.
In other words, the thin film limit is applicable when
we are considering d � a. The opposite limit is just
when qzd → ∞, and by similar arguments, that means
d� a is when the semi-infinite case applies. Both limits
leave σxya/c and σxyd/c unaffected (though in the thin
film case σxya drops out while in the semi-infinite case
σxyd→∞ has the same limit as qzd→∞).

The thin film limit can be evaluated exactly12 and has
the form PTF

c = P0
90
π4 Re{Li4

[
(σ2D
xy /c)

2/(σ2D
xy /c+ 2i)2

]
}

where Li4 is the polylogarithm of degree 4. Note that
this function has a minimum value of PTF

c ≈ −0.117P0

representing how repulsive we can get. For large enough
σ2D
xy /c, the force does become attractive—corresponding

roughly to when (σ2D
xy /c)

2 > σ2D
xy /c (i.e. when Kerr rota-

tion is suppressed).
The cross-over between these regimes can be seen in

Fig. 3. As σxyd/c is increased, the Casimir energy ap-
proaches the semi-infinite case. However, for any finite d,
each curve asympotically approaches its thin-film value
(and never goes lower than the minimum value repre-
sented by dashed horizontal line in Fig. 3). This not
only clearly connects our case to the previously known
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FIG. 3. (Color online) A plot of the normalized Casimir force
for various thicknesses of a bulk Hall material (idealized Weyl
semimetal). It begins slightly repulsive for small σxyd/c, and
as this increases, it becomes more repulsive until it reaches the
maximum for a thin film material (the dashed line) at which

point it increases to the semi-infinite limit. P0 = − ~cπ2

240a4
and

σxy = e2b/2π2~ is the bulk Hall response. Fig. 4 takes into
account more material properties.

thin-film result, it also provides a theoretical justifica-
tion for considering a thin-film limit d � a with a two-
dimensional conductance σµνd.

Until now the plates have been idealized. Using the
thin film limit illustrated above as a reference allows us
to easily consider some of the effects of taking into ac-
count the full frequency response of the material. Thus,
we pick a σxyd that is reasonably in the repulsive regime
(for all distances) in order to analyze the effects of in-
cluding some of the lowest order frequency dependence
into the conductivities. We will mainly be interested in
the effects of virtual vacuum transitions that are low in
energy, which corresponds to plates that are far apart
from one another. Thus, we will use the low-energy chi-
ral Hamiltonian for a pair of Weyl nodes

HW = ±~vFσ · (k± b), (8)

where vF is the Fermi velocity and b is the position of the
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FIG. 4. The Casimir force for a thin film Weyl semimetal taking into account low-energy virtual transitions in the band
structure. An anti-trap develops when the longitudinal conductivity overwhelms the Hall conductivity. In (a) we compare
different values of b (or equivalently, changing the Hall effect); in (b) we compare different vF (the larger vF the smaller σxx is);
and in (c) we turn on a finite chemical potential which causes attraction at very large distances (and hence a trap). Even small
chemical potentials have this property but the trap is quite far out. Unless the parameter is varying, a0 = 1 nm, d = 20 nm,
b = 0.3(2π/a0), Λ = 2π/a0, vF = 6× 105 m/s, and µ = 0.

of Weyl node in k-space. The exact band structure will
be important as the plates get closer though weighting
will still be larger on the lower energy modes.

To the conductivities, we fix kz and calculate two-
dimensional conductivities using the Kubo-Greenwood
formulation (see the supplement28 for details), then inte-
grate the resulting expression over kz with a symmetric

cutoff σµν(iω) =
∫ Λ

−Λ
dkz
2π σ̃µν(iω; kz)

29 where σ̃µν(iω; kz)
is the two-dimensional conductivity with kz fixed. We
evaluate this at imaginary frequency to aid the Casimir
calculations.

We perform this procedure at finite chemical potential
µ and throw out terms that go to zero when the cutoff
Λ→∞. This yields the conductivities

σxx(iω) =
e2

12π2~vF

[
5
3ω + 2ω log

(
vFΛ
ω

)
+4 µ2

~2ω − ω log
(

1 + 4µ2

~2ω2

)]
, (9)

and σxy(iω) = e2b
2π2~ is unchanged at this order. Due to

the linear dispersion of the Weyl nodes, we have a log-
arithmic cutoff dependence. Note that rotating to real
frequencies we get the correct result for two Weyl nodes
for Re[σxx(ω)]20, and a result with the appropriate loga-
rithmic divergence for Im[σxx(ω)]30. This can be under-
stood in terms of charge renormalization due to the band
structure, but for ease of our purposes we let Λ ∼ 1/a0

where a0 is the lattice spacing. For our plots we choose
a lattice spacing of a0 = 1 nm, a thickness of d = 20 nm,
b = 0.3(2π/a0), Λ = 2π/a0, vF = 6× 105 m/s, and µ = 0
unless its the parameter we are varying.

Now, one can use one of two equivalent ways of calcu-
lating the Casimir energy: the reflection matrix as given
in12, or using a microscopic analysis to find the photon
dressed RPA current-current correlators28. In order to
avoid an unphysical negative σxx(iω) as well as for con-
sistency, we cutoff the photon energies in the Lifshitz
formula to run from 0 to Λ—an approximation valid for
a� c

vF
Λ−1.

First, we see that we get an anti-trap for these at ap-
proximately 650 nm, and if we increase b as in Fig. 4a
(with, say, an applied magnetic field), it not only moves
closer to zero separation, but the overall repulsive behav-
ior can be enhanced. On the other hand, if we increase
vF as we see in Fig. 4b, we see the region of attraction
is suppressed, but the overall repulsive behavior at large
distances is maintained. Modifying Λ will have effects
similar to modifying vF, but since it appears logarithmi-
cally, it would need to change by orders of magnitude to
give appreciable changes (a simple plot for this is pro-
vided in the supplement, but is not relevant for the dis-
cussion here). This “anti-trap” effect is occurring at short
distances when higher order band effects also play a role,
but any other effects will contribute to the longitudinal
conductivity in such a way that an anti-trap will appear.

Interestingly, when we introduce a finite chemical po-
tential as we see in Fig. 4c. In addition to the anti-trap
we get at shorter distances, we start to see a trap at much
longer distances appear. This is not surprising since at
zero frequency there is a divergent longitudinal conduc-
tivity. Thus, we know that at long distances, the Casimir
force must be attractive, but by modifying the Hall ef-
fect, we have an intermediate regime of repulsion. A
similar effect would occur if we took finite temperature
or disorder corrections to the longitudinal conductivities.

Considering the form of the conductance in terms of
the fine structure constant, σxyd/c = α 2bd

π , we see that
bd controls the strength of the repulsion in the thin film
limit. Without longitudinal conductance, the repulsive
regime roughly corresponds to when (σxyd/c)

2 . σxyd/c

or equivalently 2bd
π . 1

α . The longitudinal conductance
introduces vF into the scheme; relevant photons have ω ≈
c/a and thus it becomes important for σxxd/c ∼ α c

vF
d
a &

O(1) (neglecting constants) which both emphasizes that
vF controls the longitudinal conductance’s contribution
to the Casimir effect and that the term is suppressed at
longer distances.

We have shown here how Weyl semimetals can exhibit
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a tunable repulsive Casimir force (with, for instance,
magnetic field tuning b) and how it can depend on the
thickness of the material. In the thin film limit, we
showed how the semimetalic nature of these materials
can work to create attraction at smaller distances scales,
and how a finite longitudinal conductivity will create long
distance attraction along with repulsion at intermediate
distances. Recently the first experimental observation of

Weyl semimetals31,32 provides optimism that these the-
oretical materials could be a reality. The marginal na-
ture of these materials could be useful for controlling the
Casimir force between attractive and repulsive regimes.
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