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Quantum Hall systems are recently shown to possess a quantity sensitive to the spatial geometry and topology

of the system, dubbed the Hall viscosity ηH . Despite the extensive theoretical discussions on its properties, the

question of how to measure ηH still poses a challenge. In this paper, we present a general relation between

Hall viscosity and susceptibility for systems with Galilean invariance. Thus, it allows for determination of ηH

through density response signatures. The relations are verified in the integer quantum Hall example, and is

further illustrated in an effective hydrodynamic analysis. Since the derivation is based on Kubo formulae and

assumes no more than conservation laws and translational symmetry, the results are applicable to a wide range

of systems.

I. INTRODUCTION

In recent years, there has been heated discussions on Hall

viscosity ηH (or “Lorentz shear modulus”)1, the third viscos-

ity coefficient unique in 2-dimensional isotropic, parity odd

systems. It can be regarded as the Berry curvature in the

parameter space of metric tensor1, and is proportional to the

Wen-Zee shift2, a quantity characterizing the system’s spatial

topology3.

Besides the topological significance, the influence of Hall

viscosity on various systems shows up in multiple ways. As

discovered recently, for integer quantum Hall systems4 and

Laughlin wave functions5, the Hall viscosity is related to the

density response to the variation of the sample’s scalar curva-

ture. It acts as an anomolous force on vortices and changes

their streamlines in an eulerian vortex fluid6. More gener-

ally, the Hall viscosity appears in the low-momentum expan-

sion of Hall conductivityσH(q) for Galilean invariant systems

subject to inhomogeneous electric field7,8. Clearly, studying

these physical consequences not only broadens our perspetive

on Hall viscosity, but also facilitates designing experiments to

measure it.

Density response measurement is a powerful and widely

applicable tool to probe various systems. In recent works,

many authors have related Hall viscosity to density response

functions, i.e. the static structure factor4,9, using certain trial

wave functions. It is intriguing to see whether there are uni-

versal relations between density response functions and Hall

viscosity. In this paper, we relate the Hall viscosity ηH to

the q4 term in the susceptibility χ(q, ω) for a general Galilean

invariant system, thus allowing for measurements of Hall vis-

cosity through density response experiments. We first derive

the relation in the microscopic level using Kubo formulae,

and verify the results in the integer quantum Hall example.

Then we present an independent derivation by applying effec-

tive hydrodynamics. The latter method has been adopted11

to analyze collective modes of fractional quantum Hall sys-

tem at filling ν = 1/3, which gives qualitative agreement with

experiment.12 The two derivations give the same result in the

long wave-length expansion. Since both of the derivations are

independent of specific wave functions, type of interactions,

filling factors, and etc., the results (13), (14) are valid for a

general class of Galilean invariant systems.

II. KUBO FORMULAE METHOD

We first sketch the idea of relating viscosity and conductiv-

ity to susceptibility before the strict derivation. In a viscous

fluid, the stress tensor would respond to the velocity gradient

vαβ =
1
2
(∂αvβ + ∂βvα) through

δTµν = ηµναβvαβ, (1)

where ηµνρσ are the viscosity coefficients. In three dimensions,

rotation symmetry reduces the number of ηµνρσ to 2, corre-

sponding to the usual shear and bulk viscosity

ηS (δµαδνβ + δµβδνα −
2

d
δµνδαβ), ζδµνδαβ, (2)

where d is spatial dimension. But in 2D, the in-plane isotropy

allows for an additional one called Hall viscosity

ηH(δναǫµβ − δµβǫαν). (3)

Meanwhile, the density and current of a system would respond

to potential and electric field perturbations

δn(q, ω) = χ(q, ω)ϕ(q, ω), (4)

δ jα(q, ω) = σαβ(q, ω)Eβ(q, ω), (5)

where χ(q, ω), σαβ(q, ω) are the (charge-)susceptibility and

conductivity respectively. The key idea is that since in lin-

ear regime, the different transport processes probe the same

equilibrium property of the system, the transport coefficients

are all related to each other. Technically, the essential in-

gredients in the Kubo formulae for the transport coefficients

are the correlators χ ∼ 〈[n, n]〉0, σαβ ∼ 〈[ jα, jβ]〉0, and

ηµναβ ∼ 〈[Tµν, Tαβ]〉0. For Galilean invariant systems, the cur-

rent is related to momentum by j = e
m

p. Thus, the particle and

momentum conservation for the system at equilibrium,

∂tn(x, t) + ∂αpα(x, t) = 0, (6)

∂t pα(x, t) + ∂βTαβ(x, t) = fα(x, t) (7)

naturally provides a bridge among the transport coefficients

of different types. Roughly speaking, by writing the conser-

vation laws in Fourier space, we see the viscosity is related to

the q2 and q4 terms in conductivity and susceptibility respec-

tively. Analogous ideas have been adopted recently to dis-

cuss the unitary Fermi gases10 and the conductivity-viscosity
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relations8, while in this paper we focus on the density re-

sponse signatures for 2D systems subject to uniform magnetic

field.

The Hamiltonian describing density coupling to external

potential is H1 =

∫

d2x n̂(x)ϕ(x, t) =
∫

d2q

(2π)2 n̂(q)ϕ(−q, t),

where n̂(x) =
∑N

j=1 δ(x − x̂ j) is the density operator, with the

Fourier transform n̂(q) =
∑N

j=1 e−iq·x̂ j

. For a translational in-

variant system, the susceptibility13 is given by

χ(q, ω) = − i

~

∫ ∞

0

dt eiω+t

∫

d2xe−iq·x〈[n̂(x, t), n̂(0, 0)]〉0.
(8)

Here 〈. . . 〉0 means ensemble average in the fully interacting

equilibrium system, and ω+ = ω+ iǫ with ǫ → 0 ensuring that

the perturbation adiabatically sets in. On the other hand, for

current response to electric field, the Kubo formula gives the

conductivity14

σαβ(q, ω) =
ie2n̄

mω+
δαβ +

1

~ω+

∫ ∞

0

dt eiω+t

×
∫

d2x e−iq·x〈[ ĵα(x, t), ĵβ(0, 0)]〉0, (9)

where n̄ = N/V is the average particle number density. Here

the current density ĵα(x) = e
2m

∑N
i=1{π̂i

α, δ(x− x̂i)}, where {. . . }
is anti-commutator, and π̂i

α = p̂i
α − eÂi

α(x̂
i).

Here we follow the Kubo formulae construction in8 and ob-

tain the frequency-dependent conductivity-viscosity relation

in low momentum expansion up to q2 term, valid for Galilean

invariant systems,

σ(2)
µν (q, ω) =

e2

m2(ω2 − ω2
c)2

× [(ζ(ω) −
κ−1

int

iω
)
(

ω2qµqν + iωωcq2ǫµν + ω
2
cǫµβǫνδqβqδ

)

+ηS (ω)q2
(

(ω2
+ ω2

c)δµν + 2iωωcǫµν
)

−ηH(ω)
(

iωωc(qµqν + q2δµν) − (ω2
+ ω2

c)q2ǫµν
)

], (10)

whereωc = eB/m is the cyclotron frequency, and the “internal

compressiblity” is

κ−1
int = −V

(

∂Pint

∂V

)

N,ν

= B2

(

∂2ε

∂B2

)

ν

, (11)

where V means area. Here the “internal pressure” Pint =

P − BM/V excludes the pressure contribution from the mag-

netization M due to edge current8,16. Note that the derivative

is taken at fixed ν instead of fixed B. Thus, the internal com-

pressibility has a finite value.

In previous literatures7,8, the explicit frequency dependence

in (10) was not given, as for the discussion there it was not

important. But from the relation between susceptibility and

conductivity18, obtained from Kubo formulae (8) (9) and par-

ticle conservation (6),

χ(q, ω) =
qαqβ

ie2ω+
σαβ(q, ω), (12)

we see that even if one only considers the susceptibility at

zero-frequency, it reflects the linear-in-frequency part of the

conductivity. As we shall see later, it is essential to incorpo-

rate the ω-dependence in (10) before taking the limit. Explic-

itly, (10) and (12) shows the susceptibility-viscosity relation

χ(4)(q, ω) =
q4

m2(ω2 − ω2
c)2

[

κ−1
int − 2ωcηH(ω)

+ζ(ω)
ω

i
+ ηS (ω)

ω2
+ ω2

c

iω

]

. (13)

And at zero frequency ω = 0, the static susceptibility is

χ(4)(q, ω = 0) =
q4

m2ω4
c

[

κ−1
int − 2ωcηH(ω = 0)

+ω2
c lim
ω→0

(

ηS (ω)

iω

)

−i lim
ω→0

(ωζ(ω))

]

. (14)

We stress that these relations are obtained under the only as-

sumption of Galilean invariance. Thus, the Hall viscosity is

guaranteed to show up in the q4 term in the density response

function for a wide range of systems.

III. EXAMPLE: INTEGER QUANTUM HALL SYSTEMS

We apply the above results to discuss the paradigm example

of integer quantum Hall effect. The Hamiltonian involves only

the kinetic part Ĥ0 =
∑

i π̂
i
µπ̂

i
µ/2m = ~ωc

∑

i(â
†
i
âi+1/2), where

the ladder operator for Landau levels is âi = (π̂i
x+iπ̂i

y)/
√

2~eB,

with the commutation relation [âi, â
†
j
] = δi j. Working in the

spherical gauge Âi
=

B
2

(−ŷi, x̂i, 0), and define R̂i
= p̂i

+ eÂi,

we can introduce b̂i = (R̂i
x− iR̂i

y)/
√

2~eB, with [b̂i, b̂
†
j
] = δi j. It

specifies the degeneracy within each Landau level in terms of

angular momentum L̂z = ~
∑

i(b̂
†
i
b̂i − â

†
i
âi). Consider a ground

state with the lowest ν Landau levels fully filled; each level

has degeneracy V/2πl2
B
. Using equation (8) we calculate the

leading terms in susceptibility directly

χ(2)(q, ω) = (qlB)2 n̄ωc

~((ω+)2 − ω2
c)
, (15)

χ(4)(q, ω) = (qlB)4 ε

~2

(

1

(ω+)2 − 4ω2
c

− 1

(ω+)2 − ω2
c

)

. (16)

Here the energy density is ε = (eBν)2/4πm, and the average

density is n̄ = ν/2πl2
B
, where the magnetic length l2

B
= ~/eB.

Next we use (12) (13) to calculate the same terms in sus-

ceptibility so as to verify the susceptibility-viscosity relations.

The zeroth order term in conductivity is directly obtained from

the Kubo formula (9), σ
(0)
µν (ω) = ie2n̄

mω+
ω2

(ω+)2−ω2
c
δµν +

n̄e2ωc

m(ω2
c−ω2)
ǫµν,

which reduces to the familiar one σ
(0)
µν (ω = 0) = e2ν/h

at zero frequency. Using (12) we obtain (15). Further8,

κ−1
int
= 2ε, ζ(ω) = 0, ηS (ω) = iω+ε

(ω+)2−4ω2
c
, ηH(ω) = 2ωcε

4ω2
c−(ω+)2 .

Then from (13) we have (16), as expected.

We can further obtain the dynamic structure fac-

tor S (q, ω)13 using the fluctuation-dissipation theorem
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Imχ(q, ω) = − π
~V

(S (q, ω) − S (−q,−ω)), and the identity
1

x±iǫ
= P 1

x
∓ πiδ(x),

S (2)(q, ω) = (qlB)2 N

2
δ(ω − ωc), (17)

S (4)(q, ω) = (qlB)4 Nν

8
[δ(ω − 2ωc) − 2δ(ω − ωc)]. (18)

The static structure factor13 S (q) = (1/N)
∫ ∞

0
dω S (q, ω) =

〈n̂(q)n̂(−q)〉 is then

S (q) =
(qlB)2

2
− ν

8
(qlB)4

+ O((qlB)6). (19)

For ν = 1, it reduces to the first two terms in the expansion of

the well-known result S (q) = 1 − e−(qlB)2/2 for a system with

fully-filled lowest Landau level15.

IV. HYDRODYNAMIC ANALYSIS

Having performed the strict microscopic analysis, it is in-

teresting to see whether there is a macroscopic derivation of

the susceptibility-viscosity relations (13) (14), which would

provide a simpler and more intuitive way to understand them.

To this end, we next show that (13) (14) can be reproduces

by pure classical hydrodynamic equations, despite the under-

lying highly quantum structure of the electronic liquid. Such

a method has been adopted to discuss the fractional quantum

Hall liquids and Bose-Einstein condensates recently11,17,19.

In hydrodynamics, the microscopic details are averaged

over, giving a few effective macroscopic variables,

n(r, t) = n̄ + δn(r, t), u(r, t) = ū + v(r, t). (20)

Here n, u are the macroscopically averaged number density

and the velocity respectively, including the equilibrium value

n̄, ū, and the small deviation δn(r, t), v(r, t) caused by exter-

nal perturbation. The dynamics is given by the Navier-Stokes

equation (momentum conservation) (7), where the momen-

tum p = mnu. The force comes from the Lorentz force of the

uniform magnetic field and the external potential perturbation

f = −enBez × u − n∇ϕ(r, t). The stress tensor is

Tµν = Pintδµν + mnuµuν − δTµν, (21)

where the viscous part δTµν is given by (1)-(3), and Pint is

the internal pressure introduced earlier. We stress that Pint ex-

cludes the contribution to pressure from Lorentz force exert-

ing on edge current, and therefore is suitable to be used here,

as the Naivier-Stokes equation only concerns bulk properties

and assumes no boundary effect. Consider the linear response

regime where δn(r, t), v(r, t) are kept up to linear order, and

use the equilibrium value n̄ = constant, ū = 0, the Navier-

Stokes equation (7) becomes

mn̄∂tv = (en̄B+ηH
∆)(v×ez)+∇(ζ∇·v−n̄ϕ−Pint)+η

S
∆v, (22)

On the other hand, the particle conservation, also kept up to

linear order, gives

∂tδn + n̄∇ · v = 0, (23)

Then applying the alternative expression for compressibility

κint =
1
n
∂n
∂Pint

, which gives ∇Pint = κ
−1
int

(∇δn)/n̄, we have the

density response to potential perturbation δn = χϕ, where the

susceptibility (in momentum space) reads

χ(q, ω) =
n̄2q2

mn̄ω2 −












κ−1
int

iω
− ηS − ζ













iωq2 +
(mn̄ωc − ηHq2)2

ηS q2/iω − mn̄

.

(24)

In the low momentum expansion, the q2 term is exactly given

by that for integer quantum Hall effect (15). This is because

the intra-Landau level excitations start from the q4 term15.

Thus, the q2 contribution must entirely come from inter-

Landau level excitations, whose characters are captured by the

integer quantum Hall effect. The q4 term is given by the same

equation (13), as being derived from the Kubo formula. Thus,

in the low momentum regime, the classical hydrodynamics re-

produces the strict susceptibility-viscosity relations obtained

from Kubo formulae.

(In general, the viscosity coefficients ζ, ηS , ηH would have

momentum dependence also4,5. In the expansion of (24)

discussed above, we have taken the viscosity coefficients

ζ, ηS , ηH to be constant (only depends on frequency). This

is suffficient when we expand χ(q, ω) up to q4 terms, as can

be seen from (24). But when applying (24) to higher orders

in q, one needs to first expand ζ, ηS , ηH to higher powers in q

(i.e. q0 and q2 terms for ζ, ηS , ηH) before expanding (24) (i.e.

to q6 term for χ(q, ω))).

V. MEASURING HALL VISCOSITY

The relations (13), (14) connects the Hall viscosity with

the susceptibility, which can be measured by scattering ex-

periments. Since many recent works only concern the zero

frequency value of Hall viscosity ηH(ω = 0), we focus on

equation (14) here. Note that in most cases the bulk viscosity

ζ(ω) does not diverge8 at zero frequency. Then the last term

in equation (14) vanishes and the formula can be rewritten as

ηH =
κ−1

int

2ωc

+
ωc

2
lim
ω→0

(

ηS

iω

)

− m2ω3
c

2

χ(4)(q)

q4
. (25)

In order to extract ηH from the measurement of χ(4)(q), one

has to determine the first two terms in (25). The inverse in-

ternal compressibility κ−1
int
= B2(∂2ε(B)/∂B2)ν can be deter-

mined by the auxiliary measurement of magnetic susceptibil-

ity χM = µ0

(

∂M
∂B

)

ν
= −µ0

(

∂2ε
∂B2

)

ν

20 at constant filling fraction,

or a local current measurement in response to the inhomoge-

neous magnetic field7 δj = ∇×δM = −ε′′(B)ez×∇δB. In par-

ticular, in high magnetic field where Landau level mixing is

negligible, the interaction energy can be neglected compared

with the kinetic energy. Then we have the free particle results

ε =
(eBν)2

4πm
and ε =

(eB)2ν

4πm
for integer and fractional quantum

Hall systems respectively, giving κ−1
int
= 2ε.

Further, limω→0(ηS /iω) generally yields a finite value, (See

the integer quantum Hall system for example), and needs care-

ful evaluations. Here we invoke the Kubo formula for shear



4

viscosity8, ηS
=
~ω+

V

∫ ∞
0

eiω+t〈[Ĵ12(t), Ĵ12(0)]〉0, to compute

this quantity. Ĵ12 is the off-diagonal element of the strain gen-

erator Ĵµν. In the spectral representation,

ηS

iω
=

2~

V

∑

n

ωn0|〈0|Ĵ12(0)|n〉|2

(ω+)2 − ω2
n0

, (26)

where ωn0 = ωn −ω0, with ωn the frequency of energy eigen-

state |n〉. (In the presence of Landau level mixing, |n〉 also in-

cludes higher Landau level eigenstates). Therefore, if ωn0 = 0

or the matrix element vanishes, the corresponding term is

zero; otherwise, we have the finite result

lim
ω→0

(

ηS

iω

)

= −2~

V

∑

n

′ |〈0|Ĵ12(0)|n〉|2
ωn0

, (27)

where
∑′ means summing over energy eigenstates which are

not degenerate with the ground state. Explicitly, the off-

diagonal element of the strain generator assumes the form

Ĵ12(0) =
∑

i

(

−{x̂i, π̂i
y} − eBx̂i 2

)

/2~, and can be written con-

veniently in the spherical gauge Âi
=

1
2
B × r̂i as

Ĵ12(0) = −
∑

i

x̂i p̂i
y

~
= −1

4

∑

i

[(âi − â
†
i
)2 − (b̂i − b̂

†
i
)2]. (28)

where âi, b̂i are inter- and intra-Landau level ladder operators

defined previously. Consider, for instance, integer quantum

Hall effect. Then the only non-zero matrix element in (27)

is 〈0|â2
i
|2〉, where |2〉 means the state with one electron from

either of the top two filled Landau levels in the ground state

being excited 2 levels upwards, corresponding to an excitation

energy ω20 = 2ωc. Thus, limω→0(ηS /iω) = −ε/4ω2
c, in con-

sistency with the previous result. The evaluation for various

fractional quantum Hall systems is left for future work, which

generally requires a numerical evaluation of (27) (28) in the

presence or absence of Landau level mixings depending on

specific experimental situations.

Thus, with κ−1
int

and limω→0(ηS /iω) being measured or cal-

culated, one can use equation (25) to determine the Hall vis-

cosity ηH through the long wavelength part of static sus-

ceptibility χ(4)(q, ω = 0), which is related to scattering

experiments13. Explicitly, the quantity being measured is the

dynamic structure factor S (q, ω) =
∑

n S n(q)δ(ω − ωn(q)),

where ωn(q)’s are excitation modes. Using Kramers-Kronig

relation Reχ(q, ω) = (1/π)
∫ ∞
−∞ dzP(Imχ(q, z))/(z − ω) and

fluctuation dissipation theorem, we have the static suscepti-

bility χ(q) = χ(q, ω = 0) as21

χ(q) = − 2

~V

∑

n

S n(q)

ωn(q)
. (29)

The qualitative behavior of χ(q) in small-q limit can be ob-

served as follows. Using compressibility sum rule χ(q →
0) = −Nκ−1

T
and the incompressible feature of quantum Hall

states, we see the constant term in χ(q) always vanishes. Here

κ−1
T
= −V(∂P/∂V)N,B is the ususal isothermal compressibility.

Moreover, the low-lying excitations within the lowest Landau

level correspond to χ(q) starting from q4 term21. That means

if the inter-Landau level excitation is supressed in the large

magnetic field limit, (or we can cancel such contribution by

subtracting the χ(2) given by equation (15)), χ(4) is the lead-

ing order in χ(q). In sum, the algebraic relation (29) clearly

means that it will be sufficient to extract the q4 term in χ(q)

by measuring only the long wavelength part of S (q, ω), as is

usually the case in current experiments.

VI. CONCLUSION AND OUTLOOK

The relation between susceptibility and viscosity (13) (14)

is presented and discussed, showing the role of viscosity co-

efficients in the q4 term of susceptibility for a general class of

Galilean invariant system. It suggests the possibility of mea-

suring the Hall viscosity in terms of density response experi-

ments for a wide range of quantum Hall systems.

In addition, it is worth mentioning the connection of this

work with cold atom systems, where quantum Hall states can

be simulated using rotating atomic gases22. The quantum Hall

state is approached when the rotation frequency of the trapped

gas approaches the critical frequency, where the centrifugal

force almost cancels the trapping force, and the Galilean in-

variance is approximately satisfied. Since in cold atom sys-

tems, the density measurement and the potential engineering

are the most standard experimental tools, and can be made to

high accuracy, our analysis paves the way for further discus-

sions of Hall viscosity signatures in cold atom experiments.
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