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We study the effects of hybridization between the two electron pockets in Fe-based superconduc-
tors with s-wave gap with accidental nodes. We argue that hybridization reconstructs the Fermi
surfaces and also induces an additional inter-pocket pairing component. We analyze how these two
effects modify the gap structure by tracing the position of the nodal points of the energy dispersions
in the superconducting state. We find three possible outcomes. In the first, the nodes simply shift
their positions in the Brilluoin zone; in the second, the nodes merge and disappear, in which case
the gap function has either equal or opposite signs on the electron pockets; in the third, a new set
of nodal points emerges, doubling the original number of nodes.

I. INTRODUCTION

The iron pnictides and chalcogens have been the sub-
ject of intense study since 2008, when it was discovered
that they are superconducting at relatively high critical
temperatures1. Understanding their gap structure is an
important step toward identifying the mechanism respon-
sible for superconductivity in these materials. Although
the multi-band nature of Fe pnictides/chalcogenides al-
lows for many different gap structures, the prevailing sce-
nario is that the pairing occurs between electrons on the
same Fermi surface (FS) and the superconducting gap
function has s+− symmetry, i.e., the gap changes sign
between hole and electron pockets. There is experimen-
tal evidence that in some members of the family, like
BaFe2(As1−xPx)2,2 LaOFeP,3 and LiFeP,4 the gap has
nodes, likely on the electron pockets.

Previous studies of the gap structure were mostly re-
stricted to an Fe-only approach, in which a generic model
of the band structure consists of two nearly circular hole
pockets centered at (0, 0) and two elliptical electron pock-
ets centered at (π, 0) and (0, π) in the first Brillouin zone
(BZ) (see Figure 1). In some systems there exists, at
least for some kz, a third hole pocket, centered at (π, π).

The s+− superconductivity is believed to be chiefly
caused by a magnetically enhanced interaction between
hole and electron pockets5. The nodes on the two elec-
tron pockets come about because by symmetry the s-
wave gap on these pockets has the form ∆(1±α cos 2θk)
(plus higher harmonics), and if α > 1, the gap vanishes
at cos 2θk = ±1/α.6–8.

However, this Fe-only scenario is incomplete because
the electron hopping between Fe atoms predominantly
occurs via pnictogen or chalcogen sites, half of which are
located above and half below each Fe layer in a checker-
board pattern9. As a result, the actual symmetry is lower
than that of the Fe-only lattice, and the correct unit cell
contains two Fe atoms. The non-equivalence of hopping
from above and from below an iron layer causes the elec-
tron pockets to hybridize. In this paper we will study the
effect of this hybridization on the gap structure.

In order to incorporate this effect into models with
one Fe atoms, one has to include additional terms in the

Figure 1: Unfolded Brillouin zone with one Fe atom per unit
cell (with no hybridization). Holes and electron pockets are
labeled by h and e, respectively. The crosses on the electron
pockets indicate where the nodal lines of the gap function
intersect the Fermi surface.

Hamiltonian with excess momentum Q = (π, π). This
does not actually violate conservation of momentum be-
cause this vector folds into a reciprocal lattice vector in
the actual BZ with two Fe atoms per unit cell. The mo-
mentum Q connects the two electron FSs and also the
hole pocket centered at (π, π) with the other two hole
pockets. Our primary goal will be to study how the ac-
cidental nodes on the electron pockets evolve once we
include hybridization. Therefore, we focus on the effect
of hybridization on the electron pockets.

The hybridization gives rise to two effects. First, hop-
ping via a pnictogen/chalcogen sites gives rise to an addi-
tional quadratic term in the Hamiltonian for two electron
pockets

Hλ =
∑
k

[
λkc
†
kαdk+Qα + λ∗kd

†
kαck+Qα

]
, (1)

where c and d are operators for electrons near each of
the two electron FSs (we discuss the form of λk in the
next section) and the sum over repeated spin indices is
implied. This cross-term mixes the two electron pock-
ets and reconstructs the electron FSs. Second, there ap-
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pear new four-fermion interaction terms in which incom-
ing and outgoing momenta differ by Q. In the super-
conducting state, in which we are interested, two out
of four fermions can be put into the condensate and
the four-fermion terms with excess momentum Q reduce
to quadratic terms with prefactors proportional to the
superconducting gap. These new terms describe inter-
pocket pairing between fermions from two different elec-
tron pockets:

Hβ =
1

2

∑
k

βk

[
c†kαd

†
−k−Qβ + d†kαc

†
−k−Qβ

]
iσyαβ + H.c.

(2)
In other words, due to hybridization, the non-

zero intra-pocket pairing condensates 〈c†kαc
†
−kβ〉 and

〈d†k+Qαd
†
−k−Qβ〉 induce inter-pocket pairing between the

two electron pockets.
In this paper we study how the additional terms Hλ

and Hβ affect the gap structure when nodes are present
on the electron pockets. The effect of the hopping λk
term alone has been studied before10, but not its inter-
play with the pairing term. We find that the hopping
and inter-pocket pairing terms generally pull the nodal
points in opposite direction. If the λk term dominates
and reaches a certain threshold value, the nodes merge
and disappear at particular symmetry points, and the
gap acquires a uniform and equal phase on the two elec-
tron pockets (opposite to the phase on the hole pockets).
In contrast, when βk dominates and reaches a thresh-
old value, the nodes merge and disappear at a different
set of symmetry points and the phase of the supercon-
ducting order parameter becomes opposite on the hy-
bridized electron pockets. This is the same gap structure
that was recently found in the analysis of pairing in the
orbital formalism11 and dubbed orbital anti-phase s+−

state. The state with opposite signs of the gaps on the
two electron pockets has also been found in the analy-
sis of possible superconducting states in LiFeAs, albeit
for a different reason12. As an interesting peculiarity,
we found that for elliptical pockets nodes disappear in a
rather non-trivial way – first new nodes appear and the
number of nodes doubles, and then the new and already
existing nodes merge and disappear. Such behavior has
not been found before in the studies of multi-band super-
conductors, as far as we know.

The hybridization between electron pockets, either due
to Hλ or to Hβ , has to be distinguished from the effect of
the folding of the 1Fe BZ into the 2Fe BZ. Upon folding,
fermionic momenta transform as k̃x = kx +ky, k̃y = ky−
kx, and the two electron FSs, originally centered at (0, π)
and (π, 0), merge around (π, π) (see Fig. 2). The inner

and outer FSs touch each other along k̃x = π or k̃y = π.
The merging can be viewed as “reconstruction” of the
two electron FSs into an inner FS with no nodes and
an outer FS with 8 nodes, or vice versa. However, this
“reconstruction” is just a rotation in momentum space
and a re-branding. The kF remains the same and the
location of the nodes remains at exactly the same angles

b)a)

c)

Unfolded BZ Folded BZ

d)

Figure 2: Fermi surface folding. a) Unfolded Brillouin zone
corresponding to a 1Fe unit cell. b) Folded Brillouin zone
corresponding to a 2Fe unit cell. The electron Fermi surfaces
overlap and are reconstructed into outer and inner parts. De-
pending on their original location, the nodes of the gap func-
tion are either all located on the outer surface, as shown in
c), or on the inner surface, as shown in d).

as without folding, only the reference axis rotates by 45o.
The hybridization is a different phenomenon – it actually
reconstructs the original FSs into an inner and an outer
FSs at new kF and creates a pairing component between
them. As a consequence, the position of the nodal points
shifts.

The paper is organized as follows: In Section II we dis-
cuss our model. In Section III, we consider, as a warm-
up, the limiting case of circular electron pockets and an-
alyze the two effects of hybridization first separately and
then together and study their interplay. Section IV ex-
tends the analysis to the more general case of elliptical
pockets. We summarize our findings in Section V.

II. THE MODEL

We consider a two-dimensional multi-band model with
hole pockets centered at (0, 0) and elliptical electron
pockets centered at (0, π) and (π, 0) in the unfolded BZ.
In the normal state, the Hamiltonian describing the two
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non-hybridized electron pockets is simply

H0 =
∑
k

[
ξckc
†
kαckα + ξdkd

†
kαdkα

]
. (3)

We assume that the dominant interaction which leads
to s+− superconductivity is the repulsion between elec-
tron and hole pockets, enhanced by (π, π) spin fluctua-
tions (in the 2Fe BZ). The s-wave gap on the hole pockets
is invariant under rotations by π/2, so it can be expanded
in cos 4nφ harmonics, where φ is the angle along the
hole pocket and n is an integer. On the electron pockets
the expansion of the s−wave gap contains cos 2nθ terms,
where θ is the angle along the electron pockets and the
components with odd n = 1, 3, . . . have opposite signs on
the two electron pockets, if we measure θ from the same
direction for both pockets7. These odd multiples of 2θ
are allowed because the electron pockets transform into
each other under a rotation by π/2. Numerical analysis6,8

shows that the gap on the electron pockets can be well-
approximated by the two first harmonics n = 0 and n =
1, whose magnitudes are generally comparable to each
other. Accordingly, we set ∆e1(θk) = ∆(1 − α cos 2θk),
∆e2(θk+Q) = ∆(1 + α cos 2θk+Q). The corresponding
term in the Hamiltonian is thus

H∆ =
1

2

∑
k

∆
[
(1− yk)c†kαc

†
−kβ (4)

+ (1 + yk+Q)d†k+Qαd
†
−k−Qβ

]
iσyαβ + H.c.,

where yk ≡ α cos 2θk and yk+Q ≡ α cos 2θk+Q.
Our goal is to analyze how accidental nodes on electron

pockets evolve with increasing hybridization. For this we
assume from the beginning that |α| > 1 in which case
the gaps on electron pockets have nodes when yk = 1
(for c−fermions) and yk+Q = −1 for d−fermions.

To simplify the presentation, we fold the 1Fe BZ into
the 2Fe BZ and replace the momentum k + Q of d-
fermions by k. The momenta k below are defined as
a deviation from Q, which is the location of the electron
pockets in the folded BZ.

In order to preserve the cos 2θk form of the gap func-
tion, we define θk relative to the minor axis of the c
pocket.

In the normal state, the inclusion of hopping via pnic-
togen/chalcogen atoms generates mixing between c and
d fermions:

Hλ =
∑
k

[
λkc
†
kαdkα + λ∗kd

†
kαckα

]
, (5)

A microscopic derivation of λk shows10,13–15 that in
1111 systems (in which the configuration of pnictide
atoms around every Fe layer is the same), λk vanishes
along the lines kx = ±ky and has some weak kz depen-
dence. In 122 structures (in which the “above/below”
configuration of pnictogen/chalcogen atoms is inverted
from one Fe layer to the other), λk has minima but does

not vanish along any direction. In the presence of a spin-
orbit interaction λk does not have zeros even in 1111 sys-
tems13,14. Because our goal is to understand the generic
effect of the hybridization between the two bands, we will
treat λk as a constant λ14,16. Earlier analysis of the ef-
fect of λk including its angular dependence (but without
interplay with inter-pocket pairing) has shown that the
results are qualitatively the same as for constant λ10.

We next consider how hybridization affects the pairing
terms. They can be subdivided into two types. Terms
of the first type describe an interaction with excess mo-
mentum Q between electron pockets and contain three
fermionic operators from one pocket and one from the
other pocket17, e.g.,

H1 =
∑
k,p,q

u1

[(
c†kαdk−q,α + d†kαck−q,α

)
×
(
c†pβcp+q,β + d†pβdp+q,β

)]
. (6)

Terms of the second type contain an interaction with
excess momentum Q involving two fermions from a hole
pocket and two from different electron pockets, e.g.,

H2 =
∑

k,p,q,i

u2

[(
c†kαh

i
k−q,α + hi†kαck−q,α

)
×
(
d†pβh

i
p+q,β + hi†pβdp+q,β

)]
, (7)

where the operator hipα describes fermions near the i-th
hole pocket. The two types of terms are different, yet
their effect on the s+− superconducting state is the same
– both induce an additional pairing interaction between
fermions belonging to different electron pockets. Indeed,

in the superconducting state 〈c†kαc
†
−kβ〉, 〈d

†
kαd
†
−kβ〉, and

〈hi†kαh
i†
−kβ〉 are all non-zero. Decoupling four-fermion

terms in (6) and (7) using these averages, we obtain
anomalous quadratic terms involving c and d fermions:

Hβ =
1

2

∑
k

βk

[
c†kαd

†
−kβ + d†kαc

†
−kβ

]
iσyαβ + H.c., (8)

where βk is given by

βk ≡
1

2

∑
p

u1(k,p)(iσy)†α′β′ [〈c−pα′cpβ′〉+ 〈d−pα′dpβ′〉]

+
1

2

∑
p,i

u2(k,p)(iσy)†α′β′

〈
hi−pα′hipβ′

〉
. (9)

The coupling βk is proportional to the magnitude of the
s+− gap ∆ and has some non-singular angular depen-
dence, determined by u1(k,p) and u2(k,p), which we
can safely neglect.

We assume without loss of generality that the parame-
ters ∆ and λ are real and positive. The parameter β ∝ ∆
is then also real, but its sign can be either positive or neg-
ative.
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Below we consider various ratios of λ/β and two FS
geometries. In each case we compute the quasi-particle
dispersion in the superconducting state and determine
the position of the nodal points. In all cases we find two
different dispersions: One is gapped over the entire BZ,
while the other contains nodal points in a subset of the
parameter space.

III. CIRCULAR POCKETS

As a warm-up, consider the limiting case when the
two electron pockets are identical and have full rotational

symmetry, i.e., ξck = ξfk ≡ ξk.

A. Inter-pocket pairing only (β 6= 0, λ = 0)

In this special case, we find, after straightforward di-
agonalization of the quadratic form, that the two disper-
sions in the superconducting state are

(
E±k
)2

= ξ2
k +

(
∆±

√
∆2y2

k + β2

)2

, (10)

where the expression in parenthesis repre-
sents an effective gap function. At β = 0,
E+

k = ±
√
ξ2
k + ∆2(1 + |yk|)2 and E−k =

±
√
ξ2
k + ∆2(1− |yk|)2. This corresponds to the

gap structure in the folded BZ: one band has no nodes
and the other band has 8 nodes (see Fig. 3).

At β 6= 0, both dispersions evolve. The nodal points
are still located on the FS (the locus of zero energy points
in the normal state, given by ξk = 0). The band with
energy E+

k is shifted up at a non-zero β and its effective
gap function is definitely nodeless. In contrast, the band
with energy E−k is shifted down and the positions of the
8 nodes shift to

cos(2θk) = ±
√

∆2 − β2

α∆
. (11)

As β increases, the nodal points move toward the diag-
onals kx = ±ky, as shown in Fig. 3. At a critical value
βc = ∆ they meet along the BZ diagonals. At larger
β > βc the nodes disappear. At the same, because the
nodes merge along the BZ diagonals, the sign of the gap
on one FS is opposite to that on another FS. Such a
gap structure has been obtained before in the analysis
of possible gap configurations in LiFeAs both in orbital
formalism and in band formalism11,12. In the orbital for-
malism, such a state was termed “orbital antiphase” s+−

state11.
An intuitive way to understand this behavior is the

following: the gap function at the upper band is positive,
while the one at the lower band has a roughly sinusoidal
shape that crosses zero eight times, and its maxima occur
at the diagonal directions kx = ky and kx = −ky. As |β|
increases, the gap function shifts downward and thus the

nodes move towards the BZ diagonals, until |β| reaches
the critical value βc. At this point, pairs of nodal points
meet and annihilate. At larger |β| > ∆ the maxima of
the gap function are located below zero, i.e., the gap is
negative for all angles. This behavior is illustrated in Fig.
4.

B. Inter-pocket hopping only (λ 6= 0, β = 0)

This case has been studied before,10 and we briefly
summarize the results for completeness. The hybridiza-
tion of the electron pockets reconstructs the FSs. In or-
der to study this effect we diagonalize the Hamiltonian
H0 +Hλ by introducing new quasi-particles a and b via

ckα =
akα − bkα√

2
, dkα =

akα + bkα√
2

. (12)

After diagonalization, the non-pairing part of the Hamil-
tonian takes the form

H′0 =
∑
k

[
ξaka
†
kαakα + ξbkb

†
kαbkα

]
, (13)

where the dispersions are ξak = ξk + λ and ξbk = ξk −
λ. The new FSs are concentric circles. The a pocket is
smaller and the b pocket is larger than the unhybridized
pockets.

In order to study the superconducting state, it is con-
venient to first rewrite H∆ in terms of the new operators
a and b as

H′∆ =
1

2

∑
k

∆
[
a†kαa

†
−kβ + b†kαb

†
−kβ

]
iσyαβ (14)

+
1

2

∑
k

∆yk

[
a†kαb

†
−kβ + b†kαa

†
−kβ

]
iσyαβ + H.c.

Note that the inter-pocket pairing component ∆yk
emerges. Diagonalizing the new Hamiltonian H′0 +H′∆,
we find the two dispersions for the quasi-particles in the
superconducting state given by(

E±k
)2

= Ak ±
√
Bk, (15)

where

Ak =ξ2
k + ∆2(1 + y2

k) + λ2, (16)

Bk =4
[
(ξkλ)2 + ∆2y2

k(∆2 + λ2)
]
, (17)

The dispersion E+
k , as defined in (15), is positive for all

k even when evaluated at ∆ = 0, so it has no locus of the
nodal points. Both FS lines ξk = ±λ in the normal state
are part of the other dispersion E−k . Once ∆ becomes

non-zero, one can easily check that E−k is non-zero along
the normal state FSs. However, on the original, non-
reconstructed FS,

E−k =
√

∆2 + λ2 −∆|yk| (18)
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Figure 3: Gap structure for circular electron pockets with inter-pocket pairing. The crosses represent the location of the nodal
points of the quasi-particle dispersions in the superconducting state. In a) and b) we show the unfolded and folded zones,
respectively. In the folded zone, the pockets should overlap but we separate them for clarity. As we increase the inter-pocket
pairing, keeping the conventional intra-pocket pairing fixed, the nodal points shift toward the diagonal lines kx = ±ky, as seen
in c). If the inter-pocket pairing reaches a critical value, the nodes merge and disappear, resulting in electron Fermi surfaces
with opposite signs of the gap function.

β=0

β=0.75Δ 

β=Δ

0 −π/4 π/2 3π/4 π

−0.5

0

0.5

θ

∆
ef
f(θ
)/
∆

Figure 4: Nodal gap function with inter-pocket pairing β eval-
uated over the FS. As β increases, the function shifts down-
ward and its zeroes move toward the angles nπ/2, where n
is an integer, which correspond to the directions given by
kx = ±ky. At β = ∆, pairs of zeroes merge at those angles.
For β > ∆, the function is negative and has no zeroes.

This function contains 8 nodal points located at

cos(2θk) = ±
√

∆2 + λ2

α∆
. (19)

As one increases λ, the nodes stay on the unhybridized
FSs, but move toward the kx or ky axes (whichever is

closer), until λ reaches a critical value λc = ∆
√
α2 − 1.

At this value of λ, pairs of nodal points merge and then
disappear at larger λ. We show this schematically in Fig.
5.

The analysis of the signs of the gap requires some care.
For λ� ∆, the inter-pocket pairing term becomes irrele-
vant as the two reconstructed FSs are far apart from each

other. In this limit, the gap on each reconstructed pocket
is given by the fist line in (14) and is just ∆ for both pock-
ets. In this limit, the sign of the gap is indeed the same
on both FSs. At intermediate λ, however, one cannot de-
fine the phase of the gap function on the two FSs because
in terms of the hybridized fermions the gap has contri-
butions from both inter-pocket and inter-pocket conden-
sates 〈ak,αa−k,β〉iσyαβ and 〈ak,αb−k,β〉iσyαβ , respectively.
Because the limiting behavior at large λ is known, it is
“natural” to define both finite gaps with the same sign,
as in Eq. (14), but we caution that this is rigorously
justified only in the limit of very large λ.

C. Inter-pocket pairing and hopping (β 6= 0, λ 6= 0)

Once more, the first step is to diagonalize the Hamilto-
nian H0 +Hλ by introducing new pockets a and b exactly
as in the case with β = 0. We then rewrite the remaining
Hamiltonian in terms of the a and b operators and obtain

H′∆+β =
1

2

∑
k

[
(∆ + β)a†kαa

†
−kβ + (∆− β)b†kαb

†
−kβ

]
iσyαβ

+
1

2

∑
k

∆yk

[
a†kαb

†
−kβ + b†kαa

†
−kβ

]
iσyαβ + H.c.

(20)

Observe that the coefficient β appears only in the intra-
pocket terms. We diagonalize the Hamiltonian H′0 +
H′∆+β and again find dispersions of the form E±k =√
Ak ±

√
Bk, where

Ak =ξ2
k + ∆2(1 + y2

k) + λ2 + β2, (21)

Bk =4
[
(ξkλ+ ∆β)2 + ∆2y2

k(∆2 + λ2)
]
. (22)
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Figure 5: Gap structure for circular pockets with inter-pocket hopping. In a) and b) we show the unfolded and folded gap
structure in the absence of hybridization, respectively. Inter-pocket hopping reconstructs the FSs as shown in c). The dashed
line represents the original pockets, while the solid lines are the new set of two pockets. As the hopping parameter increases,
the inner FS shrinks and the outer one becomes larger. In the superconducting state, the nodal points (represented as crosses)
lie on the unhybridized FSs and shift toward the kx and ky axis as the hopping increases. At a critical value of this parameter
the nodes meet and merge in pairs. For greater values of the parameter they vanish and the sign of the gap function becomes
the same on both FSs. The separation between the FSs is purely schematic and has been exaggerated for clarity.

Figure 6: Gap structure for circular pockets with inter-pocket hopping and pairing interaction. The solid outer and inner circles
represent the reconstructed FSs after hybridization. In the superconducting state, the nodal points (represented as crosses) lie
on a circle (dashed line) but no longer on the unhybridized Fermi surface. As the hopping parameter λ increases, the nodes
move toward the kx and ky axis, where they can merge and disappear. In this scenario the gap function has the same sign
on both electron pockets. Increasing the pairing strength β shifts the nodes toward the diagonal lines kx = ±ky instead. The
nodes can merge and vanish, in which case the gap function acquires opposite signs on the outer and inner pockets.

The dispersion E+
k is fully gapped, but E−k has nodal

points at momenta given by

ξk = λβ/∆, (23)

cos 2θk = ±
√

∆2 + λ2 − β2 − λ2β2/∆2

α∆
. (24)

Note that the nodal points are now shifted from the un-
hybridized FS. The direction of the shift depends on the
sign of β. If β > 0 (β < 0) the nodes appear between the
original FSs (the ones before hybridization) and the outer
(inner) hybridized FS. The nodes exist in the parameter
range given by

0 ≤ ∆2 + λ2 − β2 − λ2β2/∆2 ≤ α2∆2. (25)

The lower bound is reached when we keep λ fixed and in-
crease |β| towards critical βc = ∆. In this case the nodes
merge at the diagonals kx = ky or kx = −ky. The nodes
disappear when |β| > βc and the intra-pocket gap com-
ponents in the first line of Eq. (20) have different signs.

In the limit of λ � ∆, the inter-pocket gap component
becomes irrelevant since the reconstructed FSs are far
apart and in this sense the gap function has opposite
signs on the two electron pockets.

The upper boundary in (25) is reached when we set
|β| < ∆ and increase λ. In this situation the nodes merge
along the kx and ky directions at a critical value of λ given
by

λc = ∆

√
(α2 − 1)∆2 + β2

∆2 − β2
. (26)

At λ > λc, the nodes disappear and the gap function
has the same sign on each electron pocket, as can be
clearly seen in the limit of λ � ∆. Note that λc grows
with β, i.e., the inter-pocket pairing allows the nodes to
exist in a greater range of values of λ. In this sense the
pairing partially protects the nodes from disappearing
due to hopping, as long as |β| < ∆. The behavior of the
nodes when both λ and β are present is summarized in
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Fig. 6.
Since the limiting cases where β or λ are large yield

different results for the relative signs of the gap function
on the electron pockets, it is interesting to see how one
may go from one limit to the other. Consider first a
situation where β = 0 and λ > λc (the fully gapped state
with equal signs of the gaps on the two electron FSs).
Now increase β. When β gets larger, λc increases and
tends to infinity when β approaches ∆ (see Eq. (26)).
Accordingly, once β exceeds some threshold, λc become
larger than λ and the nodal points reappear along kx
and ky directions. As β continues to increase, the nodes
split, shift toward the diagonal lines kx = ±ky, merge
there at β = ∆, and disappear when β > ∆, resulting in
the fully-gapped state where the signs of the gaps on the
two Fermi surfaces are opposite. If instead one departs
from λ = 0 and β > ∆, then increasing λ reconstructs
the FSs but cannot cause the nodal points to reappear.
Thus one cannot go back to the state with same signs on
the FSs as long as β > ∆. Instead, one would need to
decrease ∆, reversing the process described above.

IV. ELLIPTICAL POCKETS

Now we consider the more realistic case where the elec-
tron pockets are elliptical. We will take the dispersions
in the form

ξck = −µ+
k2
x

2m1
+

k2
y

2m2
, (27)

ξdk = −µ+
k2
x

2m2
+

k2
y

2m1
. (28)

It is convenient to rewrite the dispersions as ξc,dk = ξk ±
δk cos 2θk, where the + sign corresponds to ξck, ξk ≡ (ξck+

ξdk)/2, and δk ≡ k2(m−1
1 − m−1

2 )/4. Without loss of
generality, we will take δk to be positive.

A. Inter-pocket pairing only (β 6= 0, λ = 0)

The dispersions after diagonalizing the Hamiltonian
are given by (E±k )2 = Ak ±

√
Bk, where

Ak =
1

2

[
(ξck)2 + (ξdk)2 + 2∆2(1 + y2

k) + 2β2
]
, (29)

Bk =
1

4

[ (
(ξdk)2 − (ξck)2 + 4∆2yk

)2
+ 4|β|2

(
(ξck − ξdk)2 + 4∆2

) ]
. (30)

Once again, E+
k is fully gapped but E−k may contain

nodes. Unlike the circular case, the nodes are not lo-
cated on the original FSs, but at momenta |k| which are
solutions of

(δk + αξk)
(
ξkδk − α∆2

)
+ αβ2δk = 0. (31)

Let the solutions to this equation be ξk = ξ̄ and δk = δ̄.
The angular positions of the nodal points are given by

cos2 2θk =
F (ξ̄, δ̄)

(δ̄2 + α2∆2)2
, (32)

where

F (ξ̄, δ̄) =
(
δ̄2 − α2∆2

) (
ξ̄2 + β2 −∆2

)
− 4α∆2ξ̄δ̄. (33)

Note that for each solution to Eq. (31) there exist 8
nodal points in the dispersion. One may solve for ξ̄ and
δ̄ exactly but the solution is not very illuminating. It is
more useful to solve for ξ̄ in terms of δ̄ and analyze how
the nodal points evolve when we change δ̄. Expressing ξ̄
in terms of δ̄ we obtain

ξ̄ =
δ̄2 − α2∆2 ±

√(
α2∆2 + δ̄2

)2 − 4α2β2δ̄2

2αδ̄
. (34)

Substitution of these solutions into Eq. (33) yields

cos2 2θk =
δ̄2 − α2∆2 ∓

√(
α2∆2 + δ̄2

)2 − 4α2β2δ̄2

2α2δ̄2

(35)
Analyzing (35) we find new interesting physics.

Namely, depending on the parameters, there may be 0,
8, or 16 nodal points in the dispersion. When δ̄ < α∆,
there are either 8 or zero nodes, as one can immediately
verify. At small β, there are 8 nodes. As |β| increases,
the nodes move toward the diagonals kx = ±ky, like in
the circular case. At |β| = ∆, pairs of nodes merge,
and for |β| > ∆ they disappear. The outcome of the
disappearance of the nodes is the effective s+− supercon-
ducting state with different signs of the gap on the inner
and outer electron pockets, see Fig. 7.

When δ̄ > α∆, the evolution of the nodes is more
interesting. At small β, there are again 8 nodes. As |β|
increases, the nodes shift towards diagonals but they do
not reach kx = ±ky at |β| = ∆. Instead, at this β, a
new quadratic node appears in in each quadrant at the
point where zone diagonals intersect the original FS. At
|β| > ∆, each quadratic node splits into two, one to the
right and one to the left of a diagonal, and each new
node moves toward the already existing nodes (see Fig.
7). Thus, there is a total of 16 nodal points. As |β|
continues increasing, the old and new nodes merge at a
critical value |β| = βc given by

βc =
(
α2∆2 + δ̄2

)
/(2|α|δ̄). (36)

The nodes disappear when |β| exceeds this critical value
and the end result of the evolution of the nodes is the
same minus-plus gap on the inner and outer electron
pockets.

We verified this behavior numerically (Fig. 7 actually
shows the results of numerical calculations). In all nu-
merical examples here and below we have set µ = 10∆
and α = −1.5. Note in passing that while the relation-
ships presented in this analysis are exact, one must keep
in mind that in general δ̄ by itself depends on β.
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Figure 7: Gap structure for elliptical pockets with inter-pocket pairing. In a) we show the folded electron pockets overlapping.
The crosses indicate the position of the nodal points, while the solid and dashed lines indicate opposite signs of the gap function.
The evolution of the nodal points as obtained by a numerical calculation is shown in b) through f). First, b) shows the nodal
points with no hybridization. If the ellipticity is below a threshold, increasing the inter-pocket pairing simply shifts the nodes
toward the diagonal lines kx = ±ky as seen in c) and d). The nodes merge and disappear after reaching the diagonal lines and
the gap structure becomes nodeless as shown in g). If this occurs, the gap function has opposite signs on the inner and outer
edges of the FSs. Alternatively, if the ellipticity is higher than the threshold, the nodes do not reach the diagonal lines, but
instead a node emerges at that symmetry point. As we further increase the inter-pocket pairing the node splits into two nodes
which move toward the original nodes, as shown in e) and f). Eventually, the new and old nodes meet and merge, resulting
again in the structure shown in g).

B. Inter-pocket hopping only (λ 6= 0, β = 0)

This case has been studied before10 and we present it
here for completeness, using a somewhat different com-
putation scheme. The first step is to diagonalize the
Hamiltonian H0 + Hλ by introducing new operators a
and b such that

ckα = ukckα + vkbkα,

dkα = −vkakα + ukbkα, (37)

where uk = cosψ and vk = − sinψ, and this angle

ψ satisfies cos 2ψ = (ξck − ξdk)/
√

(ξck − ξdk)2 + 4λ2 and

sin 2ψ = 2λ/
√

(ξck − ξdk)2 + 4λ2. The new Hamiltonian

is

H′0 =
∑
k

[
ξaka
†
kαakα + ξbkb

†
kαbkα

]
, (38)

where ξa,bk = 1
2 (ξck + ξdk) ±

√
λ2 + (ξck − ξdk)2/4. These

new dispersions define the reconstructed FSs shown in

Fig. 8. As the hopping parameter λ increases, the outer
FS (associated with b fermions) becomes larger, while the
inner FS (associated with a fermions) shrinks.

Now we consider the superconducting state. Rewriting
the pairing part of the Hamiltonian in terms of the new
operators we find

H′∆ =
1

2

∑
k

[
∆(1− fkyk)a†kαa

†
−kβ

+ ∆(1 + fkyk)b†kαb
†
−kβ

]
iσyαβ (39)

− 1

2

∑
k

∆gkyk

[
c†kαd

†
−kβ + d†kαc

†
−kβ

]
iσyαβ + H.c.,

where fk ≡ cos 2ψ and gk ≡ − sin 2ψ. The diagonaliza-
tion of this Hamiltonian again yields dispersions in the
superconducting state in the form (E±k )2 = Ak ±

√
Bk.
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Figure 8: Gap structure for elliptical pockets with inter-pocket hopping. In a) we show the gap structure in the absence of
hybridization. Inter-pocket hopping reconstructs the FSs as shown in b). As the hopping parameter increases, the inner FS
shrinks and the outer one becomes larger. In the superconducting state, the nodal points (represented as crosses) lie near, but
not exactly on FSs and shift toward the kx and ky axis as the hopping increases, as shown in b) and c). At a critical value of
the hopping the nodes meet and merge in pairs as in d). Finally, for greater values of the parameter they vanish and the sign
of the gap function becomes the same on both FSs. Subfigures b) through e) are the result of numerical calculations.

In this particular case

Ak =
1

2

[
(ξak)2 + (ξbk)2 + 2∆2(1 + y2

k)
]
, (40)

Bk =
1

4

[ (
(ξbk)2 − (ξak)2 + 4∆2fkyk

)2
+ 4∆2y2

kg
2
k

(
(ξak − ξbk)2 + 4∆2

) ]
. (41)

As usual, the dispersion E+
k is nodeless, but E−k has

nodes at momenta which are the solutions of the equation

(δk + αξk)
(
ξkδk − α∆2

)
− αλ2δk = 0. (42)

Each solution to this equation defines a pair (ξ̄, δ̄) and
determines the radial position of the nodal point. The
angular position is then given by

cos2 2θk =
F (ξ̄, δ̄)

(δ̄2 + α2∆2)2
, (43)

where

F (ξ̄, δ̄) =
(
δ̄2 − α2∆2

) (
ξ̄2 − λ2 −∆2

)
− 4α∆2ξ̄δ̄. (44)

Like before, we solve for ξ̄ in terms of δ̄. The solution
is

ξ̄ =
−δ̄2 + α2∆2 −

√(
α2∆2 + δ̄2

)2
+ 4α2λ2δ̄2

2αδ̄
. (45)

When we substitute this solution into Eq. (43) we find
that the angular position of the nodes is given by

cos2 2θk =
δ̄2 − α2∆2 +

√(
α2∆2 + δ̄2

)2
+ 4α2λ2δ̄2

2α2δ̄2
.

(46)
The analysis of these equations shows that nodal points

appear in a set of 8 and that they are not located on the
FSs of the normal state, although our numerical calcula-
tions show that they remain very close to it. The loca-
tion of the nodes with respect to the original FSs varies
depending on the sign of α. If α > 0, the nodes are lo-
cated inside of both unhybridized FSs but outside of the
smaller FS. Instead, if α < 0 the nodes are outside the
unhybridized FSs but inside the larger reconstructed FS.

In both cases, the behavior is qualitatively the same
as in the limiting case of circular pockets and is summa-
rized in Fig. 8, where we show the result of numerical
calculations. Increasing λ shifts the nodes toward the kx
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and ky axes. The critical value of λ that causes the nodes
to merge along these directions is enhanced by the ellip-

ticity and is given by λc =
√(

∆2 + δ̄2
)

(α2 − 1). At any

larger λ the nodes disappear. In this sense, the eccen-
tricity of the pockets tries to prevent the disappearance
of the nodes.

Regarding the gap structure, we note that for large
λ the inter-pocket pairing term is irrelevant as the re-
constructed FSs are far apart from each other. In this
limit, the gap on the reconstructed pockets is given by
∆(1 ± fkyk), where |fkyk| � 1. Thus, the phase of the
gap function is equal and uniform over the the recon-
structed FSs.

At smaller λ, the phase of the gap along the FSs cannot
be determined as the pairing involves both intra-pocket
and inter-pocket terms. Judging from the large λ limit,
it seems natural to define the gap with equal sign on both
FSs also at intermediate λ, see Fig. 8.

C. Inter-pocket pairing and hopping (β 6= 0, λ 6= 0)

This case is the most generic one. Like before, we
switch to the reconstructed a and b pockets after hy-
bridization. The pairing terms in the Hamiltonian can
be rewritten in terms of a and b operators and take the
form

H′∆+β =
1

2

∑
k

[
∆aa(k)a†kαa

†
−kβ + ∆bb(k)b†kαb

†
−kβ

]
iσyαβ

+
1

2

∑
k

∆ab(k)
[
a†kαb

†
−kβ + b†kαa

†
−kβ

]
iσyαβ + H.c.,

(47)

where

∆aa(k) = ∆(1− ykfk)− βgk, (48)

∆bb(k) = ∆(1 + ykfk) + βgk, (49)

∆ab(k) = −∆ykgk + βfk. (50)

The dispersions are given by (E±k )2 = Ak±
√
Bk, where

Ak =
1

2

[
(ξak)

2
+
(
ξbk
)2

+ 2∆2
(
1 + y2

k

)
+ 2β2

]
, (51)

Bk =
1

4

[ ((
ξbk
)2 − (ξak)

2
+ 4∆2fkyk

)2

+ 4∆2y2
kg

2
k

(
(ξak − ξbk)2 + 4∆2

) ]
−2β∆gk

(
ξak − ξbk

) [
ξak + ξbk +

(
ξak − ξbk

)
fkyk

]
+β2

[
4∆2 +

(
ξak − ξbk

)2
f2
k

]
. (52)

Once more, we search for nodes in the dispersion E−k .
The radial position of the nodes is determined by the
condition

(
δkξk − α∆2

)
(δk + αξk)

+
βλ

∆

(
α2∆2 − δ2

k

)
+ α

(
β2 − λ2

)
δk = 0. (53)

The solutions to this equation (ξ̄, δ̄) are needed to find
the angular position of the nodes:

cos2 2θk =
F (ξ̄, δ̄)

(δ̄2 + α2∆2)2
, (54)

where

F (ξ̄, δ̄) =
(
δ̄2 − α2∆2

) (
ξ̄2 + β2 − λ2 −∆2

)
+ 4α∆δ̄

(
βλ−∆ξ̄

)
. (55)

Solving for ξ̄ in terms of δ̄, we find that the solutions to Eq. (53) are

ξ̄ =
1

2αδ̄

{
− δ̄2 + α2∆2 ±

[ (
α2∆2 + δ̄2

)2
+ 4αδ̄

((
δ̄2 − α2∆2

) λβ
∆

+ αδ̄
(
λ2 − β2

))]1/2}
. (56)

The angular location of the nodes for these solutions is given by

cos2 2θk =
1

2α2δ̄2

{
δ̄2 − α2∆2 + 2αδβλ/∆∓

[ (
α2∆2 + δ̄2

)2
+ 4αδ̄

((
δ̄2 − α2∆2

) λβ
∆

+ αδ̄
(
λ2 − β2

))]1/2}
. (57)

In this general case the interplay of the different pa-
rameters is considerably more complicated than in the

previous limiting cases, but it does not produce any new
features. We find that in general the position of the nodal
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Figure 9: Gap structure for elliptical pockets with inter-pocket hopping and pairing. This case incorporates all the features
seen in Figs. 7 and 8. The main difference is that the condition for additional nodes does not depend solely on the ellipticity,
but also on the hopping parameter and the sign of the inter-pocket pairing.

points depends on the signs of both β and α, not only
their magnitudes. The dependence on the sign of β comes
from bilinear terms of the form βλ, while the dependence
on the sign of α is a consequence of the ellipticity of the
pockets.

The general behavior of the nodal points is summarized
in Fig. 9. We found by numerical analysis that in general
increasing λ tends to shift the nodes toward the kx and
ky axis as usual, where they merge and disappear at a
critical value of λ. In this case, the sign of the order
parameter is the same on both FSs. Increasing |β| instead
shifts the nodes toward the diagonals kx = ±ky. At |β| =
∆ there are two possibilities, as seen in the limiting case
of λ = 0. The first is that the eight nodal points merge
in pairs at the diagonal lines, disappearing for |β| > ∆.

This happens at small δ̄, i.e., for small eccentricity.
The second is that the original nodal points do not reach
the diagonal lines at this value of β, but instead four
new nodes appear at those lines. Increasing |β| further

causes these four new nodal points to split into pairs, and
moves the old and new nodes toward each other. At a
threshold value of β they merge and then disappear. This
second scenario, with 16 nodal points at intermediate
β, is realized at larger δ̄, i.e., at larger eccentricity. In
either case, the merging of nodes caused by large β means
that the gap function has opposite signs on the electron
pockets.

One important difference with the case of λ = 0 is
that the condition for developing additional nodal points
is more complicated since the sign of β and the value of
λ also play a role. It is clear from the equations that the
additional nodes are more likely to develop for β < 0,
for δ > α∆ and for small λ. The exact conditions when
additional nodes appear are given by rather involved for-
mulas and we refrain from presenting them.
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V. CONCLUSIONS

In this paper we have investigated the effect of hy-
bridization of the two electron pockets on the gap struc-
ture in FeSCs. We considered the case when the dom-
inant pairing interaction is between hole and electron
pockets and it yields an s+− gap with accidental nodes
on the electron pockets. Our goal was to understand how
accidental nodes move once we include the hybridization.
We argued that for an s+− superconductor hybridization
gives rise to two effects – hopping between electron FSs
and the appearance of an additional pairing term which
describes inter-pocket pairing. Each of these two effects
shifts the position of the nodes and at large enough hy-
bridization the nodes eventually disappear. However, the
evolution of the nodes and the gap structure of the re-
sulting nodeless state is different, depending on whether
the inter-pocket hopping or the inter-pocket interaction
is stronger. In the first case, the resulting state has the

same sign of the gap on both reconstructed FSs. In the
second case, there is a sign change of the superconducting
gap between the inner and outer FSs.

We also showed that the evolution of the nodes with
increasing inter-pocket pairing interaction is rather non-
trivial, and in the intermediate regime the number of
nodal points may increase from 8 to 16. We also found
that the eccentricity of the pockets enlarges the critical
values of the hybridization parameters, partially protect-
ing the nodal points from disappearing. The bottom line
of this analysis is that strong hybridization lifts acciden-
tal nodes, but the resulting superconducting state may be
highly non-trivial, particularly when the dominant effect
of hybridization is the emergence of inter-pocket pairing
potential.
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