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Abstract 
 
The intermetallic compound ZnSb is an interesting thermoelectric material, largely due to its 
low lattice thermal conductivity. The origin of the low thermal conductivity has so far been 
speculative. Using multi-temperature single crystal X-ray diffraction (9 – 400 K) and powder 
X-ray diffraction (300 – 725 K) measurements we characterized the volume expansion and 
the evolution of structural properties with temperature and identify an increasingly 
anharmonic behavior of the Zn atoms. From a combination of Raman spectroscopy and first 
principles calculations of phonons we consolidate the presence of low-energy optic modes 
with wavenumbers below 60 cm-1. Heat capacity measurements between 2 and 400 K can be 
well described by a Debye-Einstein model containing one Debye and two Einstein 
contributions with temperatures ΘD = 195K, ΘE1 = 78 K and ΘE2 = 277 K as well as a 
significant contribution due to anharmonicity above 150 K. The presence of a multitude of 
weakly dispersed low-energy optical modes (which couple with the acoustic, heat carrying 
phonons) combined with anharmonic thermal behavior provides an effective mechanism for 
low lattice thermal conductivity. The peculiar vibrational properties of ZnSb are attributed to 
its chemical bonding properties which are characterized by multicenter bonded structural 
entities. We argue that the proposed mechanism to explain the low lattice thermal 
conductivity of ZnSb might also control the thermoelectric properties of other electron poor 
semiconductors, such as Zn4Sb3, CdSb, Cd4Sb3, Cd13-xInyZn10, and Zn5Sb4In2-δ. 
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I. Introduction 
 
 The binary Zn-Sb system affords two semiconductor phases, ZnSb and β-Zn4Sb3, which 
have been known as thermoelectric materials since the 1960s [1,2]. Especially β-Zn4Sb3 
shows an excellent thermoelectric performance in the temperature range of 450 – 650 K and 
has been intensively studied during the past 15 years [3,4]. This material is distinguished by 
an extraordinarily low lattice thermal conductivity in the range of 0.5 – 0.6 W/mK at RT 
which is characteristic for vitreous materials [5]. Accordingly, this feature is truly remarkable 
for a crystalline binary compound. Recently it has been shown that also ZnSb has an 
inherently low thermal conductivity [6] and that doping with Ag/Cu (leading to Cu3Sb and 
Ag3Sb nanoparticle inclusions) can produce materials with thermoelectric figure of merits 
almost in par with β-Zn4Sb3 [7,8]. 
 The origin of the low lattice thermal conductivity of β-Zn4Sb3 and ZnSb is puzzling. 
Constituting elements are not particularly heavy. In 2004 a careful structural analysis of 
β-Zn4Sb3 revealed intricately disordered Zn atoms. Naturally, this structural disorder was 
then associated with low thermal conductivity [9]. However, the discovery of Cd13-xInyZn10 (x 
≈ 2.7, y ≈ 1.5), which crystallizes in a disorder-free variant of the β-Zn4Sb3 structure and 
shows a comparable low thermal conductivity, casted doubts into the significance of 
structural disorder to low thermal conductivity [10]. Recently, peculiarities in the dynamic 
behavior – notably Einstein rattling of dumbbell units build from Sb atoms [11] and/or 
loosely bonded Zn atoms as evidenced from the superionic behavior of β-Zn4Sb3 [12,13] 
have been put forward as possible reasons. It is not clear if these aspects would also apply to 
ZnSb. Furthermore, it should be noted that some ternary derivatives of zinc antimonides, like 
Zn5Sb4In2-δ (δ ≈ 0.15), display similar low thermal conductivities as the binaries [14,15].  
 Zinc antimony compounds and their derivatives clearly have diverse crystal structures 
with features that individually could explain low thermal conductivity (e.g. presence of 
various forms of disorder, large sized unit cells). Yet, common to all systems is a covalent 
framework structure containing multicenter bonded structural entities. Peculiarities in the 
dynamic behavior could originate in the bonding properties of the framework structures, that 
is, multicenter bonded atoms may cause the incidence of pronounced anharmonic vibrational 
motion and/or give rise to localized low energy optical modes (which couple with the 
acoustic, heat carrying phonons). The presence of localized low energy optic modes as a 
consequence of multicenter bonded structural entities would provide a sound physical basis 
for the low thermal conductivity. This hypothesis has been put forward earlier [16], and 
recent theoretical investigations by Jund et al. [17] and Bjerg et al. [18] seem to confirm it, 
strongly questioning the empirical concept of “dumbbell” rattling recently pursued for 
Zn4Sb3 [11]. 

The aim of the present work is to shed more light on this issue. From heat capacity 
measurements we reveal a great similarity of the vibrational properties of ZnSb and β-Zn4Sb3. 
From the analysis of the temperature dependence of the structural and atomic displacement 
parameters we find that Zn atoms display an increasingly anharmonic thermal motion at 
temperatures above 200 K. From phonon dispersion calculations and Raman spectroscopy we 
consolidate the presence of low energy optic modes in ZnSb as a consequence of multicenter 
bonded rhomboid ring entities Zn2Sb2. Those rings are also present in the structure of 
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β-Zn4Sb3. 
 
 

II. Methods 
 

A. Synthesis 
 
Bulk samples of polycrystalline ZnSb were prepared from mixtures of zinc granules 

(ACBR, 99.99%) and antimony shots (ABCR, 99.999%) using a slight excess (2%) of Zn. 
Batches with a total mass between 0.5 and 1 g were loaded in fused silica tubes which were 
flame sealed in a dynamic vacuum (< 10-5 bar). The mixture of elements was melted with a 
torch while shaking the ampoule vigorously, and then quenched in water. The obtained ingot 
was ground to a powder which was subsequently sealed in a fused silica tube and annealed 
for 5 days at 783 K. The obtained polycrystalline ZnSb was phase pure according to powder 
X-ray diffraction analysis. A part of the bulk sample was consolidated by spark plasma 
sintering (SPS) at 450 oC and 75 MPa for 5 min using a Dr. Sinter SCM 5000 instrument. In 
the following we refer to this sample as “SPS sample”. Crystal specimens of ZnSb with sizes 
of several mm were prepared from reaction mixtures with 23 at.% Zn, 27 at.% Sb and 50 at.% 
Bi, where Bi serves as a flux medium. Starting materials were Zn (granules, 99.99%), Sb 
(powder, 99.5%) and Bi (pieces, 99.999%). The procedure of crystal growth and separation is 
described in ref. [6].  
 

B.  Powder X-ray diffraction 

 For powder X-ray diffraction (PXRD) analysis the polycrystalline ZnSb bulk sample was 
finely ground. High temperature PXRD studies were performed on a Panalytical X’Pert PRO 
instrument with Cu Kα radiation in θ-2θ diffraction geometry. The powder sample was 
heated in dynamic vacuum (~ 10-5 bar ) to 723 K using an Anton Paar XRK 900 chamber 
equipped with Be windows and connected to a temperature controller. Data in a 2θ range 10 – 
60° were collected from 323 K in steps of 50 K, 100 min acquisition time and 10°/min 
heating rate between the steps. Data collection was initiated when the temperature had 
stabilized. A room temperature diffraction pattern was collected on a Panalytical 
X’Pert Alpha1 diffractometer operated with Cu Kα1 radiation where the sample was mounted 
on a Si wafer zero-background holder. Rietveld refinement of PXRD data was performed 
using the Jana2006 package [19]. The details of the refinement results are given in the 
supporting information. 

C.  Single Crystal X-Ray diffraction  

For single crystal X-ray diffraction (SCXRD) analysis, crystals were selected among 
specimens obtained from flux synthesis. High resolution data were collected using a 
BRUKER SMART-APEX diffractometer equipped with a D8 goniometer and an INCOATEC 
IμS Ag micro source (λ = 0.56087 Å) employing Helios mirror optics. Measurements were 
performed at several temperatures between 80 K and 400 K with an Oxford cryostream 
cooling unit. The frames were integrated with the Bruker SAINT software package [20] using 
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a narrow-frame algorithm. A numerical, face-indexed absorption correction was applied using 
SADABS [21]. Data at 9 K were collected on a MAR345 imaging plate detector system with 
a rotating anode generator (Bruker FR591, λ = 0.71073 Å) using a displex cryo-system and a 
Huber 512.1 Eulerian cradle. The frames were integrated using the EVAL15 [22] software 
and a numerical absorption correction and inter-frame scaling correction was performed using 
SADABS. Face indexing and crystal shape determination were however performed using the 
SMART-APEX diffractometer. The EUHEDRAL [23] software was used to determine the 
crystal orientation during the measurements in the displex cryo-system for the subsequent 
numerical absorption corrections. All structure refinements were performed with the program 
package JANA2006 [19]. All datasets were corrected for extinction (type 2) during the 
refinements. In order to exclude a possible bias between the correction of absorption and 
extinction effects, which mainly affect the data at low resolution, atomic displacement 
parameter (ADP) values were also derived from refinements of high order Bragg reflection 
(sinΘ/λ > 0.6 Å-3). However, the ADP values derived independently from both methods did 
not differ significantly. The details of refinement summary and parameters are given in the 
supporting information. 

D. Raman spectroscopy 
 

 Raman spectroscopy investigations were performed on ZnSb crystal specimens obtained 
from flux growth and on a disk-shaped specimen with 12 mm diameter obtained from SPS 
consolidation. For comparison also elemental Sb (as purchased) was investigated. Raman 
spectra were measured using a Labram HR 800 spectrometer. The instrument is equipped 
with an 800 mm focal length spectrograph and an air cooled (-70 oC), back thinned CCD 
detector. Samples were excited using an air cooled double frequency Nd:YAG laser (532 nm) 
with a reduced input laser power of 0.56 mW and an air cooled intra cavity regulated laser 
diode (785nm) with reduced laser power of 0.88 mW. Raman spectra were collected with an 
exposure time of 60 s, accumulation number of 10, and using a 1800 grooves/mm grating.  
 

E. Heat capacity measurements 
 
 For heat capacity measurement a crystal specimen (14.8 mg), and a SPS sintered piece 
(28.0 mg) were used. The heat capacity was measured between 2 K and 290 K (49 points 
distributed logarithmically) and between 330 K and 400 K in 3 K increments using a 
quasi-adiabatic step heating technique as implemented in the Physical Property Measurement 
System (PPMS) by Quantum Design. The samples were thermally connected to the platform 
of the sample-holder via small amount of Apiezon-N grease for region T < 300K and 
Apiezon-H for T > 300K (both typically 0.1 – 0.3 mg). The uncertainty for this measurement 
technique is estimated to be lower than 5%. 
 

F. Computation 
 
 The phonon dispersion relations and thermodynamic functions of ZnSb were calculated 
via the Abinit program package [24–26] and employing the generalized gradient 
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approximation (GGA) with the Perdew-Burke-Ernzerhof (PBE) parameterization [27,28]. 
GGA-PBE pseudopotentials were provided by the Abinit website. These pseudopotentials are 
norm conserving and were generated using the fhi98PP package [29]. A 6 × 6 × 6 Monkhorst 
Pack [30] k-point grid was used for electronic integration and a 2 × 2 × 2 q-grid was used for 
calculations of the dynamical matrix elements. A plane wave energy cutoff of 35 Hartree 
(~950 eV) was employed. Prior to the phonon dispersion calculations ZnSb was relaxed with 
respect to lattice parameters and atomic positions with forces converged to better than 1 × 
10-3 eV/Å. From the phonon density of states (PDOS) it is possible to obtain the 
thermodynamic functions of a material [31]. Within the harmonic approximation the 
contribution from the phonons per unit cell to the internal energy ΔE, the Helmholtz free 
energy ΔF = ΔE – TS, the constant volume specific heat CV, and the entropy S, at temperature 
T are given by: 
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where kB is the Boltzmann constant, ω is the phonon frequency, ωL is the largest frequency 
and n is the number of atoms in the unit cell and g(ω) is the PDOS and csch is the hyperbolic 
cosecant. 
 Atomic displacement parameters (ADPs) can be obtained from the PDOS with the 

knowledge of the corresponding eigenvectors )(qel
n

v
α  and the partial density of states of the 

phonons. The partial density of states of the phonons is given by [32]: 
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where α and β represent the x, y or z Cartesian coordinates, n is the atom index, l is phonon 

mode and qv  is the wavevector in the Brillouin zone. The ADPs nijU  are calculated as: 
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where nM  is the mass of atom n and ib
v

 (i, j = 1, 2 or 3) are the crystal reciprocal lattice 

vectors. nijU  is a tensor that defines the average motions of the atoms within the compounds 

(with dimensions of length squared). The isotropic ADPs n
isoU  can be derived directly from 

the anisotropic nijU  values by: 
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III. Results and Discussion 

 
A. Temperature dependent structural properties and thermal stability 

 
 ZnSb crystallizes with an orthorhombic Pbca structure (the CdSb type) which contains 8 
formula units in the unit cell [33]. Both kinds of atoms are situated on the general position 8c. 
The structure may be described as being built from rhomboid rings Zn2Sb2 which are 
arranged in layers and linked to 10 neighboring rings. Fig. 1a shows the arrangement of 
layers along the [001] direction. (Note, that because of the three axial glides this description 
holds for any direction). In a layer each ring is surrounded by six neighboring ones; two are 
attached to each Sb atom and one to each Zn atom of one Zn2Sb2 moiety. Additionally each 
atom will then bind to a ring in an adjacent layer. As a result Zn and Sb atoms in the ZnSb 
structure attain a peculiar five-fold coordination by one like and four unlike neighbors (Fig. 
1b). A ring and its linkage to neighboring ones is shown in Fig. 1c.  
 According to refs. [34] and [35] the rhomboid ring represents a four center, four electron 
(4c4e) bonded entity which is connected via 2c2e bonds to the 10 neighboring ones. This 
bonding model provides an electron precise situation for ZnSb. There are six distinct nearest 
neighbor distances in the ZnSb structure which are all captured within the rhomboid ring and 
its connectivity (cf. Fig 1c). The different bonding motifs (rhomboid ring multi-center 4c4e 
and connecting 2c2e bonds) can be recognized in the distribution of interatomic distances: 
Zn-Sb interatomic distances within a ring (r-type distances) are about 0.1 Å larger than the 
ring connecting ones (c-type distances). The short Zn-Zn distance (2.78 Å) is part of the 
multi-center bonding motif while the short Sb-Sb distance of around 2.82 Å corresponds to a 
ring-linking 2e2c bond. These nearest neighbor distances associated with bonding 
interactions are well separated from the next nearest ones, starting off above 3.5 Å. To further 
support the 4c4e bonding picture for ZnSb we performed a topological analysis of the 
electron density using the full-potential augmented plane wave (FP-LAPW) elk-code [36] 
and DGRID 4.6 [37]. Details are given in Supporting Information S8. We note that among the 
r-type distances r2 is considerably longer than r1. This is reflected in lower electron density 
values at the bond critical points (BCP) for r2 ( ρBCP, r2 = 0.222 e/Å³), which is also lower than 
the electron density at the BCP for r1 (ρBCP, r1 = 0.304 e/Å³). The weakest, although not the 
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shortest bond, is the Zn-Zn bond (ρBCP, Zn-Zn = 0.183 e/Å³) in accordance with the proposed 
bonding picture. The electron density in the bonding region of the Zn2Sb2 moiety is very flat, 
nevertheless the ring critical point (ρRCP = 0.178 e/Å³) of the Zn2Sb2 rhomboid ring is well 
separated from all BCPs in the ring. Therefore we consider all Zn-Sb bonds in the Zn2Sb2 
moiety as topologically stable bonds due to the presence of distinct BCPs. Importantly, 
electron poor multicenter bonding is clearly signaled by endocyclic bondpaths and high 
ellipticity values of the electron density at the BCPs [38,39]. 
 The rhomboid ring Zn2Sb2 motif is also the central feature of the Zn4Sb3 structure (Fig. 
1d) [16,35]. Here rings are condensed into chains by sharing common Sb atoms (Fig. 1e). 
These Sb atoms (termed Sb1) then attain a six-coordination by Zn atoms by connecting with 
two neighboring chains via 2c2e bonds. The linkage of chains in the final framework is 
completed by additional Sb atoms (termed Sb2) forming dumbbells (Fig. 1e). Each dumbbell 
unit has six chain-linking Sb2-Zn contacts, also corresponding to 2c2e bonds while the Sb2 
atoms are tetrahedrally coordinated. We emphasize that “dumbbells” of Sb atoms also occur 
in the ZnSb structure, however, in ZnSb they correspond to direct links of neighboring 
rhomboid rings and their coordination environment is rather different from the one in 
β-Zn4Sb3. 

 
Figure 1: (a) The orthorhombic crystal structure of ZnSb built from layers (dark and pale 
colors) of rhomboid rings Zn2Sb2. Cyan and red balls denote Zn and Sb atoms, respectively 
(b) Local five-coordination of Zn and Sb atoms. The inserted numbers indicate interatomic 
distances in Å at room temperature. (c) Rhomboid ring Zn2Sb2 and its connectivity to 
neighboring rings. Distances are distinguished as c- (connecting) and r- (ring) type. The 
center of a ring corresponds to a center of inversion. The thermal ellipsoids correspond to 90% 
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probability density at room temperature obtained from single crystal XRD measurements. (d) 
Idealized Zn6Sb5 framework of rhombohedral β-Zn4Sb3 along the [001] direction. The 
framework is built from chains of condensed rhomboid rings Zn2Sb12/2 (cf. Fig. 1e) and 
consists of channels which are stuffed by Sb2 atoms (depicted as blue balls). Sb2-Zn bonds 
are omitted for clarity. (e) Structural fragments and local coordination of Zn, Sb1, and Sb2 
atoms in β-Zn4Sb3. 
  
 To investigate the effect of temperature to the structural parameters of ZnSb we 
performed single crystal X-ray diffraction (SCXRD) measurements from 9 to 400 K, and 
powder X-ray diffraction (PXRD) measurements from room temperature up to 723 K. Figs. 
2a and 2b show lattice parameters and unit cell volume as a function of temperature, 
respectively. Lattice parameters refined from PXRD data are more accurate. They increase 
linearly in the range 300 – 675 K. The room temperature volume expansion coefficient 
αv(300 K) is estimated as 4.15 × 10-5 K-1 which is comparable to many metals (e.g. Cu: 5.1 × 
10-5 K-1, Au: 4.2 × 10-5 K-1). We note a noticeable anisotropy of the room temperature linear 
thermal expansion coefficients for the individual lattice parameters: αc = 0.404 × 10-5 K-1, αb 
= 1.25 × 10-5 K and αa = 2.45 × 10-5 K. The ratio αc : αb : αa corresponds roughly to 1:3:6. 
The variation of interatomic distances obtained from the refinement of the SCXRD data is 
shown in Fig. 2c in the range of 9 – 400 K. Two of the six nearest neighbor distances show 
pronounced temperature variation: the intra ring distances r2 and the Zn-Zn separation 
increase roughly linearly from 2.87 to 2.93 Å and from 2.74 to 2.80 Å with increasing 
temperature from 9 to 400K, respectively. The remaining distances increase in the same 
temperature range only by 0.01 to 0.015 Å, corresponding to a change of 0.4 – 0.5%.  
As initially mentioned, ZnSb possesses only one crystallographic independent Sb and Zn 
atom per asymmetric unit. Temperature variation from 9 to 400 K mainly affects the atomic 
coordinates of the Zn atom whereas the the Sb atom position is hardly affected. As a 
consequence, the increase of the long Zn-Sb distances (denoted r2 in Fig. 1c) with increasing 
temperature is strongly correlated with a simultaneous elongation of the Zn-Zn distances. In 
contrast, the shorter Zn-Sb bonds (r1, c1, c2) appear to be characterized by stronger force 
constants and expand only moderately with increasing temperature. The significant increase 
of the long Zn-Zn and Zn-Sb distance within the Zn2Sb2 moieties may therefore be regarded 
as a weakening of the multicenter bonding that could parallel the onset of the thermal 
decomposition of ZnSb (see below). 
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Figure 2. (a) Lattice parameters and (b) unit cell volume of ZnSb as a function of temperature. 
Squares and circles denote parameters obtained from SCXRD and PXRD refinements, 
respectively. The solid line represents a linear fit to the PXRD data. (c) Variation of 
interatomic distances in ZnSb as a function of temperature. Data were obtained from 
refinements of SCXRD data including anharmonic atomic displacement parameters (using a 
Gram-Charlier expansion). For the assignment of the individual bond lengths, see Fig. 1. The 
size of the symbols used in (a) – (c) exceeds by far the standard deviation of the 
corresponding data point.  
  

 
Figure 3. PXRD patterns (Cu Kα radiation) of the ZnSb bulk sample at temperatures between 
300 and 723 K in a 2Θ range of 25 – 42.5o. At 573 K reflections from elemental antimony 
occur (marked with boxes). At 723 K the sample decomposition is already severe and a 
mixture of ZnSb and elemental Sb (R-3m) with a molar ratio of approx. 1:6 is observed. 
Bragg reflections of the Sb impurity phase are marked by their corresponding Miller indices. 
 
 Fig. 3 shows the PXRD patterns of ZnSb upon heating between 300 and 723 K in a 
dynamic vacuum. At 573 K the onset of the sample decomposition is signaled by the 
occurrence of reflections of elemental antimony. Phase analyses by Rietveld refinements 
yield an amount of elemental Sb of 1.4(2) wt%. At 723 K (and about 5 h after the 573 K 
measurement) the ZnSb sample is almost completely decomposed. The Sb phase fraction 
increased to 78.4(4) wt%. The presence of dynamic vacuum conditions clearly promotes the 
decomposition of ZnSb (into elemental Sb and Zn vapor) which otherwise, according to the 
Zn-Sb phase diagram [40], represents a thermodynamically stable phase up to at least 800 K. 
The same phenomenon has been observed for β-Zn4Sb3: Heating Zn4Sb3 in a dynamic 
vacuum leads to the formation of ZnSb at 623 K which in turn decomposes above 693 K [41]. 
Thus the thermal stability of ZnSb and β-Zn4Sb3 under dynamic vacuum conditions is 
comparably low. 
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B. Heat capacity measurements 

 
Heat capacity studies of ZnSb have been performed already in the 1970s by Mamedova 

et al. and Danilenko et al. [42,43]. The key results of these studies are compared to our 
studies in Fig. 4. The measurement of Danilenko et al. exceeds the Dulong-Petit limit of Cv = 
3R per mole and atom (49.9 J/mol-K for ZnSb) at temperatures above 240 K. A similar 
behavior is also displayed by our SPS sample, whereas our crystalline sample reaches this 
limit just above 330 K, in better agreement with the results of Mamedova et al., (especially 
below 120 K) whose ZnSb sample actually contained 3 wt.% CdSb [42]. The higher Cp 
values for the SPS sample may be explained by defects or stress/strain introduced by the SPS 
consolidation process.  
 

 

 
Figure 4: Temperature dependent heat capacity Cp(T) (per formula unit) of crystalline and 
SPS consolidated ZnSb samples (pink diamonds and red triangles, respectively) and their 
corresponding fits (model 2) as pink and red solid lines, respectively. The Dulong-Petit limit 
of 3R is marked as a black broken horizontal line. Earlier measurements of Danilenko et 
al. [43] and Mamedova et al. [42] have been added for comparison (black circles and green 
squares, respectively, interconnection lines as a guide for the eye). DFT calculated heat 
capacities Cv and Cp of ZnSb are shown as dashed, black and dash-dotted, blue lines, 
respectively. The theoretical Cp values have been estimated via the thermal expansion 
coefficient from the PXRD measurements (see below). The inset shows the ratio of 
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experimental and theoretical Cp values. 
 
As a next step we attempted to describe the Cp data by a simple Debye-Einstein model, 

which assumes a Debye-type behavior for the three acoustic phonon branches and an Einstein 
(independent oscillator) behavior for the contributions from the optical branches [44]. 
Additionally, a linear expansion coefficient A1 is employed to account for the volume 
dependence of Cp in the high temperature range. The model (in the following referred as 
“model 1”) used can be expressed by the equation: 

vሺܶሻܥ  ൌ 3ܴ ቌܦሺܶ, Dሻ߆ ൅ ෍ ܿ௜௞
௜ୀଵ ,௜൫ܶܧ vሺ∞ሻܥ           E,௜൯ቍ߆ ൌ 3ܴ݊        ሺ9ሻ 

 
where D is the temperature dependent Debye contribution, Ei the temperature dependent 
Einstein contributions, ci their respective coefficients and n the number of atoms per formula 
unit. The quasi-harmonic approximation of Cp can then be described as 
pሺܶሻܥ  ൌ vሺܶሻ൫1ܥ ൅ ሚvሺܶሻ ൌܥ           ଵܶ൯ܣ ሚvሺܶሻܥ vሺ∞ሻܥvሺܶሻܥ        ሺ10ሻ 

 
 
The Debye contribution was fixed to 3R, whereas the contributions of the Einstein terms 

were refined individually but constrained to a sum of 3R in order to fulfill the Dulong-Petit 
law. This simplistic model (model 1) using 1 Debye and 2 Einstein components (E1 + E2) 
produced a highly satisfactory fit (Fig. 4 and Fig. 5a), apart from the region at very low 
temperatures (below 10 K, which is also characterized by non-constant C/T³ values (Fig. 5b)). 

 
 The latter observation indicates deviations from a pure Debye behavior at low 

temperatures (only ω²-dependence of the PDOS; g(ω) ~ ω2 in Equation 3). Additional quartic 
(g(ω) ~ ω4) contributions are, however, frequently observed in binary II-VI or III-V 
semiconductors [45]. We therefore included such a Non-Debye (ND) component (model 2, 
Eq. 11) in our specific heat capacity model of ZnSb. For stability reasons ΘND was set in the 
fitting procedure to the lowest Einstein temperature ΘE1 as suggested by others [46] and the 
sum of the Debye and Non-Debye components was constrained to 3R. ܥvሺܶሻ ൌ 3ܴ ቌܿDܦሺܶ, Dሻ߆ ൅ ܿNDܰܦሺܶ, NDሻ߆ ൅ ෍ ܿ௜௞

௜ୀଵ ,௜൫ܶܧ E,௜൯ቍ߆ ;    ܿD ൌ ሺ1 െ ܿNDሻ    ሺ11ሻ 
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Figure 5. (a) Heat capacity Cp/T (per formula unit) of ZnSb (black diamonds) including 
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Debye-Einstein fit (model 2, black solid line) and Zn4Sb3 (red circles) including the original 
fit of Schweika et.-al. [11] (red, solid line) as well as the improved fit using model 1 (green 
solid line). The DFT calculated data of ZnSb is shown as a blue, dotted line. (b) Cp/T³ (per 
formula unit) representation of (a) with additional fit for ZnSb (model 1, black, dashed line) 
for comparison. The y-axis range is scaled according to the number of atoms per formula unit 
in ZnSb and Zn4Sb3 by the ratio 2:7, for both Cp/T and Cp/T³. 
 

The fits are detailed in Figs. 5a and 5b as Cp/T and Cp/T3 plots, respectively. The more 
sophisticated model 2 (black solid line) improves the fit of the Cp for ZnSb in the low 
temperature regime of 3 – 10 K significantly in comparison with model 1 (dashed black line, 
c.f. Fig 5b). This stresses the necessity to consider a non-Debye component for a precise 
description of the temperature dependence of C/T³ in this temperature regime. The Debye 
temperature ΘD(0) of ZnSb is obtained as 248K from the slope of C/T vs. T² representation 
for T < 3K. Jund et al. calculated the Debye temperature of ZnSb from averaged sound 
velocity data measured by Balazyk et al. and obtained a value of 253 K, which is in close 
agreement with our findings [17,47]. The fitted Einstein temperatures are ΘE1 = 77.6 K (54 
cm-1, 6.7 meV) and ΘE2 = 276.9 K (192 cm-1, 23.9 meV) refer to the single crystal sample. 
The results of the fit of the SPS sample data with equation (9 and 10) are very similar. The 
according coefficients are listed in Table 1. 

Bjerg et al. recently reported Debye temperatures which were derived from the 
DFT-calculated heat capacity of ZnSb employing the Slack definition [18]. The value 
specified for ZnSb (ΘD,Slack = 92 K) appears to be significantly lower than the experimental 
value of this study, which is derived from heat capacity measurements using a 
Debye-Einstein model (ΘD,Cp = 250 K), see above and Table 1. The seemingly large 
difference, however, is simply due to the fact that Bjerg et al. specified a reduced Debye 
temperature of 92 K in their theoretical DFT study. According to the Slack definition, the 
reduced Debye temperature depends on the number of atoms n (n = 16 for ZnSb) in the 
primitive unit cell, and can be converted to conventional Debye temperatures by multiplying 
the reduced value with n(-1/3), which yields a Debye temperature of 232 K in close agreement 
with our experimental value  [48,49].  

We further note, that the theoretical study by Jund et al. [17] derived a value of 209.3 K 
for the Debye temperature ΘD(0), which again agrees very well with our findings (ΘD = 210 
K). 

The temperature dependence of the heat capacity of ZnSb and Zn4Sb3 is highly related. 
This is shown in Fig. 5a where our measurement for single crystalline ZnSb is compared with 
the heat capacity of polycrystalline Zn4Sb3 as obtained by Schweika et al. [11]. The authors 
described the heat capacity of Zn4Sb3 by a model containing only one Debye and one 
Einstein contribution with a ratio of 85:15. The energy of the Einstein mode was very low 
(5.4 meV, 62 K) and associated with a physical oscillator in the Zn4Sb3 structure, i.e. the 
before mentioned rattling of Sb2 dumbbells. However, the Schweika et al. model is physically 
implausible because the majority of optical modes would be assigned a Debye behavior. As a 
matter of fact, this simple model displays significant discrepancies to the experimental data, 
especially in the low temperature regime (T < 125 K), as shown in Fig. 5a and Fig 5b. To 
obtain a proper fit using a Debye-Einstein model similar to ZnSb (model 1), 1 Debye and 3 



 15

Einstein terms (E1, E2, E3) are needed (cf. Figs. 5a and 5b). The coefficients are presented in 
Table 1. As for ZnSb, the Debye contribution was fixed to 3R, whereas the contributions of 
the Einstein terms were refined individually. Due to the presence of a phase transition in 
Zn4Sb3, data around 250 K were excluded. The necessity of Non-Debye contributions was 
not justified for Zn4Sb3. 

 
Table 1: Coefficients obtained from a fits of the experimental heat capacity of ZnSb and 

Zn4Sb3 using the models described above.  
 ZnSb-SC ZnSb-SC ZnSb-SPS ZnSb-calc Zn4Sb3* Zn4Sb3 ** 
model 1 2 2 2 1 “Schweika”
ΘD(0) [K] 248 248 253 210 251 240 
ΘD [K] 197.3 195.2 200.5 167.0 137.9 251 
cD [atoms] 1 0.90 0.93 0.95 1 5.95 
ΘND [K] - 77.6+ 77.0+ 64.5+ - - 
cND [atoms] - 0.10 0.07 0.05 - - 
ΘE1 [K] 71.5 77.6+ 77.0+ 64.5+ 56.2 62 
cE1 [atoms] 0.36 0.30 0.34 0.29 0.38 1.05 
ΘE2 [K] 285.7 276.9 271.8 257.0 221.0 - 
cE2 [atoms] 0.64 0.70 0.66 0.71 4.01 - 
ΘE3 [K] - - - - 85.4 - 
cE3 [atoms] - - - - 1.60 - 
A1 [10-6K-1] 95.2 93.6 187.4 49.9 76.7 - 

* data from ref. [11]  ** original fitting model (three parameter, two component fit) 
by Schweika et al. [11]  + constrained 

 
The fitted Einstein temperatures for Zn4Sb3 are ΘE1 = 56.2 K (39 cm-1, 4.8 meV), ΘE2 = 

221.0 K (153 cm-1, 19.1 meV) and ΘE3 = 85.4 K (59 cm-1, 7.4 meV). Accordingly, our model 
(model 1) uses two low-energy Einstein modes as compared to one in the Schweika model. 
The ratio of low- and high-energy Einstein mode contributions (cE1+ cE3):cE2 is about 1:2 
which is similar to the ratio cE1:cE2 for ZnSb. Also the Debye temperature ΘD(0) at low 
temperatures of both compounds is very similar (around 250 K). We conclude that although 
the fitting equations for the heat capacity of ZnSb and Zn4Sb3 were somewhat different, their 
overall temperature dependence is very similar. This indicates that both compounds are 
characterized by rather similar lattice dynamical and thermal properties. 

  
 

C. Lattice dynamics and vibrational properties 
  
 Fig. 6a shows phonon dispersion curves obtained from first principles calculations and 
the corresponding PDOS of ZnSb. There is good agreement between our linear 
response-based calculations and the calculations by Jund et al. and Bjerg et al. employing a 
methodology using a super cell approach [17,18]. The prominent feature of the PDOS is the 
occurrence of a gap between 125 and 140 cm-1. This gap separates 20 modes of high energies 
from the remaining ones. The high energy modes appear to be split into a 4 + 4 (in the range 
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170 – 190 cm-1) and 8 + 4 pattern (in the range 140 – 170 cm-1). We note, that the magnitude 
of atomic displacements of the Zn and Sb atoms with regard to the individual normal modes 
of vibration is rather similar, despite their large mass difference. However, some exceptions 
are observed: Weakly dispersed modes at around 165 cm-1 and 145 cm-1 are characterized by 
large displacements of the Sb and Zn atoms, respectively. The mode at 165 cm-1 may be 
associated with the stretching mode of Sb2 moieties (note that this is not a “dumbbell rattling” 
mode). Among the low energy modes (below the gap) the ones around 83 cm-1 are 
distinguished because of their weak dispersion and their characteristic and predominant Zn 
displacements. Lastly we note an accumulation of low-energy optic modes with small 
dispersion in the range between 35 and 60 cm-1, which conforms with the earlier calculations 
of Jund et al. and Bjerg et al. [17,18]. 
 
 Fig. 6b shows the model PDOS reconstructed from the experimental specific heat data of 
ZnSb using model 2 (cf. Table 1). Both Einstein temperatures are well reflected in the 
theoretical PDOS: ΘE1 (276.9 K) accounts for the presence of 20 high energy modes above 
the gap and ΘE2 (77.6 K) partially accounts for the accumulation of low-lying optical modes. 
The acoustic modes and part of the low-lying optical modes are described by the Debye and 
non-Debye contributions of model 2 (Table 1). Hence, the proposed Debye-Einstein model 
appears to be physically reasonable - also in comparison with the theoretical PDOS. 

 
Figure 6. (a) Calculated phonon dispersion curves (left) and phonon density of states (PDOS) 
of ZnSb (right). The partial Sb atom contribution to the PDOS is indicated by the cyan area. 
(b) PDOS model based on the Debye and Einstein temperatures as extracted from the 
measured heat capacity. (c) PDOS constructed from fitting model 2 (cf. Table 1). 
 

 To probe the optic modes of ZnSb we performed Raman spectroscopy on single crystal 
and SPS consolidated specimens. The orthorhombic structure with eight formula units gives 
rise to 24 Raman active Ag, B1g, B2g, B3g modes, 15 IR active B1u, B2u and B3u modes and 6 
silent Au modes. An earlier Raman study by Smirnov et al. claimed the detection of 16 
modes [50,51]. However most bands were very broad and some were very weak. It appears 
doubtful whether 16 modes were really detected. Furthermore their assignment is very 
difficult because of the similar wavenumbers. The general features of the Raman spectrum of 
ZnSb are an asymmetric band with high intensity at around 173 cm-1 and several weak and 
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broad bands below 80 cm-1. This overall appearance was confirmed more recently by Trichês 
et al. [52]. 
 

 
Figure 7: Raman spectrum of ZnSb and elemental antimony recorded with an excitation 
wavelength of 532 nm and 785 nm. The listed values on the right hand side are given in 
wavenumbers (cm-1) for the labeled bands 1-11 for ZnSb and A-B for elemental antimony. 
The wavenumbers of the individual optical modes were obtained from the DFT calculation at 
the Γ−point and are shown as bars at the bottom of the spectra.  

 
Our spectra are compiled in Fig. 7 and compared with the experimental spectrum of 
elemental Sb and the theoretical wavenumbers of the Raman active modes obtained from first 
principles calculations. Rhombohedral Sb displays two Raman active modes: the Ag mode at 
150 cm-1 which is characterized by Sb atoms shifting along the C3 axis, and the degenerate Eg 
band at 110 cm-1 which triggers the displacement of atoms perpendicular to the C3 axis. We 
note that the stretching mode of Sb2 moieties in ZnSb occurs at higher wavenumbers (ca. 165 
cm-1). Compared to the previous measurements [47,50,51] our spectra display a lower signal 
to noise ratio and a higher resolution. Excitation with a green laser (λ = 532 nm) yields 
spectra which are characterized by a prominent band at 173 cm-1. However in contrast with 
the earlier measurements [47,50,51] this band is now clearly split into two components (173 
cm-1 and 177 cm-1). Further bands are consistently observed at ca. 200 cm-1, 75 – 80 cm-1, and 
50 – 55 cm-1. Spectra from single crystal specimens display additional bands at ~100, ~130, 
and ~145 cm-1. We note that the location of bands may vary by 1 – 3 cm-1 in different spectra 
due to the local heating of the sample by the laser beam. In spectra obtained from red laser 
excitation (λ = 785 nm) the low energy modes become more pronounced. In addition to the 
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occurrence of a band at 49 cm-1 we observe an additional intense band at around 62 cm-1 with 
a characteristic shoulder at 66 cm-1. The latter band could not be observed when the green 
laser excitation (λ = 532 nm) was used instead. We further stress that it is important to excite 
the sample with a low laser power (0.56 mW, corresponding to a power density of approx. 5.5 
× 10-5 mW/μm2). At higher laser powers bands at around 150 and 110 cm-1 appear which 
signal the formation of elemental Sb and thus the onset of a thermally-induced decomposition 
of ZnSb in the laser beam.  

 
 
In summary, our Raman investigation revealed up to 10 distinct bands in the range from 

50 to 200 cm-1 and unequivocally revealed the presence of low energy optic modes at around 
50 cm-1. Calculated wavenumbers for Raman active modes appear to be underestimated by 
5-10%. Smirnov et al. also characterized the IR modes of ZnSb from reflectivity spectra and 
magnetophonon resonance data [50]. These IR modes were found in the ranges 184 – 195 
cm-1, 155 – 166 cm-1, 119 – 123 cm-1, and 44 – 66 cm-1.  

  
 With the knowledge of the PDOS of ZnSb, the theoretical vibrational heat capacity at 
constant volume (Cv) can be calculated according to Equation (3), c.f. Figure 4 and Figure 5. 

Following the analysis by Jund et al. [17], a linear term ܣଵ ൌ ଵQHܣ ൅  ଵanh may be added toܣ

the harmonically calculated Cv(T) values (c.f. Equation 11) to account for the 
(quasi-harmonic, QH) volume change and anharmonic contributions, respectively (denoted as 

A and B in Ref. [17], respectively). The value of ܣଵQHcan be approximated as (BMVαv
2/Cv,∞) – 

where BM is the bulk modulus, V is the molar volume, and αv is the volume expansion 

coefficient. ܣଵQH is then obtained as 49.9 × 10-6 K-1 using values of BM from the literature 

(BM ~ 50 GPa [17,47,52]) and values of V and αv
2 from this work. The correction term ܣଵ ൌ  ଵQH was then applied to calculate Cp (cf. Fig. 4). Figure 4 clearly reveals that in theܣ

high temperature range the experimental Cp(T) values are slightly larger than the theoretical 
Cp values (note that the ܣଵ  parameters obtained from the Debye-Einstein fitting are 
substantially higher, cf. Table 1). For the single crystal Cp data we attribute this discrepancy 
to anharmonicity (the corresponding value for ܣଵanh would then be 43.7 × 10-6 K-1), whereas 
for the SPS sample defects, stress or strain may provide additional contributions. We can 
exclude significant impurity contributions of the SPS sample, since the PXRD pattern after 
SPS sintering did not show any additional peaks (see Supplementary Information Figure S7). 
 Below T = 150 K, the calculated Cp values are higher than the experimental Cp values. 
This deviation becomes even more pronounced with decreasing temperature (see inset in Fig. 
4). This discrepancy is primarily attributed to an underestimation of the calculated phonon 
frequencies (as indicated from the comparison of calculated Raman modes and measured 
bands). At these low temperatures, underestimated phonon frequencies will lead to an 
overestimation of the heat capacity. Due to the asymptotic nature of Cv with respect to the 
Dulong-Petit limit, this discrepancy is only of minor importance at elevated temperatures. As 
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a consequence, the Debye and Einstein temperatures obtained from a fit of the calculated 
Cp(T) data to a Debye-Einstein model (model 2), are considerably lower compared to the 
values of the experimental Cp data (cf. Table 1). 

 
 

 

Figure 8. (a,b) Theoretical harmonic atomic displacement parameters (ADPs) obtained from 
DFT (solid lines) in comparison with experimental values, (c) comparison of Ueq values, 
which are calculated as the mean of the diagonal elements of the harmonic ADP tensor, (d) 
comparison of the ADP anisotropy factor, which is defined as the ratio between maximum Uii 
and minimum Uii values. A ratio of 1 would correspond to an isotropic displacement. 
 

In order to investigate in greater detail the nature of normal modes of vibrations in ZnSb 
we examined the temperature dependency of the ADPs of the Zn and Sb atoms obtained from 
refinements of an independent atom model against high resolution X-Ray data. In a perfect 
crystal harmonic ADPs represent the anisotropic temperature factors and describe the 
mean-square vibrational amplitude of an atom with respect to its equilibrium position in the 
crystal. Fig. 8ab compares the diagonal elements of the Uij tensor of the experimental ADPs 
and averaged Uiso values with ones derived from DFT calculations (Eq. 5 – 8). The ratio of 
the calculated diagonal elements is qualitatively in agreement with experiment (i.e. for the 
zinc atoms: U11 > U22 ≈ U33 and for antimony atoms: U33 ≈ U22 > U11). The trend in 
temperature dependency of the absolute values of the Uij tensor are also reproduced by the 
theoretical results. However, the calculated displacement parameters are slightly larger than 
the experimental ones at higher temperatures. ADP analysis reveals that the Uii values of the 
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Zn atom are in general larger than the corresponding ones of the antimony atoms at the same 
temperature and the show a larger increase in magnitude with increasing temperature relative 
to the Sb atoms. This trend is consistent between the theoretical and experimental results and 
is therefore not significantly biased by a potential disorder of the Zn atoms which would 
affect the experimental data only (which actually displays smaller Uii values compared to the 
calculated ones by DFT). A severe deficiency of Zn atoms as another potential origin of the 
large Uii values of Zn can be also ruled out since refinements against the high resolution 
diffraction data do not reveal any statistically significant deviation of the Zn atom site from 
full occupancy. Analysis of the ADPs obtained by experiment and the DFT calculation, 
however, cannot be used to furnish or preclude the presence of a deficient site occupancy of 
Zn due to defects. Indeed, reduction of the fractional site occupancy of Zn by 0.5% (which 
corresponds to an unrealistically high defect concentration of 1.03 × 1020 cm-3) causes a 
reduction of the corresponding Uiso(Zn) values by merely 0.7 %, - a value which is below 
statistical significance in the refinements of our X-ray data. Accordingly, the hypothesis that 
that electrical properties of ZnSb are largely influenced by the presence of Zn defects [6,53] 
can neither be confirmed nor ruled out on the basis of the X-ray data alone. Also the presence 
of a severe substitutional Zn/Sb disorder is not indicated by our refinements. The latter case 
would be clearly indicated by an erroneous decrease of the Uii(Zn) in the refinements and the 
presence of large residual densities in the core region of the zinc atoms [54]. Hence, the 
temperature dependent trend in the Uii values is mainly attributed to the fact that the Zn atoms 
display a significantly smaller mass than the antimony atoms (most important isotopes: 64Zn 
and 121Sb). As a consequence, the theoretical Ueq value of the zinc atom which is due to zero 
point motion is already significantly larger (about 0.001 Å2) than the corresponding Uiso(Sb) 
value at 0K. This difference becomes even more pronounced at elevated temperature and 
reaches 0.01 Å2 at 400 K.  

It is common practice for the analysis of thermoelectric materials to use the slope of the 
individual Ueq(T) sequences (c.f. Figure 8c) to derive Debye and Einstein 
temperatures [55,56]. For the Debye case and T > ΘD the temperature dependence of Ueq(T) 
corresponds to: ܷ௘௤ሺܶሻ ൌ 3݄ଶܶ4ߨଶ݉at݇B߆Dଶ                        ሺ12ሻ 

where mat is the mass of the respective atoms in ZnSb. The derived Debye temperatures 
ΘD,exp,ADP using experimental Ueq(T) values above 150K for ZnSb are 189K and 254K for Zn 
and Sb atoms, respectively. In case of the DFT derived Ueq(T) values the corresponding ΘD, 

theo,ADP values are 183 K and 230 K for Zn and Sb atoms, respectively. We note that the 
results for the Sb atoms compare reasonably well with the overall Debye temperature ΘD(0) 
from specific heat analysis (248 K from experiment and 210 K from DFT), while for Zn 
atoms the values are significantly lower. However, the difference between theory and 
experiment is more pronounced for Sb atoms. 

In addition the Uii values of Zn atoms also increase in anisotropy which is shown by the 
ratio of minimum and maximum Uii values, cf. Figure 8d. The anisotropy for the DFT result 
is even higher, but less temperature dependent above 80 K. For Sb atoms the anisotropy is 
rather constant and agrees well with the DFT prediction. 
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Figure 9. Difference electron density before (left) and after (right) anharmonic refinement for 
temperatures of 400 K, 300 K and 150 K. The positive (red) and negative (blue) contour 
values are shown in 0.2e/Å³ steps. The probability density distribution (middle) is given with 
contour values (2, 4, 8 × 10n, n = -2 .. 3). 

 
When analyzing the residual density distributions of the harmonic refinements we 

realized significant residual density features of positive and negative sign in alternating order 
at the Zn positions, which is a typical indicator for anharmonic motion [57]. This is shown in 
Fig. 9 (left panel). Third order (and corresponding higher order) ADPs, commonly known as 
the Gram-Charlier expansion are used describe this anharmonic motion. In case of ZnSb 
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refinements of Gram-Charlier expansion of orders higher than 3 did not improve the flatness 
of the residual density maps significantly and were not pursued. Accordingly, only the third 
order anharmonic parameters were refined to model the ADPs of the zinc and antimony 
atoms. Since both Zn and Sb occupy general crystallographic positions, 10 third order 
anharmonic parameters per atom need to be considered. Their refinements helped to improve 
the data fit dramatically as evidenced by the further decrease of the R-value from 2.08 to 
1.58 % for the data collected at 400 K. As demonstrated in Fig. 9, also the resulting residual 
electron density maps became essentially flat as a consequence of these anharmonic 
refinements. Analyses of the resulting probability density distributions do not reveal any 
pronounced negative regions which is a prerequisite of a physically valid model [58].  
 

 
 
Figure 10. Third order Gram-Charlier ADP expansion coefficients for Zn (a) versus T (T-axis 
scaled as T²). Estimated standard uncertainties of the refined parameters are shown as error 
bars and b) isosurface (surface value 0.1) representation of the nuclear probability density of 
the Zn2Sb2 entity at 400 K. 

 
Interestingly, only the Zn atoms are characterized by a significant anharmonicity of its 

vibrational amplitudes. The temperature-dependency of the third order Gram-Charlier 
expansion coefficients for Zn are shown in Fig. 10a. Although the Gram-Charlier expansion 
is a purely mathematical model without any expected temperature behavior, its parameters 
scale as T². This kind of temperature dependence can be expected for example for the 
potential parameters of a one particle anharmonic oscillator  [59]. For Sb all anharmonic 
parameters vanish within their standard uncertainty (see Supporting Information). The 
nuclear probability density of a Zn2Sb2 unit at 400 K is depicted in Fig. 10b. We note that the 
refinement of anharmonic ADP has almost no influence on the values of the harmonic ADPs, 
in agreement with recent findings from theoretical models [60], and has only little influence 
on the interatomic distances (taken into account for in Fig. 2c). Most notably, the Zn–Zn 
distance increases by 0.5% and the r2 distance by 0.3% compared to the purely harmonic 
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model at a temperature of 400K.  
In conclusion, the refinement of anharmonic ADPs clearly validates the presence of 

anharmonicity in ZnSb. Moreover, the anharmonic behavior affects only the Zn atoms. 
Anharmonicity was already indicated from the analysis of the heat capacity and accounted for 
by introducing a ܣଵanh parameter.  
 

D. Origin of low thermal conductivity  
 
 The lattice thermal conductivity of ZnSb is remarkably low [6,61] and is characterized 
for temperatures above 200 K by values lower than 2 W/mK. This behavior of ZnSb 
compares well to bulk PbTe which is one of the most established and approved thermoelectric 
materials. At first sight rocksalt structured PbTe, which exclusively constitutes of heavy 
atoms, and ZnSb do not have much in common neither with regard to chemical composition 
nor with respect to structural chemistry. However, we argue that the physical mechanism 
which is responsible for the low lattice thermal conductivity of both materials is be strikingly 
similar.  
 Recent inelastic neutron scattering experiments on PbTe revealed a peculiar dynamic 
behavior: Through anharmonic coupling the ferroelectric transverse optic (TO) mode 
interacts with the heat carrying longitudinal acoustic phonons over a wide range of 
frequencies, thus resembling a rattling mode [62]. Other studies showed disorder for the Pb 
atoms, which displace increasingly with temperature from their ideal position in the rocksalt 
structure  [63,64]. The dynamical peculiarity and structural disorder are certainly correlated 
and have been interpreted by considering PbTe as an incipient ferroelectric material [62]. The 
incipient ferroelectric state in turn is a consequence of Pb 6p-Te 5p bonding.  
 We propose, that the role of the ferroelectric TO mode in PbTe is adopted weakly 
dispersed low-energy optic modes in ZnSb. Their presence is a natural consequence of 
localized multicenter bonding established within the rhomboid Zn2Sb2 rings. The peculiar 
feature of the PDOS of ZnSb is the accumulation of 12 optic modes in a narrow window 
between 36 and 61 cm-1. This assembly of 12 soft modes possesses a great flexibility, which 
allows for effective interaction with heat carrying acoustic phonons throughout large parts of 
the Brillouin zone (cf. Fig. 6). Further, there is an increasing anharmonicity of the 
mean-square vibrational amplitudes of the zinc atoms with rising temperature in the 
diffraction experiments. Also this phenomenon is likely to be inherent to the electron-poor 
bonding properties of ZnSb and provides additional possibilities for phonon-phonon 
interactions: Firstly, additional (symmetry forbidden) interaction of optic and acoustic modes 
will by allowed by anharmonic coupling. Secondly, phonon-phonon scattering (Umklapp 
processes) are promoted at higher temperatures (typically above θD). 
 In conclusion, there appears to be a great analogy in the mechanism causing low lattice 
thermal conductivity for PbTe and ZnSb – despite their distinctly different chemical 
composition and structures. Moreover, we believe that the peculiar phononic structure of 
ZnSb (displaying a multitude of localized low-energy modes, which can act as rattling modes 
toward heat carrying acoustic phonons) represents the sought-after underlying characteristic 
that accounts generally for an inherent low lattice thermal conductivity for zinc antimony 
compound and their derivatives. The presence of localized low energy optic modes is seen as 
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a consequence of multicenter bonded structural entities which are common to all these 
compounds. 
 
 

 
IV. Conclusion 

 
ZnSb possesses an inherently low lattice thermal conductivity, which is related in nature and 
magnitude to the one observed in the state-of-the-art thermoelectric material PbTe. From a 
combination of high resolution X-ray diffraction studies, Raman spectroscopy, heat capacity 
measurements and first principles calculations of the electronic and phononic structure we 
identify peculiar electronic and vibrational properties as control parameters of the 
thermoelectric properties of ZnSb. These properties manifest themselves in a multitude of 
localized low energy optic modes (which couple with the acoustic, heat carrying phonons) 
and an anharmonic vibrational behavior of the Zn atoms. Both facets are regarded as a natural 
consequence of the electron-poor character of multicenter bonded structural Zn2Sb2 entities. 
Such entities are a common feature of thermoelectric electron poor semiconductors. We 
therefore argue that the vibrational behavior of ZnSb directly correlates with its bonding 
properties and that the established mechanisms for low thermal conductivity can be extended 
to other thermoelectric electron poor semiconductors like Zn4Sb3, CdSb, Cd4Sb3, 
Cd13-xInyZn10, and Zn5Sb4In2-δ. 
 
 
Supporting Information Available. Tables on the temperature dependent PXRD/SXRD 
measurements and refinements. 
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