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Lattice Vibrations in the Frenkel-Kontorova Model. Ⅱ. Thermal 
Conductivity 

 

Qingping Meng*, Lijun Wu, David O. Welch, and Yimei Zhu* 

Brookhaven National Laboratory, Upton, New York 11973, USA 

 

We applied the formulae for the phonon spectral-density function that we presented in 

the previous paper of this series to analyze the thermal conductivity of the lattice in the 

framework of the Frenkel-Kontorova (FK) model. We found that two extra mechanisms 

of phonon scattering (different from the point impurities, three-phonon processes, and 

boundary scattering typical of all crystals), viz., resonance, and anharmonic scattering, 

that mainly influences the thermal conductivity of the lattice. The frequencies of 

resonance scattering are discrete, and their number increases from a finite number to 

infinity with their transition from the commensurate- to the incommensurate-state. 

Changing the amplitude and period of the FK model changes the frequencies and the 

frequency number of resonance scattering, and the intensity of anharmonic scattering. 

We analyze these changes in detail. Our theory can explain all existing numerical 

results on this problem, and also suggest strategies to reduce the thermal conductivity of 

the lattice of layered materials. 

PACS numbers: 63.20.-e; 63.20.D-; 63.70.+h 
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I. Introduction 

    In the first paper of this series [1], termed number Ⅰ, we derived general expressions for 

vibrational properties of the lattice of the Frenkel-Kontorova (FK) model, number density, and 

the energy of the system. These derivations utilized the technique of thermodynamic Green’s 

functions, based on quantum field-theoretic methods.  

    In layered materials with two inter-penetrating sub-lattices, we can simply use an on-site 

potential to describe their atomic interactions. The FK model that describes the effects of a 

typical on-site potential has been studied extensively [2]. As we mentioned in the Introduction to 

paper Ⅰ, one of our motivations for studying this system was that very low lattice-thermal-

conductivity was found experimentally for some materials consisting of two interpenetrating 

incommensurate sub-lattices, such as NaxCoO2 [3], Ca3Co4O9 [4, 5], and Bi2−xPbxSr2Co2Oy [5, 6]. 

Therefore, these materials probably have good thermoelectric properties [7]. In another recent 

paper, we discussed the mechanism underlying the low lattice thermal conductivity in Ca3Co4O9, 

based on fitting it to experimental data, using Callaway’s phenomenological theory [8]. Further, 

our experimental results yielded some clues as to the origin of this low thermal conductivity and 

suggested qualitative explanations [8]; nevertheless, a systematic theoretical description still is 

lacking. 

    Some numerical simulations [9~16] of thermal conductivity with an on-site potential 

previously were carried out. Although they yielded some useful results, showing that the thermal 

conductivity of a one-dimensional lattice diverges with the system’s size [1~15], and that the 

thermal conductivity for an anharmonic on-site potential [16, 17] tends monotonically to zero 

with increasing temperature, the mechanisms of thermal conductivity were only those 
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conjectured from these numerical simulations. Therefore, having an analytical solution to 

complement those numerical studies is highly desirable.  

    In this paper, we use the Green’s functions deduced in paper Ⅰ to calculate the correlation 

function of the energy-flow operator [18], and then to obtain analytical formulas of thermal 

conductivity for the FK model with various periods; these, in turn, led to various-order 

commensurate states and also to an incommensurate state that we derived, based on the Kubo 

formula for thermal conductivity. Utilizing these analytical formulae, we analyzed in detail the 

mechanism of thermal conductivity for the FK model. 

II. General Formalism of Lattice Thermal Conductivity 

    The lattice thermal conductivity from the Kubo expression is 

    ( ) ( )∫∫ +=
∞

−

→

β
δ

δ
λλβκ

000
0lim hitSSddte

V
k tB                                                                              (2.1) 

where V  is the volume of the crystal; 
TkB

1=β ; T  is temperature, and ( )tS  is the energy-flow 

operator of the lattice at time, t . Ignoring the non-diagonal parts of the energy-flow operator, the 

energy-flow operator is [18]  

     ( ) ∑=
k

kkk nvtS ωh                                                                                                                   (2.2) 

where kω  is the frequency of the normal mode with wave vector, k , of the unperturbed crystal, 

kv  is the group velocity, and kkk aan *=  is the number-density operator of the phonon. From Eq. 

(2.2), thermal conductivity then is written as 
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The correlation function ( )tFkq  is 

    ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )taataatataaatnntF qkqkqqkkqkkq
++++ ≈== 00000                              (2.4) 

We used the decoupled relation [19] bcadbdaccdababcd ++=  and ignored those 

terms involving two creation- and two-annihilation operators because they are negligibly small; 

furthermore, we ignored the correlation function with same time-argument, since only such 

correlation functions with different times contribute to thermal conductivity. 

    Combining Eqs. (2.13a) and (2.13b) in paper Ⅰ, and Eq. (2.1)~(2.4), we obtained the 

following equation for the thermal conductivity of the lattice 
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where ( )ωkqJ  is the spectral-density function defined in paper Ⅰ. Eq. (2.5) is the starting point 

for our calculation of the lattice’s thermal conductivity.   

III. Applications 

    Next, we examined the properties of phonon-transport for various different degrees of 

matching between the unit-cell sizes a  and b  of the two sub-lattices of the FK model. 

A. ba =  

    Here, the period of the FK model equals that of the lattice chain. The spectral-density function 

(as detailed in paper Ⅰ) is 
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where, ( ) ( )2
1

1
21~ Mkk += ωω , and 1M  is given in Eq. (3.4) of paper Ⅰ. Substituting and integrating 

Eq. (3.1) into Eq. (2.5), we obtain the result that herein thermal conductivity is infinite, viz., 

consistent with the results of many numerical simulations [10~17]. Because our system here is 

an infinite lattice chain, thermal conductivity diverges as ∞→N  in numerical simulations.  

B. 
2
ba =  

    In paper Ⅰ, we show that we can write the spectral-density function in this case as follows: 
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spectral-density function, we can consider contributions to thermal conductivity in two cases.  
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In this case, the spectral-density function becomes 
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and the contributions of these phonons to the thermal conductivity is 
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Case 2: 
a

qk π+=  
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and, 
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The thermal conductivity is 
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For small values of 
a

k π+
Γ  and kΓ  that are related to the width at half maximum of the peak in the 

energy distribution, the integrands in Eqs. (3.4) and (3.6) peak around ( )2~
qωω =  and 

( ) ( )22 ~~
a

qq πωωω
+

== . We can evaluate these integrals analytically by replacing the peak distribution 

by a Dirac function. We then obtain the total thermal conductivity as 
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Eq. (3.7) is the familiar relaxation-time expression. The first term therein is the contribution from 

qk = . In this case, the reciprocal of the phonon lifetime in the FK potential is 
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Eq. (3.8) reveals that there is resonance scattering at a frequency that is the solution for 

( )

a
qq πωω

+
=2~ . Figure 1 is a schematic diagram illustrating how to assess the resonance frequency. 

In calculation of Figure 1, we let the largest frequency of unperturbed normal mode 1=Lω [1]. 

In this figure, the points corresponding to the addition sign meet ( )

a
qq πωω

+
=2~ . There are two 

solutions of this equation in Fig.1. When the frequency of an incident phonon is a resonance 

frequency, the phonon lifetime is zero, meaning that the phonon is local only, and cannot 

propagate. 
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    The second term in Eq. (3.7) is the contribution from 
a

qk π+= . The prime symbol represents 

a sum for the value of q  for ( ) ( )22 ~~
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π . The phonon’s lifetime is 
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Eq. (3.9) also details the phonon’s resonance scattering. The resonance frequency is obtained 

from  

    ( )

a
qq πωω

+
=2~ , and ( )

qq ωω =2~ .                                                                                               (3.10) 

    From Eqs. (3.8) and (3.9), we find that the phonons described by a special frequency are 

scattered completely, implying that these special frequency phonons do not contribute to thermal 

conductivity. However, the transport of other phonons occurs without resistance; therefore, the 

total thermal conductivity still is infinite even if other mechanisms, such as point impurities, 

three-phonon processes, and the boundary scattering of thermal conductivity are not considered. 

C. 
3
ba =  

    For this case, we first consider the contribution of ( )212 ,kkC  (see paper Ⅰ). The spectral-

density function is 
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where qφ , qϕ , and ( )3~
qω  are defined in paper Ⅰ. Using the same method as used in the section 

above, we obtain the contribution to thermal conductivity for several cases: 
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The prime symbol in Eqs. (3.13) and (3.14) represents only the sum for q  of ( ) ( )3
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conductivity, while phonons with other frequencies have resistance-free transport provided that 

point impurities, three-phonon processes, and boundary scattering are not considered in 

calculating the lattice thermal conductivity. The resonance frequency is obtained from one of the 

following three equations: 

    ( )

a
qq

3
2

3~
πωω

+
=                                                                                                                       (3.15a) 

    ( )

a
qq

3
2

3~
πωω

−
=                                                                                                                       (3.15b) 

and, 

    ( )
qq ωω =3~                                                                                                                            (3.15c) 

    For a structure higher than a second-order commensurate one, the effect of ( )3213 ,, kkkC  does 

not disappear (see paper Ⅰ). When the effects of ( )3213 ,, kkkC  and ( )43214 ,,, kkkkC  are 

considered, we obtain the spectral-density function 
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    ( )

( )( )( )
( )( )( ) ( )22232

232

Im~

Im~ImRe

1exp
2

ζωω

ξωωζξω
π

δ

ωβ +−

−−⎟⎟
⎠

⎞
⎜⎜
⎝

⎛ +
⋅

−
=

q

qq
qk

kqJ
h

                                           (3.16) 

where ( )( ) ζωω Re~ 223 −= qq . ξ  and ζ  are two functions dependent on the vectors k  and q . “Re” 

and “Im” respectively represent their real and imaginary parts. Details are given in the 

Supplemental Material of paper Ⅰ. The thermal conductivities for three cases are the following: 

    Case 1: kq =  

    
( )( )

( )( )[ ]
( ) ( ) ( )[ ]

( ) ( )∑
=

=
=

+

⎥
⎥
⎦

⎤

⎢
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
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⎛
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⎛
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−
=

k kqk
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v
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k
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ξπωω
ω
ω

ω
ω

ωβ
ωββκ

Im~
Re~~

61
1~exp
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4 3

2224323

23

322

h

hh        (3.17) 

    Case 2: 
a

kq
3
2π+=  

( ) ( )( )
( )( )[ ]

( )( ) ( ) ( )

( ) ( ) ( )∑ +

ΔΔ⎟⎟
⎠
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⎜⎜
⎝
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⎟
⎟

⎠

⎞

⎜
⎜
⎜
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⎛
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ω
ω

ω
ω

ωω
ω

ωβ
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πππ

ππ
π

h

hh  

(3.18) 

    Case 3: 
a

kq
3
2π−=  

( ) ( )( )
( )( )[ ]
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−= k k

a
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a
kk

a
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a
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k

a
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k
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(3.19) 
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where ( )1Imζ , ( )2Imζ , ( )3Imζ , and ( )4Imζ  are ζIm  after using the q
a

k →+
3
2π , kk → ; 

k
a

k →+
3
2π , qk → ; q

a
k →−

3
2π , kk → ; and k

a
k →−

3
2π , qk →  transitions, respectively. 

Carefully analyzing ζIm  in the Supplemental Material of paper Ⅰ, we find that not only can the 

quadratic- and quartic-terms (the first term of Eq. (S.60) in the Supplemental Material of paper 

Ⅰ) can bring about resonance scattering, but also the cubic term can (i.e., the second- and third-

term of Eq. (S.60)) from the FK on-site potential. We can assess the resonance frequencies by 

solving one of Eq. (3.15). Moreover, we note that the cubic term also results in other anharmonic 

scatterings (the last six terms of Eq. (S.60) in Supplemental Material of paper Ⅰ), i.e., the cubic 

term of the FK on-site potential implies result that resonance scattering is not the only source of 

phonon scattering. Anharmonic scattering, unlike resonance scattering, will scatter phonons of 

all frequencies. Therefore, when such scattering is considered, the total thermal conductivity will 

be finite, i.e., the divergence of thermal conductivity with the system’s size will be lacking. This 

result is consistent with some numerical experiments [16, 17]. As indicated in paper Ⅰ, when the 

cubic term from the FK on-site potential is considered, a theoretical solution becomes impossible 

for higher order commensurate states. However, from assessing the third-order commensurate 

state, we find that the cubic term mainly leads to anharmonic scattering of all frequency phonons 

although the phonon lifetime for scattering has a finite value. The anharmonic contribution is 

similar to that obtained before [20~22]. Therefore, in subsequent sections, we only consider the 

effect of the quadratic term.  
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D. bsa r=  

    The wave vector of the periodic FK model is 
a
sg rπ2=  for any order of commensurate state. 

The spectral-density function is  

( )[ ]
( ) ( )( ) ( ) ( ) ( )( )[ ]{ } ( )( )[ ] ( ) ( ) ( )( )[ ]

( )( )[ ] ( ) ( )( )[ ]221
4

222

32
2

1
22

32
2

121
2
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Im~ReIm

1exp
2

rrr
q

rrrr
q

rrr
qqk

rr

kqJ

θθαωω

ηηααηωωηηααηωδθθα

ωβπ

++−

−+−+−+++
×

−
−=

h
 

(3.20) 

where ( )( ) ( ) ( )( )rr
q

r
q 21

222 Re~ θθαωω ++= . α , ( )r
1θ , ( )r

2θ , ( )r
1η , ( )r

2η  and ( )r
3η  are defined in paper Ⅰ. 

The lattice thermal conductivities in various cases are the following: 

    Case 1: qk =  

    When qk = , ( )r
1η  and ( )r

2η  disappear. From Eq. (2.5), we have 

   
( )

( )( )
( ) ( )

( )

( )

( ) ( )( )rr

r

k
r

k
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k k

r
k
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kB

qk
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k
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~
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⎥
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⎜⎜
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+⎟⎟

⎠

⎞
⎜⎜
⎝

⎛
+

−
= ∑=

h

hh                   (3.21) 

    Case 2: gqk −=  

   We firstly need to know the values of gqqJ −  and gqqJ −  that are obtained from kqJ , respectively, 

by substituting the subscripts gqk −→ , qq → , and qk → , gqq −→ . Then, ( )r
2η  and ( )r

3η  

disappear, and ( )r
1η  becomes 

    ( ) ( ) ( )gqgqgqq
r i −−− Γ−Δ= 2

1

1 ωωη                                                                                              (3.22a) 

for the substitution of subscripts gqk −→ , qq → ; and, 
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    ( ) ( ) ( )qqqgq
r iΓ−Δ= − 2

1

1 ωωη                                                                                                    (3.22b) 

for the substitution of subscripts qk → , gqq −→ . Other terms, such as  ( )r
1θ , ( )r

2θ , and ( )r
qω~ , 

are similar to ( )r
1η , and then, we have 

( )[ ]
( ) ( )( ) ( )( ) ( )( )[ ] ( )( )

( )( )[ ] ( ) ( )( )[ ]
qqgqk

rrr
q

rr
q

rrr

gqqJ

→−→

−
⎪⎭

⎪
⎬
⎫

⎪⎩

⎪
⎨
⎧
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,

2
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4
222

1
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3
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2

θθαωω
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ωβπ h

  (3.23a) 

( )[ ]
( ) ( )( ) ( )( ) ( )( )[ ] ( )( )

( )( )[ ] ( ) ( )( )[ ]
gqqqk

rrr
q
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q
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⎨
⎧
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ωβπ h

  (3.23b) 

The thermal conductivity is 

( )
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gqq
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q
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r
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⎠
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⎜
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1
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ω
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h

h
h      (3.24) 

Case 3: gqk +=  

Similar to the case gqk −= , the thermal conductivity is 

( )

( )( )

( ) ( ) ( )( )

( ) ( ) ( )( ) ( ) ( )( )[ ]
gqq

rr
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rrr
q

gqq

r
q
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⎥
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⎢
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⎠
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⎜
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h
h      (3.25) 

Case 4: gqk 2−=  

For this case, ( )r
1η  and ( )r

3η  disappear, similar to gqk −= , and ( )r
2η  is 

    ( ) ( )gqgqgqgq
gqgq

gqq ii 222
2

2

2
1

2
2 −−−−

−−

− Γ+Γ−Δ−Δ
−

=
ωω

ωω
η                                                                     (3.26a) 
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for the substitution of subscripts gqk 2−→ , qq → ; and  

    ( ) ( )qgqqgq
qgq

gqq ii Γ+Γ−Δ−Δ
−

= −−
−

−
22

2
1

2
2 ωω

ωω
η                                                                               (3.26b) 

for substitution of subscripts qk → , gqq 2−→ , then we have 

( )[ ]
( ) ( )( ) ( )( ) ( )( )[ ] ( )( )

( )( )[ ] ( ) ( )( )[ ]
qqgqk

rrr
q
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(3.27a) 
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(3.27b) 

The thermal conductivity is 
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              (3.28) 

Case 5: gqk 2+=  
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The prime symbol in Eqs. (3.24), (3.25), (3.28) and (3.29) represents a similar meaning as Eqs. 

(3.13) and (3.14). In the current approximation, we can obtain a series representation of the 

resonance frequency of scattering phonons. It is evident from the reciprocal of the phonon’s 

lifetime. As an example, we inspect Eq. (3.21). The phonon lifetime has 
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τ              (3.30) 

where ( )( )( )22~
sgq

r
qsgq ++ −=Γ ωωπδ . The formula reveals that a phonon will be scattered resonantly 

when the frequency of the phonon satisfies the condition 

    ( )
sgq

r
q += ωω~                                                                                                                        (3.31) 

where s  is any integer. The resonance frequency number n  satisfies the condition that rns  is the 

smallest integer. 

E. bsa i=  

    Here, is  is an irrational number, and our system is an incommensurate state. 
a
sg iπ2= . Any 

integer multiple of g  is not a reciprocal lattice vector. The spectral-density function is 

 
( )[ ]

( ) ( )( ) ( ) ( ) ( )( )[ ]{ } ( )( )[ ] ( ) ( ) ( )( )[ ]
( )( )[ ] ( ) ( )( )[ ]221

4
222

32
2

1
22

32
2

121
2

Im~
Im~ReIm

1exp
2

iii
q

iiii
q

iii
qqk

ii

kqJ

θθαωω

ηηααηωωηηααηωδθθα

ωβπ

++−

−+−+−+++
×

−
−=

h
 

(3.32) 

where ( )i
qω~ , α , ( )i

1θ , ( )i
2θ , ( )i

1η , ( )i
2η  and ( )i

3η   are defined in paper Ⅰ. From the spectral-density 

function, and similar to the commensurate state in section D, the thermal conductivity of the 

lattice is 
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Case 1: qk =  
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Case 2: gqk −=  
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Case 3: gqk +=  
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Case 4: gqk 2−=  
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Case 5: gqk 2+=  
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   Similar to the behavior of an incommensurate state of any order, an irrational is  in principle 

will lead to infinite resonance frequencies. These frequencies satisfy 

    ( )
sgq

i
q += ωω~                                                                                                                           (3.38) 

where s  is any integer.  

IV. Discussions 

    Fundamental to the usefulness of complex thermoelectric materials is the need to optimize a 

variety of conflicting properties. Maximizing a material’s thermoelectric figure of merit requires 

high electrical conductivity, and low thermal conductivity [7]. One method for circumventing the 

inherent conflict of these two requirements is to imagine a complex material with distinct 

regions, each providing different functions. The layered structure may have regions composed of 

a high-mobility semiconductor that assures high electrical conductivity, interwoven with a region 

of low thermal conductivity. Layered cobaltite oxides, such as NaxCoO2 [3], (Ca2CoO3)0.62CoO2 

[4, 8], and Bi2-xPbSr2Co2Oy [6] may have a CoO2 layer with high electrical conductivity, and 

neighboring layers with low-lattice thermal conductivity. The lattice periods of the two 

interpenetrating layers generally are incommensurate along a lattice direction. The FK model can 

describe well the phonon properties of a layered structure with different lattice periods. 
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Therefore, our theoretical results can explain the low thermal conductivity of the lattice in 

layered materials.  

    According to our theoretical calculations, the FK on-site potential causes two extra 

mechanisms of phonon scattering: Resonance and anharmonic scattering (other scattering 

mechanisms, such as point impurities, three-phonon processes, and boundary scattering are 

present in almost all crystals). We note that the anharmonic scattering of the FK model differs 

from that of anharmonic potential in general crystals. To distinguish the difference, hereafter, we 

consider the anharmonic scattering of the FK model as anharmonic scattering, and the 

anharmonic scattering of general crystals as three-phonon processes. Resonance scattering is 

discrete process. The number of resonance frequencies depends on the ratio between the period 

of the unperturbed lattice, and the perturbation caused by the FK on-site potential. The number 

becomes infinite when the ratio is irrational. The phonons’ lifetime for resonance scattering is 

zero, i.e., these phonons are localized completely. The anharmonic scattering from the cubic term 

of the FK on-site potential expansion exists only for those states higher than second order-

commensurate ones. The anharmonic scattering will scatter phonons of all frequencies, and then 

the phonon’s lifetime has a non-zero value. These two mechanisms mainly will determine the 

lattice thermal conductivity for this kind of materials. In the following, we discuss them 

separately. 

A. Anharmonic scattering 

    Anharmonic phonon scattering comes mainly from the cubic term, ( )3213 ,, kkkC  (see paper 

Ⅰ), of the expansion of the FK on-site potential. As mentioned in paper Ⅰ, the calculation due 

to adding ( )3213 ,, kkkC  will become very complex, so that it is very difficult to analytically 
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estimate the effect of ( )3213 ,, kkkC  for a structure higher than a three-order commensurate one. 

However, some useful conclusions can be obtained when we carefully inspect the calculated 

results (including the coefficient 3α  terms of Eq. (S.60) in Supplemental Material of paper Ⅰ) in 

the third-order commensurate lattices. From Eq. (S.60), a direct method to reduce the thermal 

conductivity is attained by raising the coefficient 3α  of the cubic term, i.e., the amplitude, 0V , of 

the FK on-site potential. This resolution is consistent with the results of Tsironis et al’s 

simulation [16]. In addition, the second- and third-term of Eq. (S.60) include 
a

q
3
2π+

Γ  and 
a

q
3
2π−

Γ , 

implying that the ( )3213 ,, kkkC  term also can lead to resonance scattering. Resonance scattering 

is discussed later because it also is caused by ( )212 ,kkC  and ( )43214 ,,, kkkkC . Comparing the last 

six terms in Eq. (S.60) from the FK on-site potential with the expression of three phonon 

processes in general crystals [20, 22], some special three-phonon scattering processes are known. 

These scattering processes represent the interaction among an incoming phonon with a wave 

vector k , an outgoing phonon with a wave vector q  and a phonon with a wave vector 
a3

2π  or 

a3
2π−  that is from the FK on-site potential. It means that the anharmonic scattering processes are 

similar to general three-phonon scattering but one of these three phonons in the former has 

integral multiples of the wave vector of the FK on-site potential. For this potential with 
3
ba = , 

only the phonons with the wave vectors 
a3

2π  and 
a3

2π−  are supplied to the anharmonic scattering 

processes. For a higher order commensurate state, more phonons will join the anharmonic 

scattering processes. Theoretically, infinite phonons will join these scattering processes in an 

incommensurate lattice. From the analysis to the anharmonic scattering, we know that changing 
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the lattice constants of the two interpenetrating sublattices, and making the layered structure into 

a high-order commensurate or incommensurate state is an effective way to obtain a low thermal 

conductivity. 

B. Resonance scattering 

   Phonon resonance scattering efficiently reduces the lattice thermal conductivity [23]. By fitting 

the experimental data for thermal conductivity in the layered cobaltite oxides, we showed 

previously that the low thermal conductivity in the system mainly results from resonance 

scattering [8]. Now, our theory further confirms that resonance scattering from the FK on-site 

potential is an important factor for the lattice thermal conductivity. According to our theory, we 

can employ two ways to reduce the lattice thermal conductivity in layered materials: 1) 

Increasing the number of resonance frequencies; and, 2) adjusting the resonance frequencies, and 

letting phonons with that resonance frequency have a density of states as large as possible.  

    Changing two parameters can achieve both these two goals: 1) Alter the lattice constants of 

the two interpenetrating sublattices; and, 2) change the interaction strength between them, i.e., 

the amplitude 0V  of the FK on site potential. Undoubtedly, the change of lattice constant is 

directly linked to the number of resonance frequencies. When we transfer our system from a 

commensurate one to an incommensurate one, the number of resonance frequencies increases 

from a finite number to infinity. However, we emphasize that such a commensurate-

incommensurate transition depends on both the interaction strength between the two sublattices, 

and their lattice constants [24]. Changing the strength of the interaction can significantly alter 

phonon dispersion and the density of states. Figure 2 illustrates phonon dispersion and the 

density of states of the commensurate state ab
6
7=  with 05.02

0
2

=
ma

Vπ . Comparing Figures 4 (a) 
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and (d) in paper Ⅰ with Figures 2(a) and (b), clearly illustrates that the changing 0V  not only 

alters the shape of the dispersion curves of different branches, but also moves their position. 

These changes, such as that in the density of states with resonance frequency, may be used to 

adjust lattice thermal conductivity. Figure 2 also depicts the resonance frequencies with various 

wave vectors (the points of the addition signs). Undoubtedly, the number of the resonance 

frequencies greatly increases with an increase in the order of commensurate, and the number will 

be infinity in an incommensurate lattice. 

    As discussed above, the anharmonic scattering from the FK model is similar to general three-

phonon scattering, and it is difficult to obtain an analytical expression of the scattering in any 

order commensurate structure. Therefore, we do not incorporate the anharmonic scattering from 

the FK model into our subsequent calculations. In any case, such scattering always will further 

reduce the lattice thermal conductivity. Resonance scattering can dramatically decrease the 

lattice thermal conductivity [25, 26]. However, thermal conductivity diverges when only the 

resonance scattering is used to the calculation because phonons with a large deviation from 

resonance frequency will not be scattered, and then the non-scattering phonons will lead to an 

infinite thermal conductivity. Similar divergences also occur in calculating the thermal 

conductivity of high-concentration harmonic isotopically disordered mixed crystals [27], and of 

the interfacial strain field between dissimilar lattices [28] because phonons with a long 

wavelength are not scattered by isotopic defects and by the interfacial strain field. The existence 

of the divergence of resonance scattering in this paper is clearly physical; and it can be removed 

in real systems by other phonon scattering mechanisms, such as point defects, boundaries and 

three-phonon scattering. As mention, the three scattering mechanisms inevitably exist in most 

real crystals. Therefore, it is necessary to add the three scattering mechanisms in calculating 
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thermal conductivity not only to remove the divergence of resonance scattering, but also to 

compare it with and without the resonance scattering. All phonon scattering processes can be 

combined by frequency-dependent relaxation times [29]. The frequency-dependent relaxation 

times for scattering by point defects, boundaries, and three-phonon process have studied widely. 

Based on Callaway’s phenomenological model [29], the combination of these relaxation times is 

    L+++= −−−− 1111
PBD ττττ                                                                                                          (4.1) 

wherein the first three terms, 41 ωτ AD =− , 
L
v

B =−1τ , and ⎟
⎠
⎞

⎜
⎝
⎛−=−

T
TB D

P 3
exp21 θωτ , respectively 

come from scattering by point defects, boundaries and three-phonon processes. The ellipsis in 

Eq. (4.1) shows any other existing scattering mechanisms. v  is the group speed of the phonons, 

and Dθ  is the Debye temperature, L , A , and B  are the three constants of materials respectively 

dependent on grain size, the density of point impurities and the intensity of the anharmonic force 

constant. In applying Callaway’s theory, L , A , and B  usually are determined from fitting 

experimental data.  

    The lattice thermal conductivity derived from the Kubo formula based on a physical model 

can reveal details of their basic physical nature. However, to include the three scattering 

mechanisms in Eq. (4.1) into our calculation, we can rewrite our theoretical derivation using 

some approximation [27, 30]. Comparing our results with Callaway’s formula, as an example, 

the relaxation time per normal mode in the second term of Eq. (3.7) is 
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The second term of Eq. (3.7) becomes 
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    ( ) ( )∑=
q

qvqCq 2τκ                                                                                                                  (4.3) 

where ( )

( )

( )( )2~

~22

1
2

2

−
=

+

q

q

e

ek
qC a

qqB

ωβ

ωβ
πωωβ

h

h
h

 has the unit of the phonon specific heat, and it can be termed 

the effective phonon specific heat. Eq. (4.3) is same as the form of Callaway’s theory [29]. 

Thereafter, we can group all the scattering mechanisms into Callaway’s phenomenological 

model. In our calculations, the relaxation times of the resonance scattering from the FK model 

will be obtained from the results of Section 3, while the total relaxation time is calculated from 

Eq. (4.1). The lattice thermal conductivities of the three structures, general crystal, 

commensurate- and incommensurate- ones, were calculated, and the results are shown in Figure 

3. The black line (curve a) represents the findings for the point impurities, boundary scattering 

and three-phonon processes [29]. The red line (curve b) and the green line (curve c) show the 

thermal conductivities added by resonance scattering of commensurate structure with ab
6
7=  

and incommensurate structure with ab 17.1= , respectively. In the calculating these curves, we 

let resonance scattering occurs with 
( )

( ) 01.0~
~

<
− +

r
q

sgq
r

q

ω
ωω

. Figure 3 shows that the thermal 

conductivity of an incommensurate structure with ab 17.1=  is almost one order-of-magnitude 

lower than that of the general crystal. It can explain the low lattice thermal conductivity that 

occurs in materials consisting of two interpenetrating incommensurate sub-lattices. 

V. Summary and Conclusions 

    We studied the lattice thermal conductivity resulting from the FK model, beginning first with 

several low-order commensurate states. The first-order commensurate state, i.e., the period of 
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unperturbed lattice is same as that of the FK on site potential, and has infinite lattice thermal 

conductivity in our approximation. The higher-than-first-order commensurate states will have 

resonance scattering for some special frequencies. In addition to resonance scattering, we 

identified anharmonic scattering resulting from the cubic term of the expansion of the FK on site 

potential in those states higher than second order commensurate ones. The number of the 

resonance frequencies depends on the ratio between the period of the unperturbed lattice and that 

of the FK on site potential. Their number becomes infinite when the ratio is irrational. The 

change of amplitude of the FK on site potential can alter the intensity of anharmonic scattering, 

and the resonance frequency. If the phonon with resonance frequency has a density of states as 

large as possible, it is very useful in reducing the lattice thermal conductivity in the layered 

materials. Our theoretical results can be used to develop strategies to lower the lattice’s thermal 

conductivity in actual layered thermoelectric materials.    
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Fig. 1. (Color online) Schematic diagram illustrating how to calculate resonance 

frequency for 
2
ba = . The green dashed line is qω , and the black and red solid 

lines show the two branches of ( )2~
qω . The red points shown by addition signs 

satisfy ( )
qq ωω =2~  or ( )

a
qq πωω

+
=2~ . The corresponding frequencies of these points 

are resonant ones. 1=Lω  and 1.02
0

2

=
ma

Vπ  are used in the calculation. 
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(a) (b) 

Fig. 2. (Color online) The phonon dispersions (a), and density of states (b) of a 

commensurate chain with ab
6
7=  , 1=Lω  and 05.02

0
2

=
ma

Vπ . The dashed line is the 

dispersion without perturbation. The points showed by dark red addition signs meet 
( )

sgq
r

q += ωω~ . The corresponding frequencies of these points are the resonant. 
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FIG. 3 (Color online) Thermal conductivity (in atomic units) as a function of 

temperature in three cases: (a) general crystal; (b) commensurate with ab
6
7= ; and 

(c) incommensurate with ab 17.1= . The following parameters were used in the 
calculation: HzL

1310=ω ; mL μ1= ; 34110 sA −= ; KsB /105 18−×= ; smv /3000= ; 
KD 270=θ . 
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